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Abstract In this paper, we consider a stochastic SIQS epidemic model by introducing random
fluctuations. Then we present the disease extinction. Moreover, we investigate the stochastically
asymptotic behavior of this model with use of the Markov semigroups theory. Finally, we give some
numerical simulations to illustrate our mathematical findings.
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1 Introduction

Quarantine is a commonly used measure to govern the spread of infection qualitatively and quantitatively.
For a long time, mathematical models have become important tools for disease control. There are many
scholars focusing on epidemic models with quarantine (see [1,2,3,4]). The classics SIS epidemic model
with quarantine was studied by Herbert and Ma [5] as followsS′ = Λ− βSI − dS + γI + εQ,

I ′ = βSI − (d+ α+ δ + γ)I,
Q′ = δI − (d+ α+ ε)Q.

(1)

In this model all parameter values are nonnegative (Λ, β, d > 0 ) and summarized as follows:
Λ: the influx of new members into the population per unit time;
β: the transmission coefficient between compartments S and I;
δ: the proportional coefficient of quarantined;
d: the natural death rate for S, I, Q compartments;
γ: the recovery rate;
ε: the rate of losing their immunity for quarantined individuals;
α: the death rate caused by disease.
And S, I, Q denote the numbers of susceptible individuals, infected individuals and quarantined

individuals, respectively. The basic reproductive number R0 of model (1) is

R0 = Λβ

d(γ + δ + d+ α) .

Let the state space be X = R3
+ = {(S, I,Q) : S ≥ 0, I ≥ 0, Q ≥ 0}, the bounded set Γ = {(S, I,Q) ∈ X :

S + I +Q ≤ Λ
d } ⊂ X. From [5] we have the following results for system (1):

(a) When R0 ≤ 1, Γ is an asymptotic stability region of the disease-free equilibrium E0 = (Λd , 0, 0);
(b) When R0 > 1, the region Γ\{(S, I,Q)|I = 0} is an asymptotic stability region of the endemic

equilibrium E∗ = (S∗, I∗, Q∗), and E0 is unstable.
As we all know, there are full of randomness and stochasticity in our real life. Many studies [6,7,8] show

that environmental changes have a tremendous impact on the development of epidemic. The stochastic
differential equations (SDE) may be a more appropriate way for describing epidemics in many cases
[9,10,11,12]. For the model (1) the key parameter to disease transmission is the disease transmission
coefficient β. Then we assume that β is subject to the environmental white noise, that is

β → β + σḂt,
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where Bt is a standard Brownian motion and σ2 > 0 is the intensity of environmental forcing. Then
model (1) becomes dSt = [Λ− βStIt − dSt + γIt + εQt]dt− σSIdBt,

dIt = [βStIt − (d+ α+ δ + γ)It]dt+ σStItdBt,
dQt = [δIt − (d+ α+ ε)Qt]dt.

(2)

The existence of a stationary distribution of model(2) and its asymptotic stability is studied in this
paper.

Denote

Rs0 = R0 −
Λ2σ2

2d2(γ + δ + d+ α) . (3)

In addition, the classical stochastic differential equation SIQS model introduced in this paper adopts
the method by Mao [13]. The method has been described in [14,15,16], and assumes that the parameters
contained in the model fluctuate near a mean value because of the environment’s continuous fluctuation.
By using the Markov semigroups theory, we demonstrate that the reproduction number Rs0 can be used
to control the stochastic dynamic of SDE model. If Rs0 < 1, the SDE system has a disease free absorbing
set which means the extinction of disease with probability one. If Rs0 > 1, the amplitude of the noise is
small enough, it has an endemic stationary distribution which sparks off the stochastical persistence of
the disease. In other words, random fluctuations can influence disease outbreak. This provides us some
useful strategies to regulate disease dynamics.

The rest of this paper is organized as follows: In Section 2, we present some preliminary knowledges;
In Section 3, we present the main results; In Section 4, we make numerical simulation to support our
results.

2 Preliminaries

To prove our main results we need some auxiliary definitions and results concerning Markov semigroups
and asymptotic properties which are present in [17,18,19,20,21,22].

Let Σ be the σ-algebra of Borel subsets of X and there exists a Lebesgue measure m on (X, Σ).
There exists D = D(X, Σ,m) the subset for the space L1 = L1(X, Σ,m), D = {g ∈ L1 : g ≥ 0, ‖g‖ = 1},
where ‖ · ‖ stands for the norm in L1. If P (D) ⊂ D then the linear mapping P : L1 → L1 is called a
Markov operator.

