Isaac Scientific Publishing

Advances in Astrophysics

Rotating Black Holes in Microscopic Theory: the Implications for Periodic Source M82X-2

Download PDF (2562.3 KB) PP. 201 - 223 Pub. Date: November 1, 2016

DOI: 10.22606/adap.2016.13006

Author(s)

  • Gagik Ter-Kazarian*
    Ambartsumian Byurakan Astrophysical Observatory Byurakan 378433, Aragatsotn District, Armenia

Abstract

In previous paper [1], we employ the microscopic theory of black hole to study the observed unusual high luminosity of NuSTAR X-ray pulsations from M82X-2 without the need for significant breaking of Eddington limit. Exploring a spontaneous breaking of gravitation gauge symmetry at huge energies, this theory has smeared out a central singularity of black hole replacing it by the equilibrium, so-called, superdense proto-matter core (SPC), subject to certain rules. In this framework, we think of a M82X-2 as being a spinning intermediate mass black hole. However, for rigorous theoretical solutions, in present report we analytically treat the microscopic model of stationary and axisymmetric rotating black hole. A ring singularity of the Kerr black hole cannot occur, which is now replaced by equilibrium SPC. We calculate the corrections to previous model, introduced by the rotation, of the characteristic phase profile of M82X-2.

Keywords

Black hole physics, accretion: accretion discs, X-rays: binaries, X-rays: individual (NuSTAR J095551+6940.8).

References

[1] G. Ter-Kazarian, "On the Physical Nature of the Source of Ultraluminous X-ray Pulsations", Astrophys. & Space Sci., vol. 361, issue 1, pp.20, DOI 10.1007/s10509-015-2604-0, 2016.

[2] M. Bachetti et al. (24 authors), "An ultraluminous X-ray source powered by an accreting neutron star", Nature, vol. 514, Issue 7521, pp. 202-204, 2014.

[3] G. Wiktorowicz, M. Sobolewska, A. Sadowski, K. Belczynski, "Nature of the Extreme Ultraluminous X-Ray Sources", Astrophysical Journal, vol. 810, Issue 1, article id. 20, 8 pp., 2015.

[4] A.A. Mushtukov, V.F. Suleimanov, S.S. Tsygankov, J. Poutanen, "On the maximum accretion luminosity of magnetized neutron stars: connecting X-ray pulsars and ultraluminous X-ray sources", MNRAS, vol. 454, Issue 3, pp.2539-2548, 2015.

[5] D. Simone; P. Rosalba, S. Luigi, "NuSTAR J095551+6940.8: a highly magnetized neutron star with super- Eddington mass accretion", MNRAS, vol. 449, Issue 2, pp.2144-2150, 2015.

[6] Y.Y. Pan, L.M. Song, C. M. Zhang, H. Tong, "The magnetic ?ň?eld evolution of ULX NuSTAR J095551+6940.8 in M82a??a legacy of accreting magnetar", [astro-ph.HE]/1510.08597], 2016.

[7] D. Simone, P. Rosalba; P. Alessandro; B. Enrico; S. Luigi, "The accretion regimes of a highly magnetized NS: the unique case of NuSTAR J095551+6940.8", MNRAS, vol. 457, Issue 3, pp.3076-3083, 2016.

[8] A. King, J.-P. Lasota, "ULXs: Neutron stars versus black holes", MNRAS Lett., vol. 458, Issue 1, pp.L10-L13, 2016

[9] G.T. Ter-Kazarian, "Protomatter and EHE C.R.", J. Phys. Soc. Jpn., Suppl., B, Vol.70, pp.84-98, 2001.

[10] G.T. Ter-Kazarian, "Gravitation and inertia; a rearrangement of vacuum in gravity", Astroph. & Space Sci., Vol. 327, pp.91- 109 , 2010.

[11] G. Ter-Kazarian, "Ultra-high energy neutrino fluxes from supermassive AGN black holes", Astrophys. & Space Sci., Vol. 349, pp 919-938, 2014.

