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Abstract. It is observed that when the conformational properties of DNA molecule are mapped onto 
an antiferromagnetic spin system we can realize the specific properties of the rod-like-chain (RLC) 
model where the analytically continued partition function corresponds to the symmetric top 
Hamiltonian. The relevant path integral represents a charge particle in the field of a non-quantized 
monopole which suggests that angular momentum is not quantized. However in a spin chain the non-
quantized monopole charge appears in the renormalization group flow and corresponds to the Barry 
phase required by a spin ½ state in an entangled spin system. Thus avoids the RLC model crisis. 
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The topological and elastic properties of a DNA molecule have been studied earlier by several authors 
using quantum mechanics. Klolodenko and Vilgis [1] studied the elastic response to elongation force for 
polymer chains of arbitrary stiffness using the relation between semiflexible polymers and Euclidean 
Dirac fermions. In case of a DNA molecule the worm-like-chain (WLC) model was introduced [2] which 
describes a chain by an elastic continuous curve at thermal equilibrium with a single elastic constant, 
the persistent length Α  characterizing the bending energy. The WLC can be solved analytically by 
mapping it onto a quantum mechanical problem. Indeed the partition function is a Euclidean path 
integral for a quantum dumbbell. Bouchiat and Mezard [3] generalized this model introducing twist 
rigidity C  and it appears that a DNA molecule can be depicted as a thin elastic rod. This rod-like-
chain (RLC) model is characterized by the fact that the partition function can be mapped onto the path 
integral representing a charged particle in the field of a non-quantized monopole. When we describe it 
in terms of three Euler angles, the corresponding Hamiltonian is found to be singular and needs a small 
distance cut-off which is the natural length scale of the double helix pitch. The RLC model is able to 
reproduce the experimentally observed results relating the effects of supercoiling in the elongation force 
characteristics in the small supercoiling region. A given configuration of the RLC is specified in the 
continuum limit by the local orthonormal trihedron { } { }=

�� � �( ) ( ), ( ), ( )ie s u s n s t s  where s  is the arc length 
along the molecule. Here �( )u s  is the unit vector along the basis line and 

�
( )t s  is the tangent to the 

chain and = Λ
�� �( ) ( ) ( )n s t s u s . The evolution of the trihedron { }� ( )ie s  along the chain is obtained by 

applying the rotation ( )R s  to a reference trihedron { }�0( )ie s  attached to a rectilinear relaxed molecule. 
The rotation ( )R s  is parametrized by three Euler angles θ φ( ), ( )s s  and ψ ( )s . The reference trihedron 
is characterized by θ =( ) 0s ,φ ψ ω+ = 0( ) ( )s s s  where ω0  is the rotation per unit length of the base axis. 
For given values of the Euler angles θ φ( ), ( )s s and ψ ( )s  at the two ends =0 0s  and =1s L  of the 
chain the partition function is given by 

 θ φ ψ θ φ ψ θ φ ψ
 

= − 
 

∫1 1 1 1 0 0 0 0( , , , , , , ) ( , , )exp RLC

B
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The elastic energy RLCE  is transformed into the integral ∫
1

0

( )
t

t

i dtL t  where ( )L t  is that of a symmetric 

top in a static electric field. The analytically continued partition function corresponds to the Feynman 
amplitude 
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where topH  is the symmetric top Hamiltonian operator acting on Euler angles wave function. However 
it should be observed that the analogy is a bit formal. In fact in case of symmetric top the space is that 
of π2  periodic functions of the Euler angles φ  and ψ  but in the RLC model the space is that of 
general functions without any constraint of periodicity. It should be noted that the elastic theory cannot 
be valid in the atomic scale. In fact the corresponding Hamiltonian is singular and needs a small 
distance cut-off which is of the order of double helix pitch. One may also argue that the RLC model 
ignores the helical structure of the DNA molecule. 