A family {P (t)}t≥0 of Markov operators satisfies the conditions as follows:
(a) P (0) = Id;
(b) for s,t ≥ 0, P (t+ s) = P (t)P (s);
(c) the function t 7→ P (t)g is continuous for each g ∈ L1 .

If for each t > 0 P (t)g∗ = g∗ then the density g∗ is invariant. If there exists an invariant density g∗
such that lim

t→∞
‖P (t)g − g ∗ ‖ = 0 for g ∈ D, the Markov semigroup {P (t)}t≥0 is asymptotically stable.

If for every g ∈ D, it yields lim
t→∞

∫
A

P (t)g(x)m(dx) = 0, the Markov semigroup {P (t)}t≥0 is sweeping

in connection with a set A ∈ Σ.

Lemma 2.1. For t > 0, with a continuous kernel k(t, x, y) set {P (t)}t≥0 is an integral Markov semigroup,
which for all y ∈ X satisfies

∫
X
k(x, y)m(dx) = 1. We assume that for every g ∈ D then

∫ ∞
0

P (t)gdt > 0 ,

with respect to compact sets this semigroup is asymptotically stable or sweeping.
For the diffusion process (St, It, Qt), by P(t, x, y, z, A) we denote the transition probability function,

i.e. P(t, x, y, z, A) = Prob{(St, It, Qt) ∈ A} (St, It, Qt) is the solution of (2) where a initial condition is
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(S0, I0, Q0) = (x, y, z). If t > 0, the distribution of (St, It, Qt) is absolutely continuous and has density
v(x, y, z). Then u(t, x, y, z) satisfies the following Fokker-Planck equation [22,9]:

∂u

∂t
= 1

2σ
2
(∂2(ϕu)

∂x2 + ∂2(ϕu)
∂x∂y

+ ∂2(ϕu)
∂y2

)
− ∂(f1u)

∂x
− ∂(f2u)

∂y
− ∂(f3u)

∂z
(4)

where ϕ(x, y, z) = x2y2 and

f1(x, y, z) = Λ− βxy − dx+ γy + εz,

f2(x, y, z) = βxy − (d+ α+ δ + γ)y, (5)
f3(x, y, z) = δy − (d+ α+ ε)z.

Connected with (4) now we present a Markov semigroup. For V (x, y, z) ∈ D, set P (t)V (x, y, z) =
u(x, y, z, t). Since P (t) is a contraction on D of L1(X, Σ,m) it can be extended to a contraction. Conse-
quently, the Markov semigroup is formed by the operators {P (t)}t≥0. Set A be an infinitesimal generator
for the semigroup {P (t)}t≥0, i.e.

AV = 1
2σ

2
(∂2(ϕV )

∂x2 + ∂2(ϕV )
∂x∂y

+ ∂2(ϕV )
∂y2

)
− ∂(f1V )

∂x
− ∂(f2V )

∂y
− ∂(f3V )

∂z
.

The adjoint operator A∗ is

A∗V = 1
2σ

2
(∂2(ϕV )

∂x2 + ∂2(ϕV )
∂x∂y

+ ∂2(ϕV )
∂y2

)
+ f1

∂V

∂x
+ f2

∂V

∂y
+ f3

∂V

∂z
.

3 Main Results

In this section, we present the main results.

3.1 Disease Extinction

Useing the same way as in [23], we can get that for any initial value (S0, I0, Q0) ∈ Γ , there exist a unique
global solution for model (2) and the solution will stay in Γ whenever it starts. That is:

Theorem 3.1. For any initial value (S0, I0, Q0) ∈ Γ ,there exists a unique global solution (St, It, Qt) ∈ Γ
for the model (2) on t ≥ 0 with probability 1, that is,

Prob{(St, It, Qt) ∈ Γ,∀t ≥ 0} = 1.

Theorem 3.2. Let (St, It, Qt) is the solution of model (2) with any given initial value (S0, I0, Q0) ∈ Γ .
One of the following conditions satisfied (1)Λd <

β
σ2 , Rs0 < 1; (2)Λd >

β
σ2 , σ2 > β2

2(γ+δ+d+α) , we have

lim sup
t→∞

ln It
t
≤ −c < 0, a.s.,

lim sup
t→∞

lnQt
t
≤ min{−(d+ α+ ε),−c}, a.s., (6)

lim
t→∞

St = Λ

d
, a.s.,

where c =
{

(d+ α+ δ + γ)(1−RS0 ), when Λ
d <

β
σ2 ,

(d+ α+ δ + γ)− β2

2σ2 , when Λ
d >

β
σ2 .

