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Abstract In previous paper [1], we employ the microscopic theory of black hole to study the
observed unusual high luminosity of NuSTAR X-ray pulsations from M82X-2 without the need
for significant breaking of Eddington limit. Exploring a spontaneous breaking of gravitation gauge
symmetry at huge energies, this theory has smeared out a central singularity of black hole replacing
it by the equilibrium, so-called, superdense proto-matter core (SPC), subject to certain rules. In
this framework, we think of a M82X-2 as being a spinning intermediate mass black hole. However,
for rigorous theoretical solutions, in present report we analytically treat the microscopic model of
stationary and axisymmetric rotating black hole. A ring singularity of the Kerr black hole cannot
occur, which is now replaced by equilibrium SPC. We calculate the corrections to previous model,
introduced by the rotation, of the characteristic phase profile of M82X-2.

Keywords: Black hole physics, accretion: accretion discs, X-rays: binaries, X-rays: individual
(NuSTAR J095551+6940.8).

1 Introduction

In the most striking recent revolutionary NuSTAR discovery [2] of the rare mighty X-ray coherent
pulsations coming from the ultraluminous X-ray source M82X-2, located near starburst galaxy M82
(NGC 3034), the source has the maximum luminosity L̃(3−30keV) = 4.9×1039 erg s−1, of average period
1.37 s and a 2.5-day sinusoidal modulation. This, together with the spin-up behavior, indicative of an
accretion torque unambiguously, allows to feature the M82X-2 as mass-exchange binary that contains a
nondegenerate secondary donor star.

At first sight, it seems as though the NuSTAR team has demonstrated that the super-Eddington
accretion is also possible in ULXs hosting neutron stars, because it is generally believed that the pulsating
X-ray sources are magnetic neutron stars which are accreting matter from a binary companion. Therefore,
there is nothing left but M82X-2, which until recently astronomers had thought was a black hole, is the
brightest magnetic neutron star system ever recorded.

This point of view is widely quoted in literature and, accepted as eminently reasonable. There are, for
example, several new results of more recent phenomenological studies (e.g. [3]-[8]) that demonstrate either
breaking or circumventing the Eddington limit via somewhat peculiar features of accretion flow onto a
highly magnetised neutron stars. However, these approaches are strongly model dependent, and subject
to many uncertainties. The physics is obscured by multiple arbitrary assumptions and proliferation of
a priori free parameters involved, while a consistent complete theory would not have so many free
parameters.

Also, a number of remarks are in orders. The proposals, which are only dependent of geometry of
accretion flow, are indeed wholly ruptured when the accretion is ultimately inhibited. This occurs when
radiation force is equal to or grater than gravity force, which is just the case of periodic source M82X-
2. Namely, the pulsed luminosity of M82X-2 reaches about ∼ 26.9 times brighter than the theoretical
threshold at the spherical accretion for ∼ 1.4M⊙ stellar-mass black holes where the outward pressure
from radiation balances the inward pull of gravity of the pulsar.

This difficulty is brought even into sharper focus by considering the association with M82X-2, which
is featured with high luminosity (≃ 1.8 × 1040 erg s−1) of additional persistent continuous broad X-ray
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radiation observed earlier from its active state [2]. This more compelling argument in somehow or other
implies the luminosity ∼ 100 times if compared to the Eddington limit.

It is equally noteworthy that the centroid of the persistent X-ray emission is between M82X-2 and
M82X-1 [2]. If M82X-1 is indeed harbors plausible IMBH, we expect the similarity of the persistent X-ray
properties of the M82X-1 and M82X-2 to imply that the non-pulsed emission from the latter originates
in the accretion disc, as it must in the black hole M82X-1 [1]. In this sense, the NuSTAR discovery is
unexpected and still hard to be explained in the context of magnetic neutron star pulsar model. The
only other way of gaining insight into the dynamics of M82X-2 is offered by a black hole.

Instead of making such assumptions of phenomenological studies above, therefore, we find it preferable
in previous paper [1] to address the M82X-2 as a spinning intermediate mass black hole (SIMBH) rather
than common pulsar, in order to circumvent the obstacles without the need for significant breaking of
Eddington limit. It is, of course, foolhardy to contemplate this issue in the framework of Schwarzschild
(non-rotating) or Kerr (rotating) black holes. Here and throughout we refer to these models as the
phenomenological black hole models (PBHMs), because their only observable integral parameters of
total mass and angular momentum still have to put in the theory by hand. The charged black holes
are not likely to be important astrophysically. The coherent periodicity of M82X-2 obviously rules out
the PBHM, because: (i) Classically, black holes are perfect absorbers but do not emit anything; their
physical temperature is absolute zero. (ii) The spinning black holes are axisymmetric and have no internal
structure on which to attach a periodic emitter. Orbital motion, whether modulating some emission
mechanism directly or exciting short-period pulsations, would decay very quickly due to gravitational
radiation.

With this in mind, we have tackled the problem of periodic source of M82X-2 in the framework
of microscopic theory of black hole (MTBH) [1]. This theory completes PBHM by exploring the most
important processes of spontaneous breaking of gravitation gauge symmetry, and thereof for that of
rearrangement of vacuum state at huge energies (subsect. 1.1). In this framework, the M82X-2 is assumed
to be SIMBH, resided in final stage of growth.

The thermal blackbody X-ray emission, arising due to the rotational kinetic energy of black hole,
escapes from event horizon through the vista to outside world, which is detected as ultraluminous X-ray
pulsations. The M82X-2 indeed releases ∼ 99.6% of its pulsed radiative energy predominantly in the X-
ray bandpass 0.3 − 30 keV. We derived a pulse profile and gave a quantitative account of energetics and
orbital parameters of the semi-detached X-ray binary containing a primary accretor M82X-2 of inferred
mass M ≃ 138.5 − 226M⊙ and secondary massive, M2 > 48.3 − 64.9M⊙, O/B-type donor star with
radius of R > 22.1 − 25.7R⊙, respectively. We computed the torque added to M82X-2 per unit mass of
accreted matter which yields the measured spin-up rate.

For brevity reasons in [1], we have refrained from providing rigorous theoretical evolutionary paths of
the equations describing the rotating black holes, instead we have proceeded in relatively simple way of
considering non-rotating black holes, which is quick to estimate the most important conceptual aspects
of associated physics, without loss of generality. However, we need to be more rigorous about a geometry
which describes rotating axisymmetric black holes. To fill the void, in present article we analytically
study the microscopic model of stationary and axisymmetric rotating black hole. In particular, we derive
field equations and obtain both internal and global vacuum spacetime solutions.

We will proceed according to the following structure. To get started, we briefly outline the preceding
developments of MTBH in subsection 1.1. We provide an analysis aimed at clarifying the current situation.
Section 2 deals with a detailed analytical treatment of basic axisymmetric spacetime geometry, which
describes the rotating black holes. The corresponding field equations of stationary and axisymmetric
rotating black holes are derived in section 3. We obtain a global vacuum spacetime solutions and describe
the horizons in section 4. Section 5 presents the microscopic model of rotating SPC, where an assessment
of a distinction from Kerr model is given too. The model building of the periodic ULX M82X-2 is brought
in section 6. The concluding remarks are given in section 7. To make the paper understandable, the specific
issues dealt with in the appendices A-F are further details on the underlying gravitation theory, which
are in use in previous sections. Unless otherwise stated, we take geometrized units throughout this paper.
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1.1 The Preceding Developments of MTBH

Even though being among the most significant advances in astrophysics, it is rather surprising that PBHM
is routinely used to explore the growth and merging behavior of black holes. It cannot be accepted
as a convincing model for addressing this problem because in PBHM-framework the very source of
gravitational field of the black hole is a kind of meaningless curvature singularity at the center of the
stationary black hole, which is hidden behind the event horizon. The theory breaks down inside the event
horizon which is causally disconnected from the exterior world. Either the Kruskal continuation of the
Schwarzschild metric, or the Kerr metric, shows that the static observers fail to exist inside the horizon.
Recall that the Kruskal manifold is the maximal analytic extension of the Kerr solutions inside event
horizon, so no more regions can be found by analytic continuation.

PMBH then presents a major challenge that renders time reversibility impossible. Objects thrown
into the black hole can never be retrieved, because it will get into infinite collapse to a ring singularity
inside the black hole. Any object that collapses to form a black hole will go on to collapse to a singularity
inside the black hole. Any timelike worldline must strike the central singularity which wholly absorbs
the infalling matter. Therefore, the ultimate fate of collapsing matter once it has crossed the black hole
surface is unknown.

So, one should deliberately forebear from presumption of exotic hypothetical growth behavior of
black holes, which seems nowhere near true if one applies the phenomenological model, which ultimately
disables any accumulation of matter in the central part and, thus, neither the growth of black holes
nor the increase of their mass-energy density could occur at accretion of outside matter, or by means of
merger processes. The PBHM is a rather restricted model and one needs to realise that if one can gain
insight into exploring a new process of spontaneous breaking of gravitation at huge energies, one has
then made room for growth and merging behavior of black holes. Therefore, a new conceptual framework
will be required in order to have a proper understanding of the black hole physics.

Being an extension of PMBH, suitable for applications in ultra-high energy (UHE) astrophysics, the
MTBH is a bold assumption in its own right. In this framework, a substantial change of the properties
of spacetime continuum, so-called inner distortion (ID), besides the curvature, arises at spontaneous
breaking of gravitation gauge symmetry. The matter found in the ID-region of spacetime has undergone
phase transition of the second order. In the resulting, so-called proto-matter, the pressure becomes
dominant over gravitational force at very short distances when matter falls into central singularity as
the collapse proceeds and, thus, it halts the infinite collapse ([9]-[12]).

Therefore, one of the most remarkable drawback of MTBH is that the central singularity cannot
occur, which is replaced by finite though unbelievably extreme conditions held in the stable SPC where,
nevertheless, static observers exist. The stable SPC, in fact, is the end product of the evolution of
massive objects. This makes room for growth and merging properties of black holes, which may shed
considerable light upon the growth and merging phenomena of astrophysical black holes, which are in
evidence throughout the Universe.