Recently a theory of the denaturation transition of a DNA molecule has been proposed in the 
framework of the mapping of the conformational properties of DNA onto a Heisenberg spin system[4]. 
As two polynucleotide chains are twisted about the molecule axis with a specific helical sense in a DNA 
molecule, this can be viewed as if a spin with a specific orientation is inserted on the axis such that two 
adjacent coils have opposite orientations of the spin. In fact with each turn two strands move in the 
opposite side of the axis and so the spin orientation assigned for the two adjacent coils should be 
opposite to each other. Indeed twisting of the two strands in mutually opposite directions can be taken 
to imply that two strands can be designated by two spins having orientations +1 / 2  and −1 / 2 . 
When these two spins having opposite orientations are inserted on the axis such that these are located 
in the two adjacent sites with lattice spacing of one period of helix this represents an antiferromagnetic 
spin system. In this scenario denaturation transition can be formulated in terms of quantum phase 
transition induced by a quench when the temperature effect is incorporated in the quench time and 
torsion takes the role of the external field. In a recent letter [5] we have computed the melting profiles 
for the different sequence specific DNA molecules and the results are found to be in excellent agreement 
with experiment. 

In the depiction of DNA molecule as an antiferromagnetic spin chain we observe that the spin degrees 
of freedom appear to be associated with three Euler anglesθ ,φ  and ψ corresponding to an extended 
body. In fact it has been shown in earlier papers [6,7] that the quantization of a fermion in the 
framework of Nelson’s stochastic quantization procedure [8] can be achieved when we introduce an 
internal variable which appears to be a direction vector depicting the spin degrees of freedom. The 
direction vector effectively corresponds to a vortex line which is topologically equivalent to a magnetic 
flux line. When we introduce the direction vector attached to a space-time point the spherical harmonics 
associated with the system incorporate apart from the polar angles θ  and φ , and another angle ψ  
which is related to the rotational orientation of the direction vector. These three angles correspond to 
three Euler angles associated with an extended body. Thus the spin degrees of freedom introduce three 
Euler angles in the system. Indeed as a spin degree of freedom appears as (2)SU  gauge bundle and the 
group (2)SU  is topologically equivalent to the 3-sphere 3S , we note that 3S  incorporates an extended 
body having three Euler angles θ φ ψ, , . It is observed that the spherical harmonics incorporating these 

three Euler angles correspond to monopole harmonics as the eigenvalue of the operator 
ψ

∂
∂

ˆi  

corresponds to a monopole charge. Indeed we can write the corresponding harmonics as ,m n
lY , 

µ( )m being the eigenvalue of the operator 
φ ψ

∂ ∂
∂ ∂

ˆ ˆ( )i i , l  being the angular momentum [9]. 

This suggests that the elasticity parameters depicted in terms of these angles have a correspondence 
with those derived in terms of a spin chain. So we can map the elasticity parameters derived from the 
spin chain on those derived in the RLC model. However we note that unlike the RLC model, the helical 
structure of DNA is the basic ingredient of the spin chain model. Also the lattice constant which is of 
the order of a helix period appears to be a natural cut-off which is needed to study the elastic properties 
in terms of the symmetric top Hamiltonian as is envisaged in the RLC model. 

It should be mentioned that the analogy of the RLC model with the quantum symmetric top is 
confronted with a “crisis” in the sense that the RLC analog of the angular momentum is not quantized 
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as the physical states of an elastic rod representing a double helix are not invariant under π2  rotation 
about its axis. This phenomenon is known as the “RLC model crisis”. In this context we may add that 
the Dirac quantization condition suggests that the monopole charge µ  takes the values 
± ± ±0, 1 / 2, 1, 3 / 2........  However in an entangled spin system the monopole charge is found to be related 

to the measure of entanglement of a pair of nearest neighbour spins given by concurrence and undergoes 
a renormalization group (RG ) flow [10, 11]. 

The rules for the RG flow of the monopole charge known as the µ -theorem are as follows. When the 
monopole charge depends on a certain parameter λ  we have  

1) µ  is stationary at fixed points λ*  of the RG flow 
2) at the fixed points µ λ*( )  is equal to the monopole charge given by quantized values 

( µ = ± ±0, 1 / 2, 1...... ) 

3) µ  decreases along the RG flow i.e. µ∂ ≤
∂

( ) 0L L  where L  is a scale parameter. 