In other words, the disease dies out in probability

one,

222 Journal of Advances in Applied Mathematics, Vol. 2, No. 4, October 2017

JAAM Copyright © 2017 Isaac Scientific Publishing



Proof. By Itô’s formula, we have

d ln I = 1
I
− 1

2I2 (dI)2

= φ(S, I)dt+ σSdBt,

where φ : R2
+ → R is defined by

φ(S, I) = βS − (d+ α+ δ + γ)− 1
2σ

2S2.

Hence,

ln It = ln I0 +
∫ t

0
φ(Ss, Is)ds+

∫ t

0
σSsdBs, (7)

set G(t) =
∫ t

0 σSsdBs implies that

〈G,G〉t
t

= 1
t

∫ t

0
σ2S2

sds ≤ σ2Λ
2

d2 < +∞.

By the large numbers of martingale laws [9], we get lim sup
t→∞

G(t)
t = 0 a.s..

We can get
if Λd <

β
σ2 ,

φ(S, I) = βS − (d+ α+ δ + γ)− 1
2σ

2S2

= −1
2(σS − β

σ
)2 + β2

2σ2 − (d+ α+ δ + γ)

≤ −1
2σ

2(Λ
d

)2 + β
Λ

d
− (d+ α+ δ + γ)

= (d+ α+ δ + γ)(RS0 − 1),

if Λd >
β
σ2 ,

φ(S, I) = βS − (d+ α+ δ + γ)− 1
2σ

2S2

= −1
2(σS − β

σ
)2 + β2

2σ2 − (d+ α+ δ + γ)

≤ −1
2σ

2( β
σ2 )2 + β

β

σ2 − (d+ α+ δ + γ)

= β2

2σ2 − (d+ α+ δ + γ).

It then follows from (7) that

ln It ≤ ln I0 − ct+G(t).

Dividing by t on the both sides of above inequality and letting t→∞ we can get that there exist some
null set N1 so that Prob(N1) = 1 and for any ω ∈ N1,

lim sup
t→∞

ln It
t
≤ −c < 0,

Thus for any sufficiently small η1 > 0, there exists T1 = T1(ω) so that

It(ω) ≤ e(−c+η1)t,∀t ≥ T1. (8)
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Therefore, following from the third equation of the model (2), for all ω ∈ N1, if t ≥ T1(ω),

Qt(ω) = e−(d+α+ε)t
(
δ

∫ t

0
e(d+α+ε)sIsds+Q0

)
≤ Q0e

−(d+α+ε)t + δe−(d+α+ε)t
∫ T1

0
e(d+α+ε)sIsds+ δe−(d+α+ε)t

∫ t

T1

e(d+α+ε−c+η1)sds.

It follows that for any ω ∈ N1

lim sup
t→∞

1
t

lnQt(ω) ≤ min{−(d+ α+ ε),−c+ η1},

Let η1 → 0, we get

lim sup
t→∞

1
t

lnQt(ω) ≤ min{−(d+ α+ ε),−c} ≡ −λ

Thus for any sufficiently small η2 > 0 and ω ∈ N1, there exists T2 = T2(ω) such that

Qt(ω) ≤ e(−λ+η2)t, ∀ t ≥ T2. (9)

From model (2), we have Ṅ = Λ−dN −α(I+Q).It follows from (8) and (9) and the Limit Theorem[24]
we obtain: the limit equation is Ṅ = Λ− dN and lim

t→∞
N = Λ

d .
Together with (8) and (9), it yields lim

t→∞
St = Λ

d , a.s. The proof is completed. ut

3.2 Stationary Distribution Exists

Theorem 3.3. Let (St, It, Qt) be the solution of model (2) with any initial value (S0, I0, Q0) ∈ Γ . If
Rs0 > 1 and σ2 < min{A1, A2, A3}, where

A1 = h1

b1
, A2 = h1h2 − b2

b1h2
, A3 = h1b3 − b2

b2b3
,

h1 = 2εβ + 2dβ(2d+ α),

h2 = d+ α+ 2d+ α

ε
(d+ α+ δ),

b1 = I∗(2d+ α)(2d+ α+ ε+ δ),

b2 = S∗
2
d
ε+ α+ 2d

ε
(2εβ(d+ 1) + σ2b1),

b3 = d+ α+ α

δ
(d+ α+ ε).

Then there exists a unique density u∗(x, y, z) which is the steady-state solution for model (2) and

lim
t→∞

∫∫∫
X

|u(t, x, y, z)− u∗(x, y, z)|dxdydz = 0.