This also ultimately circumvent the principle problem of an observer’s inability to access the degrees
of freedom that are hidden beyond the horizon, and a necessity to assign the misleading entropy to
black hole. The physical entropy of SPC is a measure of the large number of the real thermodynamical
microstates, which are compatible with the ergodicity. The SPC is always found inside the event horizon,
therefore it could be observed only in presence of accreting matter. The SPC, surrounded by the outside
accretion disk, presents the microscopic model of AGN.

The SPC accommodates the highest energy scale up to hundreds ZeV, which accounts for the spectral
distribution of the resulting radiation of AGNs. The SPC stood the tests of rigorous theoretical scrutinies
of stability. A numerical integration of the stability equations clearly proves the stability of SPC [13]. An
external physics of accretion onto the SPC in the first half of its lifetime is identical to the processes in
Schwarzschild’s model. A crucial difference comes in when one looks for the growth and merging behavior
of black holes. In the framework of MTBH, the black hole seeds might grow driven by the accretion of
outside matter [11,12].

Understanding how seed black holes grow into IMBHs and supermassive black holes (SMBHs), has
important implications for the duty-cycle of AGN, galaxy evolution, and gravitational wave astronomy.
Therefore, we have undertaken a large series of numerical simulations with the goal to trace an evolution
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of the mass assembly history of 377 accreting SMBH seeds in AGNs to the present time and examine
the observable signatures today.

We also study the emission of UHE-neutrinos with energies up to hundreds ZeV. Such neutrinos
are produced by the cooling of the SPC via simple or nucleon-modified URCA processes, and the pionic
reactions. As a metric singularity inevitably disappears, the ZeV-neutrinos may escape from event horizon
to outside world through a thin belt area, even after the strong neutrino trapping. While hard to detect,
the extragalactic ZeV-neutrinos may reveal clues on the puzzle of the origin of ultra-high energy cosmic
rays, as they have the advantage of representing unique fingerprints of hadron interactions and, therefore,
can initiate via very complex chains of Z-burst interactions the cascades of UHE cosmic rays with energies
exceeding 1.0 × 1020 eV (e.g. [14]-[16]).

2 Basic Axisymmetric 4D Spacetime Geometry

The non-spinning SPC is static and spherically symmetric. Therefore, we need to be clear about more
general geometry which can describe rotating axisymmetric SPC. The principle foundation of the spinning
configurations first comprises the following additional distinctive features with respect to non-spinning
ones: (i) Rapid rotation causes the shape of the configuration to be flattened by centrifugal forces -
flattened at poles and bulged at equator (oblate spheroid, which is second order effect in the rotation rate).
(ii) A rotating massive configuration drags space and time around with it (non-Newtonian gravitational
effect). The local inertial frames are dragged by the rotation of the gravitational field, i.e. a gyroscope
orbiting near the configuration will be dragged along with the rapidly rotating configuration. This is
probably the most remarkable feature that could serve as a link with the general description of spacetime
(also see [17]). Beside the geodetic procession, a spin of the body produces in addition the Lense-Thirring
procession.

In the appendices we necessarily recount some of the highlights behind of gravitation theory underly-
ing MTBH, which are in use throughout the sections 2 and 3. The proposed theory explores a spontaneous
breaking of gravitation gauge symmetry ([18,9,10] and earlier references cited therein, which thoroughly
discussed in [11,12]). Much use has been made of the language of fundamental geometric structure, that
is, a distortion gauge induced fiber-bundle, incorporating with the spacetime deformation/distortion-
framework [12,19,20].

2.1 Axisymmetric Distortion of M6 → V6: A Reduction to V4

Before attempting to build an axisymmetric distorted Riemannian 4D space V4, according to proposed
gravitation theory (see appendices A-F for details), we need to consider an axisymmetric distortion of
the 6D space M6 → V6, and next reduce it to V4. The element D(a, θ) of the distortion group GD (55)
has induced a general distortion transformations (53) and (54) of the six-basis vectors e = O × σ (∈
M6) → ẽ = Õ × σ̃ (∈ V6):

2ẽ(0α) = ξ̃(0α) × (σ̃(+α) + σ̃(−α)) + ξ̃(α) × (σ̃(+α) − σ̃(−α)),
2ẽ(α) = ξ̃(α) × (σ̃(+α) + σ̃(−α)) + ξ̃(0α) × (σ̃(+α) − σ̃(−α)),

(1)

where distortion transformations of the ingredient basis vectors (O) and (σ) are not independent (56).
Hence

δξ̃(0α) = −ξ0x(0α) + ξxα + ξ̄0x̄(0α) − ξ̄x̄α,

δξ̃α = ξx(0α) − ξ0xα + ξ̄0x̄α − ξ̄x̄0α),
(2)

provided δσ̃A(θ) = δRβ
A(θ)σβ .

Let ϕ(= x1) be the azimuthal angle about the axis of symmetry in R3 (51). The axisymmetric
distortion of the space M6 → V6 can be induced by the distortion gauge field aA (see (71), (72)), with
the only non-zero 1D components of x0 := x(03) = κa(±3) and x1 = ∓κa(±1), in presence of ID-field,
x̄ := x̄(03) = κā(±3), where a coupling constant κ relates to the Newton’s gravitational constant GN
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by (70). Then, the non-zero components of the transformation matrix D (44) can be recast into the form

D
(01)

˜(01)
= 1, D1

˜(01) = x1, D
(02)

˜(02)
= cos θ1, D3

˜(02) = sin θ1, D
(03)

˜(03)
= cos θ1(1 − x0),

D2
˜(03) = − sin θ1(1 + x0), D3̄

˜(03) = − cos θ1, D
¯(02)
˜(03)

= − sin θ1, D1
1̃ = 1, D

(01)
1̃ = −x1,

D2
2̃ = cos θ1, D

(03)
2̃ = sin θ1, D3

3̃ = cos θ1(1 + x0), D
(02)
3̃ = − sin θ1(1 − x0),

D
¯(03)

3̃ = cos θ1x1, D2̄
3̃ = − sin θ1x1,

(3)

where the rotation angles are determined as

± θ(1) := tan θ(±1) = ∓x1, tan θ(±3) = x(0), θ(+3) = θ(−3). (4)

The (1) then becomes

ẽ(01) = e(01) + e1x1, ẽ(02) = e(02) cos θ1 + e3 sin θ1,
ẽ(03) = cos θ1[e(03)(1 − x0) − ē3x̄] − sin θ1[e(2)(1 + x0) + ē(02)x̄],
ẽ1 = e1 − e(01)x1, ẽ2 = e2 cos θ1 + e(03) sin θ1,
ẽ3 = cos θ1[e3(1 + x0) + ē(03)x̄] − sin θ1[e(02)(1 − x0) − ē2x̄].

(5)

Consequently, the resulting deformed metric on V6 in holonomic coordinate basis takes the form

g00 = τ2
1 (1 − tan2 θ1) + τ2

2 cos 2θ1 + τ2
3 {cos2 θ1[(1 − x0)2 + x̄2] − sin2 θ1[(1 + x0)2 + x̄2]},

g01 = −2τ1x1, g02 = 2τ3 sin 2θ1, g03 = −2τ2 sin 2θ1, g11 = −(1 + tan2 θ1),
g22 = − cos 2θ1, g33 = − cos2 θ1[(1 + x0)2 + x̄2] + sin2 θ1[(1 − x0)2 + x̄2],

(6)

where, according to (51), the 3D space T 3 is spanned by the coordinates dx̃(0α) = ταdx̃
0 (τ2

1 +τ2
2 +τ2

3 =
1).

When reducing V6 → V4, we may further fix the most convenient universal time direction by imposing
the constraint g02d̃x

2 + g03dx̃
3 = 0, i.e.,

sin 2θ1(τ3dx̃
2 − τ2dx̃

3) = 0. (7)

(i) In the case of static spherical-symmetry when sin 2θ1 = 0, the τα can be chosen as τ1 = τ2 =
0, τ3 = 1 [11,12].

(ii) Let, in axisymmetric space V4, the world coordinate t̃(= x̃0) be the time (in units of c), and
ϕ̃(= x̃1) be the azimuthal angle about the axis of symmetry. The space V4 would be invariant against
simultaneous inversion of time t̃ and azimuthal angle ϕ̃. So, sin 2θ1 ̸= 0, and the τ2 and τ3 can be chosen
to eliminate the term (τ3dx̃

2 − τ2dx̃
3), which has the effect of introducing the following values into the

problem:
τ2 = τ3

ũ2

ũ3 , at ũ2

ũ3 ≤ 1, τ3 = τ2
ũ3

ũ2 , at ũ3

ũ2 ≤ 1. (8)

A velocity field at each point in V4 is ũt = dt̃/ds̃, with proper time ds̃, t̃(= x0) is the world time
coordinate (in units of c), ũϕ = dϕ̃/ds̃ = Ωũt and ũt = dx̃C/ds̃ = ũtṽC , and Ω = dϕ̃/dt̃ is the angular
velocity, as seen by an inertial observer at rest at infinity. The components ṽC = dx̃C/dt̃ (C = 2, 3)
denote the poloidal velocity.
Hence (6) becomes metric on axisymmetric space V4:

g00 = τ2
1 (1 − tan2 θ1) + τ2

2 cos 2θ1 + τ2
3 {cos2 θ1[(1 − x0)2 + x̄2] − sin2 θ1[(1 + x0)2 + x̄2]},

g01 = −2τ1x1, g11 = −(1 + tan2 θ1), g22 = − cos 2θ1,
g33 = − cos2 θ1[(1 + x0)2 + x̄2] + sin2 θ1[(1 − x0)2 + x̄2].