In view of this analysis we note that the non-quantized angular momentum related to the violation of 
rotational invariance in RLC model can be associated with the RG flow of the monopole charge when it 
is mapped onto an antiferromagnetic spin chain. Indeed Bouchiat and Mezard [3] have pointed out that 
the writhe partition function Fourier transform corresponds to the quantum mechanical problem of a 
charged particle in the field of a monopole with non-quantized charge. These authors have prescribed a 
local writhe formula in terms of the Euler angles φ( )s and ψ ( )s  defining a line integral 

 χ φ ψ ψ φ= + = +∫ ��
0

( ) ( ) ( )
L

L L ds   (3) 

The total twist can be written as 

 ψ φ θ= +∫ ��
0

( cos )
L

Tw ds   (4) 

A “local writhe” χW  is defined as 

 χ χ φ θ= − = −∫ �
0

(1 cos )
L

W Tw ds   (5) 

They have shown that χW  can be written as the line integral 
 ϕφ =∫ ∫

� � �( )md A A r dr   (6) 

where φ θ= −(1 cos )A  is identified as the φ -component of the potential vector 
� �( )mA r  of a magnetic 

monopole of charge unity. In fact for a closed circuit we have the relation 

 
π

φ φ π θ= −∫
2

0

2 (1 cos )A d   (7) 

It is observed that the holonomy given by eqn.(7) effectively corresponds to the Berry phase [12] 
acquired by a quantum state while traversing a closed path involving a monopole of charge unity. In 
fact the Berry phase acquired by a spin state in a spin 1 / 2  chain when the Hamiltonian is parallel 
transported along a closed circuit is given by µΩ( )c  where Ω( )c  is the solid angle subtended by the 
contour at the center of a unit sphere with a monopole of charge µ  at the center. Noting that 
 θ φ π θΩ = − = −∫( ) (1 cos ) 2 (1 cos )c d   (8) 
and for the monopole charge µ = 1 / 2 , we have the Berry phase attained by a spin 1 / 2  state in a 
chain while traversing a closed path given by [13.14] 
 φ π θ= −(1 cos )B   (9) 

It is noted that the holonomy given by eqn.(7) is twice this phase factor. It is observed that when a 
quantum state encircles a closed loop enclosing magnetic flux lines associated with the monopole of 
charge µ  it acquires the Berry phase apart from dynamical phase when the phase is given by φ πµ= 2B  
[15]. Equating this with the expression given by eqn. (9) we note that the effective monopole charge 
associated with a spin state in an entangled spin system is given by the relation 

Theoretical Physics, Vol. 2, No. 3, September 2017 143

Copyright © 2017 Isaac Scientific Publishing TP



 µ θ= −1( )(1 cos )2eff   (10) 

Evidently the monopole charge takes non-quantized value apart from the situation when the polar 
angle θ  of the spin axis with the quantization axis is given by θ π= 0, / 2  and π . This non-
quantized monopole charge takes values on the RG  flow of the monopole charge in an entangled spin 
system [11]. Thus we observe that when we map a DNA molecule onto an antiferromagnetic spin system 
the apparent RLC model crisis appears to be associated with the RG  flow of the monopole charge in 
an entangled spin system. In view of this we note that the specific properties of the symmetric top 
model can be mapped onto an antiferromagnetic spin system without any ambiguity. 

In summary it is here observed that when the conformational properties of a DNA molecule are 
mapped onto an antiferromagnetic spin chain we can realize the salient features of the RLC model when 
the analytically continued partition function corresponds to the symmetric top Hamiltonian acting an 
Euler angle wave function. The relevant path integral represents a charged particle in the field of a non-
quantized monopole which suggests that the angular momentum is not quantized. However when a 
DNA molecule is mapped onto an antiferromagnetic spin chain the non-quantized monopole charge is 
found to be associated with the RG  flow of the monopole charge in an entangled spin system and thus 
avoids the RLC model crisis. 
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