Furthermore, we get

Π = supp u∗ =
{

(x, y, z) ∈ X : Λ

d+ α
< x+ y + z <

Λ

d

}
. (10)

The strategies for this proof are as follows:
• First, with the use of Hörmander Theorem [25], it shows that the transition function for process

(St, It, Qt) is absolutely continuous.
• Then, with the use of support theorems [26,27], on X, it shows that the density for transition

function is positive.
• Next, it shows that the ąřFoguel alternativeąś [20] is satisfied for Markov semigroup.
• Finally, by proving there is a Khasminskǐi function [28] we exclude sweeping.
We realize this strategy by following Lemmas 3.4, 3.5, 3.6, 3.8, 3.9.
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Lemma 3.4. For each point (x0, y0, z0) ∈ X and t > 0, P(t, x, y, z, A) is the transition probability
function which has a continuous density k(t, x, y, z;x0, y0, z0).

Proof. If b(x) and c(x) are vector fields on Rd, then the Lie bracket [b, c] is a vector field given by

[b, c]j(x) =
d∑
k=1

(
bk
∂cj
∂xk

(x)− ck
∂bj
∂xk

(x)
)
, j = 1, 2, · · · , d.

Let

a0(S, I,Q) =

Λ− βSI − dS + γI + εQ
βSI − (d+ α+ δ + γ)I
δI − (d+ α+ ε)Q

 , a1(S, I,Q) =

−σSIσSI
0

 .

Then, by direct calculating, the Lie bracket [a0, a1] is a vector field given by

a2 = [a0, a1] =

−ΛσI − σγI2 − εσIQ+ (d+ α+ δ)σSI
ΛσI − dσSI + σγI2 + εσIQ

−σδSI


and

a3 = [a1, a2] =

−Λσ2I2 − σ2γI3 − εσ2I2Q− σ2γSI2 + (α+ δ)σ2SI2

Λσ2I2 + σ2γI3 + εσ2I2Q+ σ2γSI2 − (α+ δ)σ2SI2

σ2δSI2 − σ2δS2I

 .

Then a1, a2, a3 are linear independent on X. Hence for every (S, I,Q) ∈ X, vector a1(S, I,Q), a2(S, I,Q),
a3(S, I,Q) span the space X. By the Hörmander Theorem, the transfer probability function P(t, x, y, z, A)
has a continuous density k(t, x, y, z;x0, y0, z0), k ∈ C∞((0,∞)× X× X). ut

Then, we present a method which based on support theorems that allows us to check at which the
kernel k is positive. Fix a function φ ∈ L2([0, T ];R) and a point (x0, y0, z0) ∈ X, considering the following
integral equation system:

xφ(t) = x0 +
∫ t

0

(
f1(xφ(s), yφ(s), zφ(s))− φσxφ(s)yφ(s)

)
ds,

yφ(t) = y0 +
∫ t

0

(
f2(xφ(s), yφ(s), zφ(s))− φσxφ(s)yφ(s)

)
ds,

zφ(t) = z0 +
∫ t

0
f3(xφ(s), yφ(s), zφ(s))ds.

(11)

where f1(x, y, z), f2(x, y, z), f3(x, y, z) are defined as (5).
For function h 7→ Xφ+h(T ) from L2([0, T ];R) to X, let DX0;φ is the Fréchet derivative. We denote

X = (x, y, z)T , X0 = (x0, y0, z0)T , as for some function φ ∈ L2([0, T ];R) the derivative DX0;φ has rank 3,
then for X = Xφ(T ) have k(T, x, y, z;x0, y0, z0) > 0. Let

Ψ(t) = f ′(Xφ(t)) + φg′(Xφ(t)),

where g′ and f ′ are the Jacobians of g =

−σxyσxy
0

 and f =

f1(x, y, z)
f2(x, y, z)
f3(x, y, z)

. And let H(t, t0), for

0 ≤ t0 ≤ t ≤ T , be a matrix function such that H(t0, t0) = Id and ∂H(t,t0)
∂t = Ψ(t)H(t, t0). Then

DX0;φh =
∫ T

0 H(T, s)g(s)h(s)ds.

Lemma 3.5. For each (x0, y0, z0) ∈ Π and (x, y, z) ∈ Π, there exists T > 0 such that k(T, x, y, z;x0, y0, z0) >
0, where Π is the same as in (10).
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Proof. Since a continuous control function φ is considered, model (11) can be removed by the following
differential equations model:

x′φ(t) = f1(xφ(t), yφ(t), zφ(t))− φσxφ(t)yφ(t),
y′φ(t) = f2(xφ(t), yφ(t), zφ(t))− φσxφ(t)yφ(t),
z′φ(t) = f3(xφ(t), yφ(t), zφ(t)).

