Isaac Scientific Publishing

Journal of Advances in Applied Mathematics

Asymptotic Behavior of A Stochastic Quarantine Model

Download PDF (608.9 KB) PP. 220 - 232 Pub. Date: October 24, 2017

DOI: 10.22606/jaam.2017.24003

Author(s)

  • Yadan Li*
    College of Science, University of Shanghai for Science and Technology, Shanghai, P. R. China

Abstract

In this paper, we consider a stochastic SIQS epidemic model by introducing random fluctuations. Then we present the disease extinction. Moreover, we investigate the stochastically asymptotic behavior of this model with use of the Markov semigroups theory. Finally, we give some numerical simulations to illustrate our mathematical findings.

Keywords

Markov semigroups, quarantine, stochastic model, asymptotic behavior.

References

[1] W.H. McNeill, Plagues and Peoples, Anchor, Garden City, NY, 1976.

[2] Z.E. Ma, Y.C. Zhou, W.D. Wang, Z. Jin, Mathematical modeling and research of infectious disease dynamics, Beijing: Science Press, (2006).

[3] H.W. Hethcote, Qualitative analyses of communicable disease models, Math. Biosci, 28 (1976) 335.

[4] L. Wu, Z. Feng, Homoclinic bifurcation in an SIQR model for childhood diseases, J. Differ. Equations, 168 (2000) 150.

[5] H. Herbert, Z. Ma, S. Liao, Effects of quarantine in six endemic models for infectious diseases, Math. Biosci, 180 (2002) 141-160.

[6] S. Spencer, Stochastic epidemic models for emerging diseases, PhD thesis, University of Nottingham, 2008.

[7] J.R. Beddington, R.M. May, Harvesting natural populations in a randomly fluctuating environment, Science, 197 (4302) (1977) 463-465.

[8] J.E. Truscott, C.A. Gilligan, Response of a deterministic epidemiological system to a stochastically varying environment, Proc. Natl. Acad. Sci. USA, 100 (15) (2003) 9067-9072.

[9] X. Mao, Stochastic Differential Equations and Their Applications, Horwood, Chichester, 1997.

[10] R. Durrett, Stochastic spatial models, SIAM Rev, 41 (4) (1999) 677-718. Journal of Advances in Applied Mathematics, Vol. 2, No. 4, October 2017 231 Copyright

[11] B. Dennis, Allee effects in stochastic populations, Oikos, 96 (3) (2002) 389-401.

[12] X. Mao, S. Sabanis, E. Renshaw, Asymptotic behaviour of the stochastic Lotka-Volterra model, J. Math. Anal. Appl, 287 (1) (2003) 141-156.

[13] X. Mao, G. Marion, E. Renshaw, Environmental Brownian noise suppresses explosions in population dynamics, Stochastic Process. Appl, 97 (1) (2002) 95-110.

[14] P.S. Mandal, M. Banerjee, Stochastic persistence and stationary distribution in a Holling-Tanner type prey-predator model, Phys. A, 391 (4) (2012) 1216-1233.

[15] L.J.S. Allen, P. Driessche, Stochastic epidemic models with a backward bifurcation, Math. Biosci. Eng, 3 (3) (2006) 445-458.

[16] L.J.S. Allen, An introduction to stochastic epidemic models, in: Math. Epidem, Springer, (2008) 81-130.

[17] T. Komorowski, J. Tyrcha, Asymptotic properties of some Markov operators, Bull. Pol. Acad. Sci. Math, 37 (1-6) (1989) 221-228.

[18] R. Rudnicki, On asymptotic stability and sweeping for Markov operators, Bull. Pol. Acad. Sci. Math, 43 (3) (1995) 245-262.

[19] R. Rudnicki, Long-time behaviour of a stochastic prey-predator model, Stochastic Process. Appl, 108 (1) (2003) 93-107.

[20] A. Lasota, M.C. Mackey, Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics, Springer, 97 (1994).

[21] L.P. Kadanoff, Statistical Physics: Statics, Dynamics, and Renormalization, World Scientific, (2000).

[22] R. Rudnicki, K. Pichor, M. Tyran-Kaminska, Markov Semigroups and Their Applications, Lecture Notes in Phys, 597 (2002) 215-238.

[23] C. Chen, Y. Kang, The asymptotic behavior of a stochastic vaccination model with backward bifurcation, Applied Mathematical Modelling, (2016) 1-18.

[24] H.R. Thieme, Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations, Journal of Mathematical Biology, 30 (7) (1992) 755-763.

[25] D.R. Bell, The Malliavin Calculus, Dover Publications, (2006).

[26] D.W. Stroock, S.R.S. Varadhan, On the support of diffusion processes with applications to the strong maximum principle, in: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Univ. California, Berkeley, Calif, 1970/1971 3 (1972) 333-359.

[27] G.B. Arous, R. Léandre, Décroissance exponentielle du noyau de la chaleur sur la diagonale (II), Probab. Theory Related Fields, 90 (3) (1991) 377-402.

[28] K. Pichór, R. Rudnicki, Stability of Markov semigroups and applications to parabolic systems, J. Math. Anal. Appl, 215 (1) (1997) 56-74.