(9)

We define the five quantities ν, ψ, ω, µ2 and µ3 which are only functions of the coordinate x̃2 and x̃3:

exp(2ψ)(x̃2, x̃3) := 1 + x2
1, ω(x̃2, x̃3) := − τ1x1

1+x2
1
, exp(2µ2)(x̃2, x̃3) := 1−x2

1
1+x2

1
,

exp(2ν)(x̃2, x̃3) := 1
1+x2

1
{τ2

1 (1 + x2
1 − x4

1) + τ2
2 (1 − x2

1) + τ2
3 [(1 − x0)2 + x̄2] − τ2

3x
2
1[(1 + x0)2 + x̄2]},

exp(2µ3)(x̃2, x̃3) := 1
1+x2

1
{(1 + x0)2 + x̄2 − x2

1[(1 − x0)2 + x̄2]},
(10)
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where we seek a holonomic coordinates x̃µ(x), in the construction of (45), as the solutions of the first-order
partial differential equations:

∂x̃µ

∂xl ≡ ψµl = Dµ
l (1 +ϖ(F )). (11)

Provided, a world-deformation tensor (Appendix B) is in the form Ωml (F ) = δml (1+ϖ(F )), then ϖ(F ) is
the scalar function of antisymmetric tensor of the gauge field. We do not at the moment specify the scalar
function ϖ(F ) apart from the initial condition ϖ(0) = 0, which can be determined in the intermediate
stage of the analysis.

Substituting (10) into a bilinear form of norm ds̃2 of infinitesimal displacement on V4, describing the
stationary and axisymmetric spacetimes, we obtain

ds̃2 = exp(2ν)dt̃2 − exp(2ψ)(dϕ̃− ωdt̃)2 − exp(2µ2)(dx̃2)2 − exp(2µ3)(dx̃3)2. (12)

Thus, we arrive at the metric (12) of the stationary and axisymmetric space V4 in the most commonly
used 3 + 1 formalism (e.g. [21]-[26]).

2.2 Axisymmetric Space V4 in 3 + 1 Formalism

In the 3 + 1 formalism, as usual, 3+1 foliations of spacetime V4 by space-like 3-slices {Σt} play an
important role. The study of a dragging effect is assisted by incorporating with the soldering tools in
order to relate local Lorentz symmetry to curved spacetime. These are the linear frames and forms
in tangent fiber-bundles to the external general smooth differential manifold, whose components are
so-called tetrad (vierbein) fields.

That is, the V4 has at each point a tangent space, TxV4, spanned by the anholonomic orthonor-
mal frame field, e, as a shorthand for the collection of the 4-tuplet e0 = exp(−ν) (∂̃t + ω∂̃ϕ), e1 =
exp(−ψ) ∂̃ϕ, e2 = exp(−µ2) ∂̃2, e3 = exp(−µ3) ∂̃3), where ea = e µ

a ∂̃µ, e µ
a is the soldering form be-

tween the tangent space and the spacetime manifold. This is called a Bardeen observer, locally nonrotat-
ing observer, or the local Zero Angular-Momentum Observers (ZAMO), i.e. observers whose worldlines
are normal to the hypersurfaces defined by constant coordinate time, t̃ = const, also called Eulerian ob-
servers. Here we use Greek alphabet (µ, ν, ρ, ... = 0, 1, 2, 3) to denote the holonomic world indices related
to V4, and the first half of Latin alphabet (a, b, c, ... = 0, 1, 2, 3) to denote the anholonomic indices related
to the tangent space.

The frame field, e, then defines a dual vector, ϑ, of differential forms, ϑ =


ϑ0 = exp ν dt̃

ϑ1 = expψ (dψ − ωdt̃)
ϑ2 = expµ2 dx̃

2

ϑ3 = expµ3 dx̃
3

 ,

as a shorthand for the collection of the ϑb = ebµ dx̃
µ, whose values at every point form the dual basis, such

that ea ⌋ϑb = δba, where ⌋ denotes the interior product, namely, this is a C∞-bilinear map ⌋ : Ω1 → Ω0

with Ωp denoting the C∞-modulo of differential p-forms on V4. In components e µ
a ebµ = δba. One can

also consider general transformations of a local Lorentz group, taking any frame field, e, into any other
set, e′, of four linearly independent fields: e′

a = Λbaeb. Here and throughout the notation, {ea, ϑb}, will
be used for general linear frames.

The norm ds̃ then reads
ds̃ : = ea ϑ

a = eµ ⊗ ϑµ ∈ V4, (13)

and the holonomic metric on the space V4 can be recast into the form

g = oabϑ
a ⊗ ϑa = gµν ϑ

µ ⊗ ϑν , (14)

with the components gµν = g(eµ, eν) (12) in dual holonomic basis {ϑµ ≡ dx̃µ}, and oab denotes diag(+−
−−) metric. In the case at hand, the metric function ω is the angular velocity of the local ZAMO with
respect to an observer at rest at infinity. Thereby the redshift factor α ≡ exp ν is the time dilation factor
between the proper time of the local ZAMO and coordinate time t along a radial coordinate line, i.e. the
redshift factor for the time-slicing of a spacetime.

Given a height-function t̃, the time-like unit normal to Σt will be denoted by nµ and the 3+1 decom-
position of the evolution vector field by t̃µ = Nnµ+βµ, where N is the lapse function and βµ is the shift

206 Advances in Astrophysics, Vol. 1, No. 3, November 2016

AdAp Copyright © 2016 Isaac Scientific Publishing



vector. The induced metric on the space-like 3-slice Σt is expressed as γµν = gµν + nµnν , with Dµ the
associated Levi-Civita connection and volume element 3ϵ = √

γdx̃1 ∧ dx̃2 ∧ dx̃3, so that 3ϵµνρ = nσ4ϵσµνρ.
The extrinsic curvature of (Σt, γµν) in V4 reads Kµν := −(1/2)Lnγµν = −γµρ∇ρnν , where L denotes
Lie derivative. Accordingly, all the geometrical objects are split into corresponding components with
respect to this time-slice of spacetime. In particular, the splitting of manifold V4 into a foliation of
three-surfaces will induce a corresponding splitting of the affine connection, curvature and, thus, of the
energy-momentum tensor.

The 3+1 decomposition of the (matter) stress-energy tensor, measured by an adapted Eulerian ob-
server of four-velocity nµ in rest with respect to the foliation {Σt}, is T̃µν = Ẽ nµnν + p̃(µnν) + S̃µν ,
where the matter energy and momentum densities are given by Ẽ := T̃µνn

µnν and p̃µ := −T̃νρnνγρµ,
respectively, whereas the matter stress tensor is S̃µν := T̃ρσγ

ρ
µγ

σ
ν . Latin indices running in {1, 2, 3}

will be employed in expressions only involving objects intrinsic to space-like Σt slices. That is, T̃αβ =
Ẽnαnβ + nαJ̃β + J̃αnβ + S̃αβ . Here nα is the unit orthogonal vector to the hypersurface Σt, whereas
the spacetime metric g induces a first fundamental form with the spatial metric γαβ on each Σt as
γαβ = gαβ +nαnβ . The form (12) includes one gauge freedom for the coordinate choice. For the spherical
type coordinates x̃2 = θ̃ and x̃3 = r̃, for example, so-called quasi-isotropic gauge corresponds to γrθ = 0
and γθθ = r̃2γrr. Then, one may define the second fundamental form which associates with each vector
tangent to Σt, and the extrinsic curvature of the hypersurface Σt as minus the second fundamental form.

Aftermath, one can define the usual Lorentz factor W = −nµũν = αũt for a fluid which is the source
of the gravitational field, with conventional stress-energy tensor

T̃µν = (ρ̃+ P̃ )ũµũν + P̃ gµν , (15)

where ρ̃ is the total energy density and P̃ is the pressure. Hence Ẽ = W 2(ρ̃ + P̃ ) − P̃ and J̃ i =
(Ẽ+ P̃ )ṽi, where the fluid three-velocity ṽi(i = 1, 2, 3) implies ũi = W (ṽi −βi/α). Thereby the resulting
stress tensor can be written as S̃ij = (Ẽ + P̃ )ṽiṽj + P̃ γij . The four-velocity for rotating fluid reads
ũ = ũi(∂/∂t̃) + Ω∂/∂ϕ̃, where Ω = ũϕ/ũt is the fluid angular velocity as seen by an inertial observer
at rest at infinity. Consequently, the components of the energy - momentum tensor of matter with
total density ρ and pressure P are given in the non-rotating anholonomic orthonormal frame as T̃ (ab) =
eaµe

b
ν T̃

µν , T̃ (00) = W 2(ρ̃+P̃ V 2), T̃ (11) = W 2(ρ̃+P̃ V 2), T̃ (01) = W 2(ρ̃+P̃ )V and T̃ (22) = T̃ (33) = P̃ ,
with its trace T̃ = −ρ̃+ 3P̃ , where V is the velocity (in units of c) with respect to the Bardeen observer
V = ϱB(Ω − ω)/α2, so W = 1/

√
1 − V 2.

3 Field Equations

In the case of stationary and axisymmetric space V4, the equations of 1D gravitation x0, the frame-
dragging potential x1, and the ID field x̄, generated by the stress-energy tensor (15) of isolated spinning
fluid, can be obtained from (68) in the Feynmann gauge:

∆x0(x) = −J̃(x0)(x̃), ∆x1(x) = −J̃(x1)(x̃),
(
∆− λ−2

x̄

)
x̄(x) = −J̃(x̄)(x̃). (16)

Here the current J̃(χ) (χ := x0, x1, x̄) is referred to as

J̃(χ) := (κ/2)
√

−g eµaeνb
∂gµν

∂χ T̃ (ab), (17)

provided, the Compton length of the ID-field x̄ is λx̄ = (h̄/māc) ≃ 0.4fm.
The system of non-linear differential field equations (16) explicitly reads

∆x0 = −κ
2
√

−g
[
exp(−2ν)W 2(ρ̃+ P̃ V 2)× ∂g00

∂x0
+ exp(−2µ3)P̃ ∂g33

∂x0

]
,

∆x1 = −κ
2
√

−g exp(−ν)∂g01
∂x1

[exp(−ν)ω× W 2(ρ̃+ P̃ V 2) + exp(−ψ)W 2(ρ̃+ P̃ )V
]
,(

∆− λ−2
x̄

)
x̄ = −κ

2
√

−g
[
exp(−2ν)W 2(ρ̃+ P̃ V 2)∂g00

∂x̄ + exp(−2µ3)P̃ ∂g33
∂x̄

]
.