(12)

First, we prove that the rank of DX0;φ is 3. Let η ∈ (0, T ) and h(t) = χ[T−η,T ]
xφ(t)yφ(t) , t ∈ [0, T ], where χ is the

characteristic function. We obtain

DX0;φh = ηv− 1
2η

2Ψ(T)v + 1
6η

3Ψ2(T)v + o(η3),

where v =

−σσ
0

. Compute

Ψ(T )v = σ

 (β + φσ)(y − x) + d+ γ
(β + φσ)(x− y)− (d+ α+ δ + γ)

δ

 , Ψ2(T)v = σ

b1
b2
b3

 ,

where

b1 = −(βy + d+ φσy)2 − (−βx+ γ − φσx)(βy + φσy)− (βy + d+ φσx)(−βx+ γ − φσx)
+(−βx+ γ − φσx)(βx− d− α− δ − γ + φσx) + εδ,

b2 = (βy + φσy)(βy + d+ φσy)− (βx− d− α− δ − γ + φσx)(βy + φσy

+(−βx+ γ − φσx)(βy + φσy) + (βx− d− α− δ − γ + φσx)2,

b3 = −δ(βy + φσy) + δ(βx− d− α− δ − γ + φσx)− δ(d+ α+ ε).

Therefore, it follows that v, Ψ(T )v and Ψ2(T )v are linear independent and the rank for derivative DX0;φ
is 3.

Next, we claim that for any two points X ∈ Π and X0 ∈ Π , there exist T > 0 and a control function
φ so that Xφ(0) = X0, Xφ(T ) = X. Let wφ = xφ + yφ + zφ, model (12) becomes

x′φ(t) = g1(xφ(t), wφ(t), zφ(t))− φσxφ(t)(wφ(t)− xφ(t)− zφ(t)),
w′φ(t) = g2(xφ(t), wφ(t), zφ(t)),
z′φ(t) = g3(xφ(t), wφ(t), zφ(t)).

(13)

where

g1(x,w, z) = Λ− βx(w − x− z)− dx+ γ(w − x− z) + εz,

g2(x,w, z) = βx(w − x− z)− (d+ α+ δ + γ)(w − x− z), (14)
g3(x,w, z) = δ(w − x− z)− (d+ α+ ε)z.

Let

Π0 =
{

(x,w, z) ∈ X : 0 < x, z <
Λ

d
,

Λ

d+ α
< w <

Λ

d
and x, z < w

}
.

Now we prove that for any (x0, w0, z0) ∈ Π0 and (x1, w1, z1) ∈ Π0, there exist T > 0 and a control
function φ so that (xφ(0), wφ(0), zφ(0)) = (x0, w0, z0) and (xφ(T ), wφ(T ), zφ(T )) = (x1, w1, z1).

In following way we construct the function φ. First, we choose a positive constant T and a differentiable
function wφ : [0, T ]→ ( Λ

d+α ,
Λ
d ), so that wφ(0) = w0, wφ(T ) = w1, w

′
φ(0) = g2(x0, w0, z0) = wd0 , w

′
φ(T ) =

g2(x1, w1, z1) = wdT and

Λ− (d+ α)wφ(t) < w′φ < Λ− dwφ(t) for t ∈ [0, T ]. (15)
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We divide the construction of function wφ into three intervals [0, ε], [ε, T − ε] and [T − ε, T ], where
0 < ε < T

2 . Let η = 1
2 min

{
w0 − Λ

d+α , w1 − Λ
d+α ,

Λ
d − w0,

Λ
d − w1

}
.

When wφ ∈ ( Λ
d+α + η, Λd − η), we have

Λ− (d+ α)wφ(t) < −(d+ α)η < 0 and Λ− dwφ(t) > dη > 0 for t ∈ [0, T ]. (16)

In view of (16) we construct a C2 function wφ : [0, ε]→ ( Λ
d+α + η, Λd − η), so that

wφ(0) = w0, w
′
φ(0) = wd0 , w

′
φ(ε) = 0

and for t ∈ [0, ε] have wφ satisfies (15). Similarly, we construct a C2 function wφ : [T − ε, T ] →
( Λ
d+α + η, Λd − η), so that

wφ(T ) = w1, w
′
φ(T ) = wdT , w

′
φ(T − ε) = 0

and for t ∈ [T − ε, T ] have wφ satisfies (15).
Taking T large enough, we extend the function wφ : [0, ε] ∩ [T − ε, T ] → ( Λ

d+α + η, Λd − η) to a C2

function wφ which defined on the whole interval [0, T ] so that

Λ− (d+ α)wφ(t) < −(d+ α)η < w′φ(t) < dη < Λ− dwφ(t) for t ∈ [ε, T − ε],

Consequently, we get function wφ that satisfies (15) on [0, T ]. Therefore, there exists two C1 functions xφ
and zφ which meet the second and third equations of (13) and we can confirm a continuous function φ
from the first equation of (13). This proof is completed. ut

Lemma 3.6. Assume that Rs0 > 1. For every density g and the semigroup {P (t)}t≥0, we get
lim
t→∞

∫∫∫
Π

P (t)g(x, y, z)dxdydz = 1, where Π is given in (10).

