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Abstract We study the eikonal function φ corresponding to outgoing and ingoing radial null 
geodesics (light rays in the short wave length limit) in the Schwarzschild spacetime. Contrary to the 
behavior of the expansion scalar Θ at the singularities (past and future), φ turns out to be finite at 
r = 0 (except for light travelling along the horizons) and inversely proportional to M , the mass of 
the black hole, and so proportional to the Hawking temperature.
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1 Introduction

In the short wave length limit, electromagnetic radiation (photons) is represented by light rays (geometric
optics) [1] which, in turn, in the context of general relativity, are represented by null geodesics. These,
in particular, are crucial tools for exploring the structure of black holes, both in the neighbourhood
of their horizons or their singularities. On the other hand, the behavior of light rays in the geometric
optics approximation is governed by the eikonal function φ [2], whose gradients ∂µφ give the wave
vectors k̃µ of the light propagation which, in turn, are proportional to the tangent vectors kµ of the
corresponding geodesics. By dimensional reasons, the proportionality constant has units of length, which
for the Schwarzschild metric is the mass of the black hole (1/2 of the Schwarzschild radius). φ satisfies a
wave equation which reminds the ondulatory nature of light; beyond that, it can be quantized, leading to
the photon concept [1].

In the absence of a theory of quantum gravity, any treatment of radiation propagation in black holes
must be semiclassical. In this article, strictly remaining at a classical level, we ask for the behavior of the
eikonal function associated with the simplest null geodesic congruences in the Schwarzschild-Kruskal-
Szekeres [3]-[4] spacetime: namely, the radial ones. The main interest lies in the behavior of φ near the
singularities of the ideal black/white eternal hole (section 5). The past singularity acts as a source of
outgoing light rays which travel towards the left and right future null infinities, while the left and right
past null infinities can be considered sources of incoming light rays ending in the future singularity. In
their paths, the light rays cross the future and the past horizons, giving us information of φ at these
points. For comparison, we review the behavior at the singularities and horizons of the expansion scalars
of the Raychaudhuri equation [5]-[6] obeyed by the above mentioned null geodesic congruences [7] (section
4). The description of the radial null geodesics in Eddington-Finkelstein [8] and Kruskal-Szekeres-Penrose
[9]-[10] coordinates is given respectively in sections 2 and 3, while section 6 is reserved to a final discussion.

Note. We use metrics with signature (+,−,−,−), and the geometrical system of units G = c = 1.

2 Radial Null Geodesics in E-F Coordinates

2.1 Geodesics

The Schwarzschild metric ds2
Schw for radial null geodesics (light rays) is given by

gttdt
2 + grrdr

2 = fdt2 − f−1dr2 = 0 (1)
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where
f = 1− 2M/r. (2)

The angular part of the metric is (gθθ, gϕϕ) = (−r2,−r2sin2θ), while for the inverse metric one has
(gtt, grr, gθθ, gϕϕ) = (f−1,−f,−r−2,−r−2sin−2θ).

In terms of the radial (“tortoise”) coordinate

r̃(r) = r + 2Mln| r2M − 1| (3)

the solution of (1) is
t = ±r̃(r) + const. (4)

r̃ ∈ (−∞,+∞) with r̃ → +∞ for r → +∞ and r̃ → −∞ for r → (2M)+. In the (t, r̃) plane, the upper
(lower) sign represents outgoing (ingoing) light rays, respectively dt

dr̃ = ±1. In these coordinates the light
cones (L.C.’s) are the same (at 45◦/135◦) for all (t, r̃) i.e. they do not bend (Figure (1α)); however, (t, r̃)
are not “good” coordinates since r̃ → −∞ at the horizon 2M . Instead, in coordinates (t, r), L.C.’s bend
as shown in Figure (1β). In terms of the Eddington-Finkelstein (E-F) coordinates

u := t− r̃ (5)

and
v := t+ r̃ (6)

Figure 1. (α): L.C.’s in (t, r̃) coordinates, (β): L.C’s in (t, r) coordinates

(u, v ∈ (−∞,+∞)), dtdr̃ = ±1 respectively correspond to u′s = const.′s, ((a′) rays) and v′s = const.′s,
((a) rays). In Figure (1α) are also indicated the corresponding tangent vectors kµin and kµout (see below for
its definition).