(18)
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These equations can be solved together with a diffeomorphism x̃µ(x) : M4 → V4 (11). Adopting spherical
polar coordinates (r, θ, ϕ) in flat space M4, the (11) gives

∂r̃
∂r = ψ3̃

3 = D3̃
3(1 +ϖ), ∂r̃

∂θ = ψ3̃
2 = 0, ∂θ̃

∂r = ψ2̃
3 = 0, ∂θ̃

∂θ = ψ2̃
2 = D2̃

2(1 +ϖ). (19)

Hence dr̃ = ψ3̃
3(r̃, θ̃) dr and dθ̃ = ψ2̃

2(r̃, θ̃) dθ, which means that r = r(r̃, θ̃) and θ = θ(r̃, θ̃). Therefore, the
stationary axisymmetric field components χ(r, θ) are the solutions of the system of non-linear differential
axisymmetric Poisson field equations (18). Recall that the infinite series expansion of the factor 1/|x−x′|
in Green function of Poisson equation in spherical polar coordinates (r, θ, ϕ), in general, is

1
|x−x′| = Σ∞

l=0
rl

<

rl+1
>

Pl(cos θ)Pl(cos θ′) + (ϕ− dependent terms), (20)

where Pl denotes a Legendre polynomial and r<(r>) is the lesser (greater) of r and r′. By azimuthal
symmetry, the ϕ-dependant terms do not contribute to the (20).

4 A Global Vacuum Solution: Horizons

The existence of a global vacuum solution, χ (≡ x0, x1), outside of the matter, amounts to solving the
field equations (16) in a nearly Newtonian weak source limit: T̃ → 0, x̄ = 0. In Lorentz gauge, it is given
by means of fundamental solution of Poisson’s equation as a retarded integral of the form familiar from
linearized field equation theory:

χ(x) = 1
4π

∫ J̃ext
(χ) (|x−x′|)d3x′

|x−x′| , (21)

where the current J̃ext(χ) (|x − x′|) denotes

J̃ext(χ) (|x − x′|) = 4πQ(χ)(|x − x′|)δ(|x − x′|). (22)

The charge Q(χ)(|x − x′|) is calculated in the spacetime region far outside the system, where we assume
that the spacetime is almost Minkowski g ≃ η. The external metric gext = gext(χ) is then written as

gext00 = τ2
1 (1 − tan2 θ1) + τ2

2 cos 2θ1 + τ2
3 [cos2 θ1(1 − x0)2 − sin2 θ1(1 + x0)2],

gext01 = −2τ1x1, gext11 = −(1 + tan2 θ1), gext22 = − cos 2θ1,
gext33 = − cos2 θ1(1 + x0)2 + sin2 θ1[(1 − x0)2.

(23)

The Petrov type D vacuum solutions (21)-(23) are associated with the gravitational field of isolated
massive stationary and axisymmetric rotating SPC. They are completely characterized by its mass MSPC

and angular momentum JSPC .
The two double principal null directions define "radially" ingoing and outgoing null congruences near

the SPC which is the source of the field. The horizon is a 2D surface of spherical topology, where the
redshift factor α(r, θ) vanishes

gext00 (r, θ) = α2(r, θ) = τ2
1 (1 − tan4 θ1) + τ2

2 (1 − tan2 θ1) + τ2
3 [(1 − x0)2 − tan2 θ1(1 + x0)2] = 0. (24)

The gravitational infinite redshift suppresses any emission at the horizon. The solution of (24), for given
x1, is

x
(±)
0 =

(
τ3(1 − x2

1)
)−1 {

τ3(1 + x2
1)±

√
τ2

3 (1 + x2
1)2 − (1 − x2

1)(1 − τ2
2x

2
1 − τ2

1x
4
1)

}
, (25)

where the discriminant has to be positive.
(i) At x1 < 1, the gravitational field potentials x(±)

0 (25) yield two physical horizons. Their radii
coincide with rg = Rg/2 (x(±)

0 = 1) on the axis of rotation of SPC, located at θ = 0 (where x1 = 0),
where Rg = 2GM/c2 = 2.95 × 105 M/M⊙ cm is the Schwarzschild radius (radius of a non-rotating black
hole).

(ii) At x1(r0) = 1, the outer oblate horizon can be formed only at infinity r0 → ∞, where x0(r0 →
∞) → 0.
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(iii) For vanishing x1 → 0, the solution (25), at τ3 → 1 (τ2 = τ1 → 0), becomes static, spherically
symmetric, yielding a single spherical event horizon x

(±)
0 (r) → 1 of previous model of non-rotating

SPC ([9]-[12],[1].
The horizons are null surfaces because they are light-like. The hypersurfaces with r± are Killing

horizons of the Killing vector field. A null hypersurface N is a Killing horizon of a Killing vector ξ if,
on N , ξ is normal to N [27]. Suppose we adopt affine parametrization l · Dlµ = 0. Since ξ = fl on
N for some function f , it follows that ξ · Dξµ = kξµ on N , where k = ξ · ∂ ln |f | is called the surface
gravity. Since ξ is normal to N , Frobenius theorem implies that ξ[µDνξρ]

∣∣
N = 0, where ’[...]’ indicates

total anti-symmetry in the enclosed indices. For a Killing vector field ξ, it implies Dµξν = D[µξν]. Except
at points for which ξ = 0, one then has k2 = (1/2)(Dµξν)(Dµξν)

∣∣
N . All points at which ξ = 0 are limit

points of orbits of ξ for which ξ ̸= 0, so continuity implies that this formula is valid even when ξ = 0.
One can then prove that k is constant on orbits of ξ: ξ · ∂k2 = −(Dµξν)Rνµρσξρξσ = 0, because of

antisymmetry Rνµρσ = −Rνµσρ. The surface gravity k is not a property of N alone, it also depends on
the normalization of ξ, because if N is a Killing horizon of ξ with surface gravity k, then it is also a
Killing horizon of cξ with surface gravity c2k for any constant c. There is no natural normalization of
ξ on N since ξ2 = 0 there, but in an asymptotically flat spacetime there is a natural normalization at
spatial infinity, e.g. for the time-translation Killing vector field k we choose k2 → −1 as r → ∞. This
fixes k, and hence k, up to a sign, and the sign of k is fixed by requiring k to be future-directed.

4.1 External Fields in the Weak Source Limit
The external fields χ(|x − x′|) (21) can be obtained straightforwardly in the weak source limit T̃ → 0,
where the spacetime is almost Minkowski g ≃ η. It is sufficient then to consider an isolated system only
in the asymptotic linearized regime. Without loss of accuracy, one can therefore keep only leading linear
order-terms of fields, ignoring a second and higher order effects. Linearized field equations guarantee
conservation of 4-momentum and angular momentum of any body bounded by vacuum. So, we expand
the solutions χ(|x − x′|) in powers of x′/r = x′/|x|. It is convenient to perform calculation in the
system’s rest frame, where P j =

∫
T j0d3x = 0, with origin of coordinates at the system’s center of mass∫

xjT 00d3x = 0. Hence, in suitable asymptotically Minkowski coordinates, where the stationary Killing
vector is given by m = ∂t, the resulting redshift factor α(M, r) and the frame-dragging potential ω(J, r)
can be defined by means of the constants M and J , respectively, as the total mass and intrinsic angular
momentum of the source.

These quantities are well substantiated by Komar integral [28]. Recall that to every Killing vector
field ξ in the volume V of spacetime on a spacelike hypersurface Σ, with boundary ∂V , one can associate
the Komar integral

Qξ(V ) = (q/16πG)
∮
dSµνD

µξν , (26)
with some constant q. Since Killing fields satisfy the identity DνDµξ

ν = Rµνξ
ν , where Rµν is the

curvature tensor of V4, then Qξ(V ) =
∫
V
dSµ J

µ
(ξ), and the current Jµ(ξ) is defined as follows: Jµ(ξ) := qRµν ξ

ν .

The current Jµ(ξ) is conserved DµJ
µ
(ξ) = 0, and the charge Qξ(V ) is time-independent, provided Jµ(ξ)

vanishes on the boundary ∂V . If ξ = k, q = −2 is fixed by comparison with the formula derived for total
mass (energy) in asymptotic expansion, the M integral can be recast into a coordinate-independent form

M = −(1/8πG)
∮

∞ dSαβ D
αkβ . (27)

If m = ∂t is the Killing vector of axisymmetry, one obtains for q = 1 a coordinate-independent angular
momentum integral

J = (1/16πG)
∮

∞ dSαβ D
αmβ . (28)

For a weak source, g ≃ η, the total mass (27) and angular momentum (28) of an asymptotically flat
spacetime is found by taking ∂V to be a 2-sphere at spatial infinity.

If one chooses V to be on t constant hypersurface, then in Cartesian coordinates xi (i = 1, 2, 3), one
has dSµmµ = 0 and m = x1∂2 − x2∂1. For a weak source, therefore J(V ) ≃ ε3ij

∫
V
xiT j0. Using Killing

equations D(αkβ) = 0 = D(αmβ), which lead to DαD
αkβ = Rβρk

ρ and DαD
αmβ = Rβρm

ρ, the (27)
and (28) can be converted by means of Stoke’s theorem as

M = −(1/4πG)
∫
Σ
Rαβk

βdΣα, J = (1/8πG)
∫
Σ
Rαβm

βdΣα. (29)
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The leading linear order-terms in asymptotic expansion of the redshift factor and the frame-dragging
potential are given by

α(Rg, r) ≃ 1 −Rg/2r +O(1/r3), ω(J, r) = 2GJ/c3r3 +O(1/r4). (30)

Equating these values respectively to the functions [gext00 (M, r)]1/2 and [−(1/2) gext01 (J, r)], where the
components of the external metric (23), which are accurate to linearized order, become gext00 ≃ 1 − 2τ2

3x0,
and gext01 = −2τ1x1, we finally obtain

x0(r) = Rg/2τ2
3 r, x1(r) = 2GJSPC/τ1c

3r3. (31)

The potential of dragging of inertial frames ω drops very rapidly with increasing radius (31). The maximal
frame-dragging effects therefore can only be observed in the immediate vicinity of the event horizon:

x1(H) = ωH/τ1 ≃ 2GJSPC/τ1c
3R3

g = JSPCc
3/4τ1G

2M2. (32)

In physical units the angular momentum JSPC = aMSPC becomes JSPC = a∗MSPC
GMSP C

c2 , such that
x1(H) = (2ca∗/τ1GMSPC), where a∗ is the dimensionless angular momentum |a∗| ≤ 1. The special
case a = MSPC is the extreme solution. From this we get the maximal specific angular momentum
JmaxSPC = (GMSPC/c), and that x1(H) = 2a∗/τ1J

max
SPC < 1.