Proof. Let Zt = St + It +Rt . Then model (2) can be replaced by
dSt = g1(St, Zt, Qt)dt− φσSt(Zt − St −Qt)dBt,
dZt = g2(St, Zt, Qt)dt,
dQt = g3(St, Zt, Qt)dt,

(17)

where g1(x,w, z), g2(x,w, z) and g3(x,w, z) are defined in (14). Since (St, Zt, Qt) is a positive solution of
model (2) with probability one, we get

Λ− (d+ α)Zt <
dZt
dt

< Λ− dZt, t ∈ (0,∞), a.s.. (18)

Now we prove that for almost every ω ∈ Ω, there exists t0 = t0(ω) such that

Λ

d+ α
< Zt(ω) < Λ

d
, for t > t0.

According to the position of initival value Z0 we consider three possible cases:
(a) Z0 ∈ ( Λ

d+α ,
Λ
d ). On this occasion, our claim is obvious from (18).

(b) Z0 ∈ (0, Λ
d+α ). Assume that the assertion does not hold. Then there exists Ω′ ⊂ Ω increases with

Prob(Ω′) > 0 such that Zt(ω) ∈ (0, Λ
d+α ), ω ∈ Ω′. It follows from (18) that for any ω ∈ Ω′, Zt(ω) is

increase in the strict sense on [0,∞). Therefore, lim
t→∞

Zt(ω) = Λ
d+α , ω ∈ Ω

′. From the third equality of
(17), we obtain lim

t→∞
St(ω) = lim

t→∞
Qt(ω) = 0, ω ∈ Ω′ , hence, lim

t→∞
It(ω) = Λ

d+α , ω ∈ Ω
′. By Itô’s formula,

we get

d ln It =
(
βSt − (d+ α+ δ + γ)− 1

2σ
2S2

t

)
dt+ σStdBt.
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It yields

ln It − ln I0

t
= 1
t

∫ t

0

(
βSs − (d+ α+ δ + γ)− 1

2σ
2S2

s

)
ds+ 1

t

∫ t

0
σSsdBs.

In view of 1
t

∫ t
0 σ

2S2
sds ≤ σ2 Λ2

d2 < +∞, by the strong law of large numbers for martingales [9], one has
lim
t→∞

1
t

∫ t
0 σSsdBs = 0. a.s. Therefore, we have

lim
t→∞

1
t

∫ t

0

(
βSs − (d+ α+ δ + γ)− 1

2σ
2S2

s

)
ds+ 1

t

∫ t

0
σSsdBs = −(d+ α+ δ + γ).

Since St and It are continuous. This contradicts the hypothesis that lim
t→∞

ln It−ln I0
t = 0 and the assertion

established.
(c) Z0 ∈ (Λd ,+∞). By contradiction and similar parameters to (b), we assume that there exists Ω′ ⊂ Ω

with Prob(Ω′) > 0 so that lim
t→∞

Zt(ω) = Λ
d , ω ∈ Ω

′.

On account of the second and third equalities for (17), we get, for any ω ∈ Ω′,

Zt(ω) = e−(d+α)t
(
Z0 +

∫ t

0
e(d+α)s(Λ+ αSs)ds

)
,

Qt(ω) = e−(d+α+ε+δ)t
(
Q0 + δ

∫ t

0
e(d+α+ε+δ)s(Zs − Ss)ds

)
,

hence, for any ω ∈ Ω′, lim
t→∞

St(ω) = Λ
d , lim

t→∞
It(ω) = lim

t→∞
Qt(ω) = 0,

lim
t→∞

1
t

ln It − ln I0 = lim
t→∞

(1
t

∫ t

0

(
βSs − (d+ α+ δ + γ)− 1

2σ
2S2

s

)
ds+ 1

t

∫ t

0
σSsdBs

)
= β

Λ

d
− (d+ α+ δ + γ)− 1

2σ
2Λ

2

d2

= (d+ α+ δ + γ)(Rs0 − 1)
> 0, a.s. on Ω′.