[12] G. Ter-Kazarian, "Growth of accreting supermassive black hole seeds and neutrino radiation", J. of Astro- physics, vol. 2015, Article ID 205367, p.1, 2015. http://dx.doi.org/10.1155/2015/205367

[13] G. Ter-Kazarian, S. Shidhani & L. Sargsyan, "Neutrino Radiation of The AGN Black Holes", Astrophys. & Space Sci., Vol.310, pp. 93-110, 2007.

[14] A. Castellina, F. Donato, "Astrophysics of Galactic charged cosmic rays", 2012, Invited review, in Vol.5 of Planets, Stars and Stellar Systems Editor-in-chief Oswalt, T.D McLean, I.S.; Bond, H.E.; French, L.; Kalas, P.; Barstow, M.; Gilmore,G.F.; Keel, W. (Eds.) 1st Edition., 2012, 4760 p., Springer, ISBN 978-90-481-8817-8, 2011; arxiv:1110.2981[astro-ph.GA]

[15] A. Letessier-Selvon, T. Stanev, "Ultrahigh energy cosmic-rays", Rev. Mod. Phys., Vol. 83, pp. 907-942, 2011; [astro-ph.HE]/1103.0031]

[16] G.Sigl, lectures given at ISAPP School "Neutrino Physics and Astrophysics", Villa Monastero, Varenna, Italy, 2011; arxiv:1202.0466[astro-ph.HE]

[17] G. Ter-Kazarian, "Spacetime Deformation-Induced Inertia Effects", Advances in Mathematical Physics, vol. 2012, Article ID 692030, p.1, 2012; http://dx.doi.org/10.1155/2012/692030

[18] G.T. Ter-Kazarian, "Gravitation Gauge Group", Nuovo Cimento, Vol.112B, pp.825-838, 1997.

[19] G. Ter-Kazarian, "Two-step spacetime deformation-induced dynamical torsion", Class. Quantum Grav., vol. 28, 055003, 2011; arXiv:1102.2491[gr-qc]

[20] G. Ter-Kazarian, "Modified Theories of Gravitation behind the Spacetime Deformation", Physics Research International, vol. 2015, Article ID 152846, p.1, 2015; http://dx.doi.org/10.1155/2015/152846

[21] P.A.M. Dirac, "Fixation of Coordinates in the Hamiltonian Theory of Gravitation", Phys. Rev., vol. 114, p.924, 1959.

[22] P.A.M. Dirac, Lectures on quantum mechanics, Belfer Graduate School of Science Monograph Series. No2, Yeshiva University, New York, 1964.

[23] R.Arnowitt, S. Deser & C.W. Misner, in Recent Developments in General Relativity,Warsaw: Polish Scientific Publishers, 1962.

[24] B. Carter, "The commutation property of a stationary, axisymmetric system", Comm. Math. Phys., vol. 17, Issue 3, pp 233-238, 1970.

[25] J.M. Bardeen, Astrophys. J., "A Variational Principle for Rotating Stars in General Relativity", Astrophysical Journal, vol. 162, p.71, 1970.

[26] S. Bonazzola, E. Gorgoulhon, "A virial identity applied to relativistic stellar models", Class. Quantum Grav., vol. 11, Issue 7, pp. 1775-1784, 1994.

[27] P.K. Townsend, "Black holes", Lecture notes, 1997; arxiv:9707012[gr-qc].

[28] A. Komar, "Covariant Conservation Laws in General Relativity", Phys.rev., vol. 113, p.934, 1959.

[29] D.C. Robinson, "Uniqueness of the Kerr black hole", Phys. Rev. Lett., vol. 34, pp. 905, 906, 1975.

[30] L.S. Pontryagin, Continous Groups, Nauka, Moscow, 1984.

[31] B.A. Dubrovin et al., Contemporary Geometry, Nauka, Moscow, 1986.