The Petrov type D vacuum solutions for stationary axisymmetric rotating SPC, therefore, satisfy
the Robinson’s theorem for Kerr solutions in vacuum [29]: the solutions, (i)-are asymptotically flat, (ii)-
contain a smooth convex horizon, (iii)- are nonsingular outside the horizon, and are uniquely specified
by two parameters: the mass MSPC and angular momentum JSPC . The angular velocity of a SPC is the
sum of two terms: the classical one given by the intrinsic angular velocity Ω and the frame dragging ω
from the rotation of absolute space. Near the horizon of SPC, for example, where the redshift tends to
zero (α → 0), the angular velocity of matter Ω is completely dominated by the frame-dragging effect.

Whatever the intrinsic angular momentum of the incoming matter is, this matter is forced to rotate
with the local angular velocity ω, which is the maximal angular velocity at event horizon. When matter
falls, say into a nonrotating black hole, it is forced to zero rotation near the horizon despite its angular
momentum. The event horizon is a Killing horizon for the Killing field ξ = k+ΩHm, with ξ2 = 0, where
ΩH denotes the angular velocity of the horizon as it is rigidly rotating.

Let m = ∂t be the axial Killing field, and ũ = ũt(1, ΩH , 0, 0) be the four-velocity of SPC. We may
choose τ2 = 0, τ1 = τ3 = 1/

√
2. Since x1(H) < 1, analogous to the Kerr black hole, there are the outer

horizon or event horizon by its radius r+, and the inner horizon or Cauchy horizon by its radius r−. The
radii r+ and r− coincide with rg (x(±)

0 = 1) on the axis of rotation of SPC, located at θ = 0 (JSPC = 0).
The oblate event horizon is the surface of the oblate spheroid with the semimajor r+ and semiminor
rg axes, respectively. Dependent of the value of the potential x1(H), the Cauchy horizon either is the
surface of the prolate spheroid with the semimajor rg and semiminor r− axes, or oblate spheroid with
the semimajor r− and semiminor rg axes, respectively. The radii of the oblate event horizon and the
Cauchy horizon are given by r∓ = rg/τ

2
3x

(±)
0 , provided with (25). These radii, as the function of x1(H),

are plotted in Fig. 1.
Since α(r+) = 0, any observer, but the ZAMO, rotates at the outer horizon with the angular velocity

ΩH . The angular velocity of ZAMO is Ω = ω, which will have vanishing specific angular momentum:

ũϕ = gϕαũ
α = gϕϕũ

ϕ + gtϕũ
t = ũt(ωgϕϕ + gtϕ) = ũtgϕϕ (ω + gtϕ/gϕϕ) = 0. (33)

It is therefore convenient to express physical observables with respect to ZAMO.
In the slow-rotation limit, the angular momentum of SPC, as rigidly rotating body, can be given in

the form

J =
∫
MH

(ρ̃+ P̃ )(ũt)2(gtϕ +Ωgϕϕ)
√

−gd3x̃ ≃
∫
MH

(ρ̃+ P̃ )(ũt)2gϕϕ(ΩH − x1(H)/
√

2)
√

−gd3x̃, (34)

which in leading order in the expansion for ΩH reads

J ≃ 8π
3

∫ RSP C

0 r4 (ρ+P )
(1−rg/r)

√
1−2M(r)/r

(ΩH − 2a∗/4JmaxSPC)dr, (35)

where RSPC is the radius of SPC.

210 Advances in Astrophysics, Vol. 1, No. 3, November 2016

AdAp Copyright © 2016 Isaac Scientific Publishing



Figure 1. The radii r± of outer and inner horizons v.s. potential x1(H), for M82X-2, with the mass M ≃
138.5 − 226 M⊙ [1], i.e. rg = Rg/2 = rmax

g − rmin
g ≃ 204.3 − 333.4 km.

Abbreviated notations: ∆min := r− −rmin
g , ∆max := r− −rmax

g , OCH :=Oblate Cauchy Horizon, PCH :=Prolate
Cauchy Horizon.

5 Microscopic Model of Stationary and Axisymmetric Rotating SPC

The entire set of the equations, describing the stationary and axisymmetric rotating SPC-configuration,
includes the field equations (18), the hydrostatic equilibrium equation and the state equation of the
spherical-symmetric distribution of barionic matter in many-phase stratified states. A layering is a con-
sequence of the onset of different regimes in equation of state. A rigorous numerical solution of these
equations will be a separate topic of investigation elsewhere. But note that the key physical properties
of SPC depend very little on the details of concrete SPC-model, as they are a direct consequence of
the fundamental features of underlying gravitation theory. The lattter explores a spontaneous breaking
of gravitation gauge symmetry and a rearrangement of vacuum state. We therefore expect that the key
properties of non-rotating SPC, outlined in subsection 1.1, even though without being carefully treated,
retain for a rotating SPC too.

Below we extend preceding developments of previous model of non-rotating SPC, without going into
the subtleties, as applied to the initially rigid-body rotating SPC of angular velocity ΩSPC . A microscopic
model makes room for growth and merging behavior of black holes. The black hole seeds might grow
driven by the accretion of outside matter when they were getting most of their masses.

An infalling matter with time forms a thin co-spinning proto-matter disk which has reached out the
edge of the outer oblate event horizon. Since a metric singularity inevitably disappears, the ZeV-neutrinos,
as in previous non-rotating case produced via simple or modified URCA processes in deep layers of SPC
and proto-matter disk, may escape from event horizon to outside world. The neutrinos are collimated
in very small opening angle. In this framework we introduce a notion of pre-radiation time (PRT) of
black hole which is referred to as a lapse of time TBH from the birth of black hole till neutrino radiation
- provision for the first half of the lifetime of black hole: TBH = Md

Ṁ
. Here Md is the mass of proto-matter

disk, Ṁ is an appropriately averaged mass accretion rate. The typical PRT versus bolometric luminosity
of suppermassive black holes is given by

TBH ≃ 0.32 Rd

rOV

(
MBH

M⊙

)2
1039W
Lbol

yr, (36)

where Rd is the radius of the proto-matter core, rOV = 13.68 km. Some evidence for a simplified physical
picture, for example, at x1 < 1 in the weak source limit (iii), is highlighted in Fig. 2 to guide the eye,
without loss of generality.
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Figure 2. Left panel: Kerr model of spinning black hole. The meaningless ring singularity occurs at the center
inside the black hole. Right panel: Microscopic model of rotating SPC in earlier part of first half of its lifetime
T < TBH . The picture is not to scale.
Abbreviated notations: OEH :=Oblate Event Horizon, SPC :=Superdense Proto-matter Core, RS :=Ring Singu-
larity, PCH := Prolate Cauchy Horizon.

In the first half of its lifetime, the external physics outside of outer oblate event horizon of accretion
onto the SPC hole is very closely analogous to the processes in Kerr’s model. But a crucial difference
between Kerr and microscopic models is the interior solutions. However, the interior solution of MTBH
is physically meaningful, because it has smeared out a central ring singularity of the Kerr black hole
replacing it by the equilibrium SPC inside event horizon, where the static observers exist.

This ultimately circumvent the principle problem of an observer’s inability to access the degrees of
freedom that are hidden beyond the horizon. The physical entropy of SPC is a measure of the large
number of the real thermodynamical microstates, which are compatible with the ergodicity.

Before attempting to build a physical model of the periodic ULX M82X-2, the other features of
SIMBH configuration also need to be accounted. The event horizon is impenetrable barrier for crossing
from inside the Kerr black hole. In the framework of microscopic model, this barrier disappears because
the metric (9) clearly shows that: singularity at intersection of proto-matter disk with either Cauchy
horizon or outer event horizon vanishes wherever the ID-field is not zero (x̄ ̸= 0), and hence the crossing
of these horizons either from inside or outside of black hole at such conditions is allowed. Certainly,
approaching to horizon the increase of particle concentration of infalling gas, n, is brought to halt when
it asymptotically reaches to the threshold value, n−1/3 = λx̄ ≃ 0.4fm, and the ID-field x̄ switches on
and, thus, infalling gas becomes proto-matter. Then, a metric singularity vanishes as in the former case,
and infalling gas passes freely through the horizon.

The Fig. 3 emphasizes an apparent distinction between Kerr model and rotating SPC in second half
of its lifetime.

6 Model Building of the Periodic Source M82X-2

To see where all this is leading to, let us briefly return next to the real issue of the periodic ULX M82X-2.
As pointed out by [1]: (i) the geodetic effect, as in the case of a gyroscope, leads an accretion stream to
a tilting of its spin axis in the plain of the orbit. Hence a proto-matter disk will be tilted from the plane
of accretion on a definite angle δ towards the equator.

The UHE-neutrinos, produced in the deep interior layers of superdense proto-matter medium as in
case of previous non-spinning model. the additional thermal defuse blackbody radiation is released from
the outer surface layers of ordinary matter of spinning SPC and co-spinning proto-matter thin disk. All
of the rotational kinetic energy is dissipated as thermal blackbody radiation. This is due to the fact that
these layers are optically thick and, eventually, in earlier half of the lifetime of spinning black hole, at
times < TBH , the strict thermodynamic equilibrium prevails for this radiation because there would be no
net flux to outside of event horizon in any direction. That is, the emission from the isothermal, optically
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Figure 3. Microscopic model of rotating SPC in second half of its lifetime. An infalling matter already formed a
thin co-spinning proto-matter disk which has reached out the edge of the outer oblate event horizon. A singularity
inevitably disappears and the neutrinos escape to outside world through the vista.
Abbreviated notations: OEH :=Oblate Event Horizon, SPC :=Superdense Proto-matter Core, PCH := Prolate
Cauchy Horizon, PD :=Proto-matter Disk.