This contradicts the hypothesis that lim
t→∞

It = 0 a.s. and the proof is completed. ut

Remark 3.7. From Lemmas 3.5 and 3.6, we can get that if there exists a stationary solution u∗ for the
Fokker-Planck equation (4), then supp u∗ = Π.

Lemma 3.8. Assume that Rs0 > 1. The semigroup {P (t)}t≥0 is sweeping or asymptotically stable as for
the compact sets.

Proof. From Lemma 3.4, {P (t)}t≥0 is an integral Markov semigroup respect to a continuous kernel
k(t, x, y, z, x0, y0, z0) for t > 0. Then, there exists a density u(x, y, z, t) which satisfies (4) for distribution
of (St, It, Qt). According to Lemma 3.6, it follows that it is sufficient to study impose restrictions on
the semigroup {P (t)}t≥0 to the space L1(Π). From Lemma 3.5, for every f ∈ D, we have

∫∞
0 P (t)fdt =

0, a.s. on Π.
According to Lemma 2.1 the desired result follows. ut
The semigroup {P (t)}t≥0 is asymptotically stable which is shown by the following lemmas.

Lemma 3.9. Assume that Rs0 > 1 and σ2 < min{A1, A2, A3}, whereλ1 = 2d+α
ε , λ2 = α

δ , λ3 =
2d+α+ 2d+α

ε (2d+α+δ)
β , A1, A2, A3 are defined as before. Then we can get the semigroup {P (t)}t≥0 is

asymptotically stable.
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Proof. By Lemma 3.8, the semigroup {P (t)}t≥0 satisfies the Foguel alternative. In order to rule out
sweeping we should construct a non-negative C2-function V and a closed set O ∈ Σ so that

sup
(S,I,Q)∈X\O

A∗V < 0.

We call this function Khasminskǐi function [28].
When R0 > 1, there exists an endemic equilibrium E∗ of model (1). Then we can get

Λ = βS∗I∗ + dS∗ − γI∗ − εQ∗, βS∗I∗ = (d+ α+ δ + γ)I∗, δI∗ = (d+ α+ ε)Q∗.

Let

V (S, I,Q) = 1
2(S − S∗ + I − I∗ +Q−Q∗)2 + λ1

2 (S − S∗ + I − I∗)2

+λ2

2 (Q−Q∗)2 + λ3(I − I∗ − I∗ ln I

I∗
)

= V1 + λ1V2 + λ2V3 + λ3V4,

where λ1, λ2, λ3 are defined as in Theorem 3.3, V is a nonnegative C2-function. Then

A∗V1 = (S − S∗ + I − I∗ +Q−Q∗)
(
Λ− d(S + I +Q)− α(I +Q)

)
= −d(S − S∗)2 − (d+ α)(I − I∗)2 − (d+ α)(Q−Q∗)2 − (2d+ α)(S − S∗)(I − I∗)
−(2d+ 2α)(I − I∗)(Q−Q∗)− (2d+ α)(S − S∗)(Q−Q∗),

A∗V2 = (S − S∗ + I − I∗)
(
Λ− d(S + I)− αI − δI + εQ

)
= −d(S − S∗)2 − (d+ α+ δ)(I − I∗)2 − (2d+ α+ δ)(S − S∗)(I − I∗)

+ε(I − I∗)(Q−Q∗) + ε(S − S∗)(Q−Q∗),

A∗V3 = 1
2σ

2S2I∗ + β(S − S∗)(I − I∗),

A∗V4 = (Q−Q∗)
(
δI − (d+ α+ ε)Q

)
= −(d+ α+ ε)(Q−Q∗)2 + δ(I − I∗)(Q−Q∗),

Hence, we have

A∗V = A∗V1 + λ1A∗V2 + λ2A∗V3 + λ3A∗V4

= −d(1 + λ1)(S − S∗)2 − (d+ α+ λ1(d+ α+ δ))(I − I∗)2

−
(
d+ α+ λ2(d+ α+ ε)

)
(Q−Q∗)2 + 1

2σ
2I∗λ3S

2

= − 1
2εβ (2εβd+ 2β(2d+ α)d− σ2I∗(2d+ α)(ε+ 2d+ α+ δ))

(S −
2εβd 2d+α+ε

ε

2εβd+ 2β(2d+ α)d− σ2I∗(2d+ α)(ε+ 2d+ α+ δ)S
∗)2

−(d+ α+ 2d+ α

ε
(d+ α+ δ))(I − I∗)2 − (d+ α+ α

ε
(d+ α+ δ))(Q−Q∗)2

+
(d+ d 2d+α

ε (2εβ(d− 1) + σ2I∗(2d+ α)(ε+ 2d+ α+ δ)))
2εβ + 2β(2d+ α)d− σ2I∗(2d+ α)(ε+ 2d+ α+ δ) S∗

