Isaac Scientific Publishing

Theoretical Physics

DNA Molecule as a Spin System and the Symmetric Top Model

Download PDF (305.1 KB) PP. 141 - 144 Pub. Date: September 19, 2017

DOI: 10.22606/tp.2017.23005

Author(s)

  • Subhamoy Singha Roy*
    Department of Physics, JIS College of Engineering (Autonomous), West Bengal University of Technology, Kalyani, Nadia -741235, India

Abstract

It is observed that when the conformational properties of DNA molecule are mapped onto an antiferromagnetic spin system we can realize the specific properties of the rod-like-chain (RLC) model where the analytically continued partition function corresponds to the symmetric top Hamiltonian. The relevant path integral represents a charge particle in the field of a non-quantized monopole which suggests that angular momentum is not quantized. However in a spin chain the nonquantized monopole charge appears in the renormalization group flow and corresponds to the Barry phase required by a spin ½ state in an entangled spin system. Thus avoids the RLC model crisis.

Keywords

Spin system, symmetric top, monopole

References

[1] K.A.Kholodenko and T.Vilgis: Phys.Rev.E 50, 1257(1994).

[2] M.Fixman and J.Kovac: J.Chem. Phys. 58, 1564 (1973).

[3] C.Bouchiat and M.Mezard:Phys.Rev.Lett. 80, 1556(1997); Euro.Phys.J.E, 2, 377(2000).

[4] S.S. Roy and P.Bandyopadhyay, Phys. Lett. A 337, 2884 (2013).

[5] S.S. Roy and P.Bandyopadhyay, Europhys.Lett.109, 48002 (2015).

[6] P.Bandyopadhyay and K.Hajra: J.Math.Phys. 28, 711 (1987).

[7] K.Hajra and P.Bandyopadhyay: Phys.Lett. A 155, 7 (1991).

[8] E.Nelson: Phys.Rev.150, 1079(1966); Dynamical theory of Brownian motion (Princeton University Press, Princeton, N.J.(1967).

[9] C.A. Hurst: Ann.Phys 50, 37 (1968).

[10] P.Bandyopadhyay: Int.J.Mod.Phys.A 15, 1415 (2000).

[11] P.Bandyopadhyay: Proc.Roy.Soc (London) A 467, 427(2011).

[12] M.V.Berry, Proc.Roy.Soc(Londan)A, 392, 45(1984).

[13] B.Basu and P.Bandyopadhyay, Int. J.Geo. Meth. Mod. Phys. 9 707 (2007).

[14] B.Basu and P.Bandyopadhyay , J.Phys. A. 41, 055301 (2008).

[15] D.Banerjee and P.Bandyopadhyay: J.Math.Phys.33, 990 (2012).