Figure 4. A schematic SIMBH model of M82X-2 constituting mass-exchange binary with the O/B-type donor
star. The angle i is the binary inclination with respect to the plane of the sky. No eclipse condition holds. In final
stage of growth, PD has reached out the edge of the OEH. The thermal defuse blackbody X-rays beams may
escape from SIMBH through a thin belt area S = 2πR(θ)d to outside world that sweep past Earth like lighthouse
beacons. Parameters of a binary system is viewed in the orbital plane. The picture is not to scale.
Abbreviated notations: OEH :=Oblate Event Horizon, SPC :=Superdense Proto-matter Core, PCH := Prolate
Cauchy Horizon, PD :=Proto-matter Disk.
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thick outer layers at surface is blackbody, which is the most efficient radiation mechanism. This radiation
is free of trapping.

With this guidelines to follow, we may proceed to Fig. 4, which schematically plots the SIMBH
model of the periodic ULX M82X-2, constituting mass-exchange binary with the O/B-type donor star.
The OEH-surface of the spheroid has the polar equation R = R(ϑ), where

r2
g

R2 = cos2 ϑ+ (1 − e2) sin2 ϑ, (37)

provided, ϑ is the reduced or parametric latitude (−π/2 < ϑ < π/2), e denotes the eccentricity e :=
e(x1(H)) =

√
1 − r2

g/r
2
+(x1(H)), while r+(x1(H)) and rg := R(0) are the semimajor and semiminor axes,

respectively, of the rotated ellipse of OEH.
The OEH introduces the corrections to the characteristic phase profile of previous model of X-ray

radiation from M82X-2, derived in approximation of spherical EH [1]. Certainly, let (z,x,y) be the space-
fixed Cartesian coordinate system, with zx as a plane-of sight, and the axis s of the M82X-2-fixed frame
as the rotation axis. The angles θ and ϕ are spherical polar coordinates. The observed pulses are produced
because of periodic variations with time of the projection on the plane-of sight, dzx(t), of the vector d(t)
collinear to n(t) (d(t) = d n(t)

|n(t)| ), where n(t) is the normal to the plane of the proto-matter disk at the
moment t. The n(0) lies in the plane of zs. The pulsations will be observed if and only if the projection
of the belt area Szx = C1(e, α)dzx(d, θ, ϕ, α, t) on the plane of sight zx is not zero, where C1(e, α) is the
circumference of the ellipse of intersection of the proto-matter disk plane with the OEH, α is the angle
between the equatorial plane and the proto-matter disk plane. The semi-major and semi-minor axes of
this ellipse are a1 = r+ := R(π/2), b1(α) := R(π/2 + α), respectively, such that

e1(α) =
√

1 − b2
1(α)/r2

+ = e√
1+(1−e2) cot2 α

. (38)

In the case of OEH, the pulsed luminosity reads

L̃(M,d, Ts, e, θ, ϕ, α, t) = Szx σT
4
s = L0(M,d, Ts)Φ′(e, θ, ϕ, α, t), (39)

where the amplitude is L0(M,d, Ts) ≃ 1.05 × 104 (erg s−1) M
M⊙

d
m

T 4
s

K4 , and the corrected phase profile
Φ′(e, θ, ϕ, α, t) is

Φ′(e, θ, ϕ, α, t) = Υ (e, α)Φ(θ, ϕ, α, t). (40)

Provided, the correction function is denotetd by Υ (e, α) := C1(e, α)/2πrg, Φ(θ, ϕ, α, t) is the phase
profile in case of spherical EH [1]:

Φ(θ, ϕ, α, t) ≡
√

1 − sin2 β sin2(ϕ+A). (41)

Here the spherical triangle, with the lengths of three sides θ = ̂(z, s), α = ̂(s, n) and β = ̂(z, n), is solved
by the law of cosines

cosβ(θ, α, t) = cos θ cosα+ sin θ sinα cosΩt, cosA(θ, α, t) = cosα−cos θ cos β
sin θ sin β . (42)

Consequently, the phase profile (40) can be recast into the form

Φ′(e, θ, ϕ, α, t) = 2
π

√
1−e2

∫ π/2
0

√
1 − e2

1(α) sin2 γ dγ Φ(θ, ϕ, α, t) =
1√

1−e2

[
1 −Σ∞

n=1

(
(2n−1)!!

2nn!

)2
e2n

1 (α)
2n−1

]
Φ(θ, ϕ, α, t),

(43)

where n!! is the double factorial n!! =
∏l
i=0(n−2i), l = [n/2]−1. The Fig. 5 and Fig. 6 are the examples,

revealing the diversity of the behavior of corrected phase profiles versus the time, viewed at given position
angles, for different values of eccentricity.

However, at this point we cut short our investigation by noting that there is still very much to be
gained by further study of the issues that we have raised in this paper.
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Figure 5. The corrected phase profiles Φ′(e, x = Ωt) at position angles θ = 450, ϕ = 180, α = 900.

Figure 6. The corrected phase profiles Φ′(e, x = Ωt) at position angles θ = 450, ϕ = 300, α = 600.
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7 Concluding Remarks

In this report, we further expose the assertions made in MTBH via reviewing the microscopic model
of stationary and axisymmetric rotating SPC. We supplement our previous investigation [1] of observed
unusual high luminosity of NuSTAR X-ray pulsations from M82X-2, further, by more rigorous analytical
treatment of rotating SPC. We derive corresponding field equations and obtain both internal and global
vacuum spacetime solutions.

There are deep conceptual and technical problems involved, and these provide scope for the arguments
discussed, which are carefully presented in both mathematical and physical terms. Exploring spontaneous
breaking of gravitation gauge symmetry at huge energies, MTBH has smeared out a central singularity
of black hole replacing it by the equilibrium SPC inside event horizon. This ultimately circumvents the
principle problem, existing in PMBH, of an observer’s inability to access the degrees of freedom that are
hidden beyond the horizon, and a necessity to assign the misleading entropy to black hole. The physical
entropy of SPC is a measure of the large number of the real thermodynamical microstates, which are
compatible with the ergodicity.

The most remarkable feature of microscopic model of a rotating black hole is that, in earlier part of
its lifetime, the external physics outside of outer oblate event horizon of accretion onto a black hole is
identical to the processes in Kerr’s model. But, there is also a crucial difference between internal physics
of Kerr and microscopic rotating black hole models, that is, a central ring singularity of the Kerr black
hole cannot occur, which is now replaced by finite though unbelievably extreme conditions held in the
central part of rotating SPC, where the static observers exist. This has then made room for growth and
merging properties of black holes.

The OEH introduces the corrections to the characteristic phase profile of the previous model.
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Appendix A: Underlying Gravitation Theory

There are some GR plagued conceptual problems, among which are the energy-momentum conservation
laws of gravitational interacting fields, the localization of energy of gravitation waves, the role of singu-
larities or black holes, and also severe problems involved in quantum gravity. The standard Riemannian
(and its extensions) space interacting quantum field theory cannot be a satisfactory theory, because
Riemannian geometry, in general, does not admit a group of isometries, and it is impossible to define
energy-momentum as Noether local currents related to exact symmetries. This, in turn, posed severe
problem of non-uniqueness of the physical vacuum and the associated Fock space, since the Poincaré
transformations no longer act as isometries. The following two key questions should be addressed yet:
(i) the absence of the definitive concept of space-like separated points, particularly, in the canonical
approach, and the light-cone structure at each spacetime point; (ii) the separation of positive- and
negative-frequencies for completeness of the Hilbert-space description. Due to that, a definition of posi-
tive frequency modes cannot, in general, be unambiguously fixed in the past and future, which leads to
|in ≯= |out >, because the state |in > is unstable against decay into many particle |out > states due
to interaction processes allowed by lack of Poincaré invariance. A non-trivial Bogolubov transformation
between past and future positive frequency modes implies that particles are created from the vacuum
and this is one of the reasons for |in ≯= |out >.

Keeping in mind as aforesaid, the aim of the appendices B-F is to outline briefly the key points
of the underlying MTBH gravitation theory, as a guiding principle to make this report understandable.
Discussed gravitational theory is consistent with general relativity for available solar system observational
verifications [10], which offers many opportunities to improve tests of relativistic gravity. Moreover, we
rather shown that this agreement is satisfactory even up to the limit of neutron stars (see [9] and
references therein).
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But the proposed theory manifests its virtues when applied to the physics of internal structure of
galactic nuclei. It yields the gravitational interaction at huge energies drastically different from earlier
suggested schemes. This theory involves a principle revision of a role of local internal symmetries in
physical concept of curved geometry, and that explores the most important processes of spontaneous
breaking of gravitation gauge symmetry and rearrangement of vacuum state.

There are several important topics not touched upon here, which will eventually benefit from the
proposed theory. Although some key theoretical ideas were introduced with a satisfactory substantiation,
we have also attempted to maintain a balance between being overly detailed and overly schematic. Below,
we develop, as from first principles, on under the framework of the spacetime deformation theory, the
general gauge principle (GGP), and the spontaneous breaking of gravitation gauge symmetry.