2

= −a1(S − b1S
∗)2 − a2(I − I∗)2 − a3(Q−Q∗)2 + a4.
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In view of the conditions, we can get

(d+ d 2d+α
ε (2εβ(d− 1) + σ2I∗(2d+ α)(ε+ 2d+ α+ δ)))

2εβ + 2β(2d+ α)d− σ2I∗(2d+ α)(ε+ 2d+ α+ δ) S∗
2

< min
{ 2εβd2 (2d+α+ε)2

ε2

2εβ + 2β(2d+ α)d− σ2I∗(2d+ α)(ε+ 2d+ α+ δ)S
∗2
, d+ α+ λ1(d+ α+ δ),

d+ α+ λ2(d+ α+ ε)
}
.

It then follows that the ellipsoid −a1(S − b1S
∗)2 − a2(I − I∗)2 − a3(Q − Q∗)2 + a4 = 0. Lies entirely

in X. Therefore there exists a closed set O ∈ Σ which contains this ellipsoid and c > 0 such that
sup

(S,I,Q)∈X\O
A∗V ≤ −c < 0.Using similar arguments to those in [28], the presence of a Khasminskǐi

function means that the semigroup is not sweeping from the set O. The proof is completed. ut

Remark 3.10. It should be noted that the condition of Lemma 3.9 suggests ,if we wanna have a stationary
distribution, that the amplitude of the noise should not be too large .

Therefore, together with Lemmas 3.8 and 3.9, we obtain Theorem 3.3.

4 Numerical Simulations

In this section, we present a numerical example to illustrate the analytical results. In the following, we
assume that Λ = 0.4, δ = 0.005, ε = 0.5, α = 0.01, β = 0.2, d = 0.2, γ = 0.04. It is easy to calculate
R0 = Λβ

d(γ+δ+d+α) ≈ 1.626 > 1. From [5] we obtain that the model (1) has one endemic equilibrium.
By the above parameters, we can obtain the locally stable endemic equilibrium E∗ = (S∗, I∗, Q∗), and
unstable E0. But for the stochastic model(2), there exists a stationary distribution. When S(0) = 0.3, I(0)
= 0.3, Q (0) = 0.4 and noisy intensity σ = 0.1. By calculating, it satisfies the condition of Theorem 3.3.
In other words, there exists a stationary distribution shown in Figure 2. Using the Kolmogorov-Smirnov
test to compare the distributions of the stochastic solution paths of S, I and Q at t = 4000, 4500, 5000
based on 5000 sample paths with S(0) = 0.3, I(0) = 0.3, Q(0) = 0.4 with noisy intensity σ = 0.1. 5000
sample paths of stochastic model were run until tend = 5000.

In Figure 1, we plot the boxplot of the 5000 sample paths of S, I and Q at t = 4000, 4500, 5000,
respectively, and find that the mean, minimum and maximum values at t = 4000, 4500, 5000 are all on
a straight line of S, I and Q, respectively. Further, putting together the probability density functions
at t = 4000, 4500, 5000 of S, I and Q, respectively, we find that the curves almost overlap (see Figure 2
and Figure 3). Therefore, the stochastic model has a unique asymptotic stability stationary distribution.
Use 10-point type for the name(s) of the author(s) and 9-point type for the address(es) and the abstract.
For the main text, please use 10-point type and single-line spacing. We recommend the use of Computer
Modern Roman or Times. Italic type may be used to emphasize words in running text. Bold type and
underlining should be avoided.
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Figure 1. Boxplots of the sample paths for susceptible individuals S, infected individuals I and quarantined
individuals Q when S(0) = 0.3, I(0) = 0.3, Q (0) = 0.4 and noisy intensity σ = 0.1 based on 5000 sample paths at
t = 4000, 4500, 5000.
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Figure 2. Histogram of the probability density function for susceptible individuals S (first line), infected individuals
I (second line) and quarantined individuals Q (third line) when S(0) = 0.3, I(0) = 0.3, Q (0) = 0.4 and noisy
intensity σ = 0.1 based on 5000 sample paths at t = 4000 (left column), t = 4500 (middle column), t = 5000
(right column).
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Figure 3. The probability density function for susceptible individuals S, infected individuals I and quarantined
individuals Q when S(0) = 0.3, I(0) = 0.3, Q (0) = 0.4 and noisy intensity σ = 0.1 based on 5000 sample paths at
t = 4000, 4500, 5000.
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