Appendix B: A First Glance at Spacetime Deformations

In the framework of spacetime deformation theory ([19] and references therein), we consider a smooth
deformation map Ω : M4 → M̃4, written in the terms of the world-deformation tensor Ω, the general,
M̃4, and the flat, M4, smooth differential 4D-manifolds. A following notational conventions will be used
throughout this paper. All magnitudes related to the space, M̃4, will be denoted with an over ’ ˜ ’. We
use the Greek alphabet (µ, ν, ρ, ... = 0, 1, 2, 3) to denote the holonomic world indices related to M̃4, and
the second half of Latin alphabet (l,m, k, ... = 0, 1, 2, 3) to denote the world indices related to M4. The
tensor, Ω, can be written in the form Ω = Dψ (Ωml = Dm

µ ψ
µ
l ), provided with the invertible distortion

matrix D (Dm
µ ) and the tensor ψ (ψµl ≡ ∂l x̃

µ and ∂l = ∂/∂ xl).
The principle foundation of a world-deformation tensor comprises the following two steps.
First step. The basis vectors em at given point (p ∈ M4) undergo the distortion transformations by

means of the matrix D:
ẽµ = Dl

µ el. (44)

Second step. The diffeomorphism x̃µ(x) : M4 → M̃4 is constructed by seeking new holonomic coordi-
nates x̃µ(x) as the solutions of the first-order partial differential equations:

ẽµ ψ
µ
l = Ωmlem, (45)

where the conditions of integrability, ∂k ψµl = ∂l ψ
µ
k , and non-degeneracy, ∥ψ∥ ̸= 0, necessarily hold

[30,31].
For reasons that will become clear in the Appendix C, next we write the norm ds̃ ≡ id̃ of the

infinitesimal displacement dx̃µ on the M̃4 in terms of the spacetime structures of M4:

id̃ = ẽ ϑ̃ = ẽµ ⊗ ϑ̃µ = Ωml em ⊗ ϑl ∈ M̃4. (46)

The deformation Ω : M4 → M̃4 comprises the following two subsequent 4D deformations
◦
Ω: M4 → V4

and Ω̆ : V4 → M̃4, where V4 is the semi-Riemannian space,
◦
Ω and Ω̆ are the corresponding world

deformation tensors. The interested reader is invited to consult the original papers [19,12,20] for further
details of the theory of spacetime deformation.

Appendix C: General Gauge Principle (GGP)

The GGP resolves the problems of GR and Riemannian space interacting quantum field theory mentioned
in App.A.

Let us consider the simplest spacetime deformation map, Ω : M4 → V4 (Ω̆µν ≡ δµν ). Accordingly,
the quantities denoted by wiggles here refer to V4 space, but the quantities referring to flat M4 space
are left without wiggles as previously. Given the principal fiber bundle P̃ (V4, GV ; s̃) with the structure
group GV , the local coordinates p̃ ∈ P̃ are p̃ = (x̃, UV ), where x̃ ∈ V4 and UV ∈ GV , the total bundle
space P̃ is a smooth manifold, the surjection s̃ is a smooth map s̃ : P̃ → V4. The collection of matter
fields of arbitrary spins Φ̃(x̃) take values in standard fiber over x̃ : s̃−1(Ũi) = Ũi × F̃

x̃
. The action of
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the structure group GV on P̃ defines an isomorphism of the Lie algebra g̃ of GV onto the Lie algebra of
vertical vector fields on P̃ tangent to the fiber at each p̃ ∈ P̃ called fundamental.

Involving a drastic revision of the role of gauge fields in the physical concept of the spacetime defor-
mation, we generalize the standard gauge scheme by exploring a new special type of distortion gauge
field. Thereby we also consider the principle fiber bundle, P (M4, U

loc; s), with the flat base space M4,
the structure group U loc and the surjection s. The matter fields Φ(x) take values in the standard fiber
which is the Hilbert vector space where a linear representation U(x) of group U loc is given. This space
can be regarded as the Lie algebra of the group U loc upon which the Lie algebra acts according to the
law of the adjoint representation: a ↔ ad a Φ → [a , Φ].

We assume that a distortion massless gauge field a(x) (≡ an(x)) has to act on the external spacetime
groups. This field takes values in the Lie algebra of the abelian group U loc. We build up the world-
deformation tensor, Ω(F ) = D(a)ψ(a), where F is the differential form of gauge field F = (1/2)Fnmϑn ∧
ϑm.

The two steps (44) and (45), together with the third (47) and fourth (48)- following below, and the
Lie group GD, are the very foundation of GGP. The gravitation gauge group GV is generated by the
hidden local internal symmetry U loc. That is:

Third step. The physical system of the fields Φ̃(x̃) defined on V4 must be invariant under the finite
local gauge transformations UV of the Lie group of gravitation GV :

Φ̃′(x̃) = UV (x̃) Φ̃(x̃),
[
γ̃µ(x̃) ∇̃µΦ̃(x̃)

]′
= UV (x̃)

[
γ̃µ(x̃) ∇̃µΦ̃(x̃)

]
. (47)

The invariance of the Lagrangian of matter fields, L
Φ̃

, under the infinite-parameter group of general
covariance in V4 implies an invariance of L

Φ̃
under the GV group and vice versa if, and only if, the

generalized local gauge transformations of the fields Φ̃(x̃) and their covariant derivative ∇̃µΦ̃(x̃) are
introduced by finite local UV ∈ GV gauge transformations (47). The GGP scheme is

Φ̃′(x̃) = UV Φ̃(x̃)
UV = R′

ψ U
locR−1

ψ� Φ̃(x̃)
6
Rψ(x̃, x)

Φ(x)
U loc�Φ′(x) = U loc Φ(x)

6
R′
ψ(x̃, x)

Fourth step. In order for (47) to be always satisfied, a smooth unitary map of all the matter fields
and their covariant derivatives holds

Rψ(a) : Φ → Φ̃, S(a)Rψ(a) :
(
γkDkΦ

)
→

(
γ̃ν(x̃)∇νΦ̃

)
, (48)

where Rψ(a)(≡ Rψ(x̃, x)) is the unitary map matrix, S(F ) denotes the gauge invariant scalar function.
Determining R(a) and S(F ), we may insert first relation in (48) into the second one to obtain the identity,
and next equate the coefficients in front of Φ and ∂ Φ to zero. In the aftermath, we get the two relations
to determine R(a) and S(F ).

In an illustration of the point at issue, the (48) explicitly reads

Φ̃µ···δ(x̃) = ψµl · · ·ψδmR(a)Φl···m(x) ≡ (Rψ)µ···δ
l···m Φ

l···m(x), (49)

and that
g̃ν(x̃)∇νΦ̃

µ···δ(x̃) = S(F )ψµl · · ·ψδmR(a) γkDk Φ
l···m(x). (50)

where S(F ) ≡ (1/4)π̃−1(F ) = (1/4)ψlµD
µ
l , Dk = ∂k − iκ ak. The ∇̃µ denotes the covariant derivative

agreed with the metric, g̃µν = (1/2)(γ̃µ γ̃ν+γ̃ν γ̃µ): ∇̃µ = ∂̃µ+Γ̃µ, where Γ̃µ(x̃) = 1
2 J

ab ẽ ν
a (x̃)∂̃µ ẽbν(x̃) is

the connection, Jab are the generators of Lorentz group Λ. The tetrad components ẽ µ
a (x̃) are associated

with the chosen representation D(Λ) by which the Φ̃(x̃) is transformed as [D(Λ)]l′···k′

l···k Φ̃(x̃), where D(Λ) =
I+ 1

2 ω̃
abJab, ω̃ab = −ω̃ba are the parameters of the Lorentz group. One has, for example, to set γ̃µ(x̃) →
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ẽµ(x̃) for the fields of spin (j = 0, 1); for vector field [Jab]lk = δlaηbk − δlbηak; but γ̃µ(x̃) = ẽ µ
a (x̃) γa and

Jab = −(1/4)[γa, γb] for the spinor field (j = 1
2 ), where γa are the Dirac matrices.

In the case of zero curvature, one has ψµl = Dµ
l = eµl = (∂xµ/∂X l), ∥D∥ ̸= 0, where X l are

the inertial coordinates. In this way, the conventional gauge theory given on the M4 is restored in both
curvilinear and inertial coordinates. Although the distortion gauge field (aA) is a vector field, nevertheless
only the gravitational attraction is presented in the proposed theory of gravitation (see (70)).

Appendix D: Lie Group GD of the Distortion

We connect the structure group GV , further, to nonlinear realization of the Lie group GD of the distortion
of extended space M6(→ M̃6), underlying the M4. This extension appears to be indispensable for such
a realization. Thereby the space M6 reads

M6 = R3
+ ⊕R3

− = R3 ⊕ T 3, sgn(R3) = (+ + +), sgn(T 3) = (− − −). (51)

The e(λα) = Oλ × σα (λ = ±, α = 1, 2, 3) are linearly independent unit basis vectors at the point (p)
of interest of the given three-dimensional space R3

λ. The unit vectors Oλ and σα imply

< Oλ, Oτ >= ∗δλτ , < σα, σβ >= δαβ , (52)

where δαβ is the Kronecker symbol, and ∗δλτ = 1−δλτ . Three spatial eα = ξ×σα and three temporal e0α =
ξ0 × σα components are the basis vectors, respectively, in spaces R3 and T 3, where O± = (1/

√
2)(ξ0 ±

ξ), ξ2
0 = −ξ2 = 1, < ξ0, ξ >= 0. The 3D space R3

± is spanned by the coordinates η(±α). By using
the 6D language, we will be able to make a necessary reduction to the conventional 4D space which can
be achieved in the following way.

(i) In the case of free flat space M6, the subspace T 3 is isotropic. And in so far it contributes in line
element just only by the square of the moduli t = |x0|, x0 ∈ T 3, then, the reduction M6 → M4 = R3 ⊕T 1

can be readily achieved if we use t = |x0| for conventional time.
(ii) In the case of curved space, the reduction V6 → V4 can be achieved if we use the projection

(ẽ0) of the temporal component (ẽ0α) of basis six-vector ẽ (ẽα, ẽ0α) on the given universal direction
(ẽ0α → ẽ0). By this we choose the time coordinate. Actually, the Lagrangian of physical fields defined on
R6 is a function of scalars such as A(λα)B

(λα) = AαB
α +A0αB

0α, then upon the reduction of temporal
components of six-vectors A0αB

0α = A0α < ẽ0α, ẽ0β > B0β = A0 < ẽ0, ẽ0 > B0 = A0B
0 we may fulfill a

reduction to V4.
A distortion of the basis (52) comprises the following two steps. We, at first, consider distortion

transformations of the ingredient unit vectors Oτ under the distortion gauge field (a):

Õ(+α)(a) = Qτ
(+α)(a)Oτ = O+ + κ a(+α)O−, Õ(−α)(a) = Qτ

(−α)(a)Oτ = O− + κ a(−α)O+, (53)

where Q
(

= Qτ
(λα)(a)

)
is an element of the group Q. This violates the first relation in (52) because of

Õ2
(λα)(a) = 2_ a(λα) ̸= 0 for given λ and α.

The (53), in turn, induces the distortion transformations of the ingredient unit vectors σβ , which
undergo the rotations, σ̃(λα)(θ) = Rβ

(λα)(θ)σβ . The R(θ) ∈ SO(3) is the element of the group of rotations
of planes involving two arbitrary axes around the orthogonal third axis in the given ingredient space
R3
λ. Then, the resulting basis vectors σ̃(λα)(θ) of each three-dimensional ingredient space R3

λ retain the
orthogonality condition between themselves, but violate it with respect to the basis vectors of different
ingredient spaces. That is, < σ̃(λα), σ̃(τβ) >α̸=β ̸= 0, at λ ̸= τ. In fact, distortion transformations of
basis vectors (O) and (σ) are not independent, but rather are governed by the spontaneous breaking of
the distortion symmetry. To avoid a further proliferation of indices, thenceforth we will use upper case
Latin (A) in indexing (λα) (λ = ±;α = 1, 2, 3), etc.

The infinitesimal transformations read

δQτ
A(a) = κ δ aAX

τ
λ ∈ Q, δR(θ) = − i

2Mαβδ ω
αβ ∈ SO(3), (54)
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provided Xτ
λ = ∗δτλ and Ii = σi

2 , where σi are the Pauli matrices, Mαβ = εαβγIγ and δ ωαβ = εαβγδ θγ .
The transformation matrix D(a, θ) = Q(a)×R(θ) is an element of the distortion group GD = Q×SO(3):

D(d aA, d θA) = I + dD(aA, θA), dD(aA, θA) = i
[
d aAXA + d θAIA

]
, (55)

where IA ≡ Iα at given λ.
The nonlinear realization technique or the method of phenomenological Lagrangians (see [10] and

references therein) provides a way to determine the transformation properties of fields defined on the
quotient space. We treat the distortion group GD and its stationary subgroup H = SO(3), respectively, as
the dynamical group and its algebraic subgroup. The generators XA (54) of the group Q do not complete
the group H to the dynamical group GD, therefore, they cannot be interpreted as the generators of
the quotien space GD/H, and the distortion fields aA cannot be identified directly with the Goldstone
fields arisen in spontaneous breaking of the distortion symmetry GD. These objections, however, can be
circumvented, because, as it is shown by [10], the distortion group GD = Q × SO(3) can be mapped
in a one-to-one manner onto the group GD = SO(3) × SO(3), which is isomorphic to the chiral group
SU(2) × SU(2). The method of phenomenological Lagrangians is well known for this group. Hence we
arrive at

tan θA = −κ aA. (56)
Given the distortion field aA, the key relation (56) uniquely determines six angles θA of rotations around
each of six (A) axes.

The fundamental field is distortion gauge field (a) and, thus, all the fundamental gravitational struc-
tures in fact - the metric as much as the coframes and connections - acquire a distortion-gauge induced
theoretical interpretation. We study the geometrical structure of the space of parameters in terms of Car-
tan’s calculus of exterior forms and derive the Maurer-Cartan structure equations, where the distortion
fields (a) are treated as the Goldstone fields [10].

Appendix E: Spontaneous Breaking of Gravitation Gauge Symmetry

In the realization of the group GV we implement the abelian local group [10],

U loc = U(1)Y × U(1) ≡ U(1)Y × diag[SU(2)], (57)

on the space M6 (51) (spanned by the coordinates η), with the group elements of exp [iY2 θY (η)] of U(1)Y
and exp [iT 3 θ3(η)] of U(1). This group leads to the renormalizable theory, because gauge invariance gives
a conservation of charge, and it also ensures the cancelation of quantum corrections that would otherwise
result in infinitely large amplitudes. This has two generators, the third component T 3 of isospin T related
to the Pauli spin matrix τ

2 , and hypercharge Y implying Qd = T 3 + Y
2 , where Qd is the distortion charge

operator assigning the number -1 to particles, but +1 to anti-particles. The group (57) entails two neutral
gauge bosons of U(1), or that coupled to T 3, and of U(1)Y , or that coupled to the hypercharge Y .

Spontaneous symmetry breaking can be achieved by introducing the neutral complex scalar Higgs
field. Minimization of the vacuum energy fixes the non-vanishing vacuum expectation value (VEV), which
spontaneously breaks the theory, leaving the U(1)d subgroup intact, i.e. leaving one Goldstone boson.
The left Goldstone boson is gauged away from the scalar sector, but it essentially reappears in the
gauge sector providing the longitudinally polarized spin state of one of gauge bosons that acquires mass
through its coupling to Higgs scalar. The two neutral gauge bosons were mixed to form two physical
orthogonal states of the massless component of distortion field (71) (a := a(λα), with Ma = 0), which
is responsible for gravitational interactions, and its massive component (72) (ā := ā(τβ), with Mā ̸= 0),
which is responsible for the ID-regime.

Hence, a substantial change of the properties of the spacetime continuum besides the curvature
may arise at huge energies. The theory is renormalizable, because gauge invariance gives conservation of
charge, also ensures the cancelation of quantum corrections that would otherwise result in infinitely large
amplitudes. Without careful thought we expect that in this framework the renormalizability of the theory
will not be spoiled in curved space-time too, because, the infinities arise from ultra-violet properties of
Feynman integrals in momentum space which, in coordinate space, are short distance properties, and
locally (over short distances) all curved space-times look like maximally symmetric (flat) space.
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Appendix F: Field Equations

In pursuing our goal further, we are necessarily led to extend a whole framework of GGP to 12D smooth
differentiable manifold:

M12 = M6 ⊕ M̄6. (58)

The M6 relates to the spacetime (51), but the M̄6 is displayed as a space of inner degrees of freedom.
The

e(λ,µ,α) = Oλ,µ ⊗ σα (λ, µ = 1, 2; α = 1, 2, 3) (59)

are basis vectors at the point p(ζ) of M12:

< Oλ,µ, Oτ,ν >= ∗δλ,τ
∗δµ,ν , Oλ,µ = Oλ ⊗Oµ, Oλ,µ ↔ ∗R4 = ∗R2 ⊗ ∗R2, σα ↔ R3, (60)

where ζ = (η, u) ∈ M12, (η ∈ M6 and u ∈ M̄6). So, the decomposition (51), together with

M̄6 = R̄3
+ ⊕ R̄3

− = T̄ 3 ⊕ P̄ 3, sgn(T̄ 3) = (+ + +), sgn(P̄ 3) = (− − −), (61)

holds.
The 12-dimensional basis (e) transforms under the distortion gauge field a(ζ) (ζ ∈ M12):

ẽ = D(a) e (62)

where the distortion matrix D(a) reads D(a) = C(a) ⊗R(a), provided

Õ = C(a)O, σ̃ = R(a)σ. (63)

The matrices C(a) generate the group of distortion transformations of bi-pseudo-vectors:

Cτ,ν(λµα)(a) = δτλδ
ν
µ + κa(λ,µ,α)

∗δτλ
∗δνµ, (64)

but R(a) ∈ SO(3)λµ -the group of ordinary rotations of the planes involving two arbitrary basis of the
spaces R3

λµ around the orthogonal third axes. The angles of rotations are determined according to (56),
but now we use the indices A = (λ, µ, α) etc.

The extended field equations follow at once in terms of Euler-Lagrange variations respectively on the
M12 and M̃12 [10]:

S = Sa + S
Φ̃

=
∫ √

−η La d12ζ +
∫ √

−g L
Φ̃
d12ζ̃, (65)

where La is the Lagrangian of distortion field (a), L
Φ̃

is the Lagrangian of matter fields. Whereas the
dependence on the distortion gauge field comes only through the components of the metrical tensor. The
La is invariant under Lorentz (Λ) and U loc gauge groups. The Lagrangian L

Φ̃
, in turn, is invariant under

the gauge group of gravitation, GR.
In terms of the Euler-Lagrange variations in M12 and M̃12, we readily obtain

δ(√
−η La)
δ aA

= −∂ gBC

∂ aA

δ(
√

−g L
Φ̃

)
δ gBC = −

√
−g
2

∂ gBC

∂ aA
T̃BC ,

δL̃
Φ̃

δ Φ̃
= 0,

δ L
Φ̃

δΦ̃
= 0, (66)

where T̃BC is the energy-momentum tensor of the matter fields Φ̃(ζ̃). The Lagrangian of distortion gauge
field aA = (a(λα), ā(τβ)) defined on the flat space, is the undegenerated Killing form on the Lie algebra
of the group U loc in the adjoint representation

La(η) = La(η) = − 1
4 < FAB(a), FAB(a) >K , (67)

which yields
∂B∂BaA − (1 − ζ−1

0 ) ∂A∂BaB = JA = − 1
2
√
g ∂g

BC

∂aA
T̃BC , (68)

where FAB(a) is the antisymmetrical tensor of gauge field (a), ζ0 is the gauge fixing parameter.
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To render our discussion here more transparent, below we clarify the relation between gravitational
and coupling constants. To assist in obtaining actual solutions from the field equations, we may consider
the weak-field limit and shall envisage that the right hand side of (68) should be in the form

− 1
2 (4πGN )

√
g(x) ∂g

BC(x)
∂xA

T̃BC . (69)

Hence, we may assign to the Newton’s gravitational constant GN the value

GN = κ2/4π. (70)

The curvature of manifold M6 → V6 is the familiar distortion induced by the field components

a(1,1,α) = a(2,1,α) ≡ 1√
2a(+α), a(1,2,α) = a(2,2,α) ≡ 1√

2a(−α). (71)

The other regime of ID is generated by the field components

a(1,1,α) = −a(2,1,α) ≡ 1√
2 ā(+α), a(1,2,α) = −a(2,2,α) ≡ 1√

2 ā(−α). (72)
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