If we define the temporal coordinates t̃ and t̄ through

t̃ := t− 2Mln| r2M − 1|, t̄ := t+ 2Mln| r2M − 1| (7)

we obtain
u = t− r − 2Mln| r2M − 1| = t̃− r (8)
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and
v = t+ r + 2Mln| r2M − 1| = t̄+ r. (9)

In (8), t̃ < ∞ at r = 2M requires t = −∞ (past horizon h−), and in (9), t̄ < ∞ at r = 2M requires
t = +∞ (future horizon h+). The pairs (v, r) and (u, r) together with the angular coordinates (θ, ϕ),
respectively define the E-F advanced and retarded spacetimes EFA and EFR, with metrics

ds2
EFA = fdv2 − 2dvdr − r2dΩ2

2 (10)

and
ds2
EFR = fdu2 + 2dudr − r2dΩ2

2 (11)

with dΩ2
2 = dθ2 + sin2θdϕ2. Since both ds2

EFA and ds2
EFR are regular at r = 2M , they are extensions of

the Schwarzschild metric beyond the horizon. In the EFA case, 0 < r < 2M is the black hole region (II),
while in the EFR case, 0 < r < 2M is the white hole region (II ′). In both cases, r > 2M is called region
(I) or U .

From (10) and (11) radial light rays obey, respectively,

(fdv − 2dr)dv = 0 (12)

and
(fdu+ 2dr)du = 0. (13)

In (12), dv = 0 i.e. v = const., are the ingoing (a) rays in Figure (1α), while the solutions of
fdv − 2dr = 0 are the outgoing light rays (c) in region (I) and the ingoing light rays (b) in region (II),
Figure (2α).

In (13), du = 0 i.e. u = const., are the outgoing (a′) rays in Figure (1α), while the solutions of
fdu+ 2dr = 0 are the ingoing light rays (c′) in region (I) and the outgoing light rays (b′) in region (II ′),
Figure (2β).

So, in the E-F extension of the Schwarzschild metric, there are six radial future directed null geodesic
congruences: three ingoing ((a),(b),(c′)) and three outgoing ((a′),(b′),(c)). In the unified view of the
Kruskal-Szekeres spacetime, the number of independent set of radial null geodesic congruences reduces to
four: (a′) ≡ (c), (c′) ≡ (a), (b), and (b′). (Given an open set U of the spacetime, a congruence of (massless
or massive) geodesics in U is a family or set of curves in U which obey the geodesic equation, and such
that through each point p in U passes one and only one curve from the family.)

2.2 Geodesic Equations

If λ is an affine parameter for a geodesic, the tangent vector to the curve

kµ = ∂xµ

∂λ
, k2 = gµνk

µkν (14)

with k2 = 0 for a null geodesic and [kµ] = [L][λ]−1, obeys the geodesic equation

k ·D(kα) = kµDµ(kα) = kµkα;µ = kµ(kα,µ + Γαµνk
ν)

= kα,µk
µ + Γαµνk

µkν = d

dλ
kα + Γαµνk

µkν = 0
(15)

where Γαµν = Γανµ are the Christoffel symbols associated with the Schwarzschild metric:

Γ ttr = M

r2f
, Γ rtt = M

r2 f, Γ
r
rr = − M

r2f
, Γ rθθ = −rf, Γ rϕϕ = −rfsin2θ, Γ θrθ

= 1
r
, Γ θϕϕ = −sinθcosθ, Γϕrϕ = 1

r
, Γϕθϕ = cotgθ.

(16)

(All other symbols vanish.)
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For the outgoing geodesics (a′), u = const.,

koutµ = ∂µu = (∂tu, ∂ru) = (koutt , koutr ) = (1,−f−1), (17)

while for the ingoing geodesics (a), v = const.,

kinµ = ∂µv = (∂tv, ∂rv) = (kint , kinr ) = (1, f−1), (18)

with
kµout = gµνkoutν = (ktout, krout) = (f−1, 1) (19)

and
kµin = gµνkinν = (ktin, krin) = (f−1,−1). (20)

A straightforward calculation shows that kµout and k
µ
in obey the geodesic equations

d

dr
kµout + Γµνρk

ν
outk

ρ
out = 0 (21)

and
d

d(−r)k
µ
in + Γµνρk

ν
ink

ρ
in = 0. (22)

So, u = const. geodesics have affine parameter λout = r, while v = const. geodesics have affine parameter
λin = −r, with kµout and k

µ
in dimensionless i.e. [kµout] = [kµin] = [L]0.

For the (b), (c), (b′) and (c′) geodesics we use t = t(r) respectively given by r+2Mln(1− r
2M )+ const.,

r + 2Mln( r
2M − 1) + const., −r − 2Mln(1− r

2M ) + const., and −r − 2Mln( r
2M − 1) + const., which can

be derived from (5)-(9), obtaining

kµin|(b) = (−f−1,−1), kµout|(c) = (f−1, 1), kµout|(b′) = (−f−1, 1), kµin|(c′) = (f−1,−1) (23)

and geodesic equations (21) and (22) respectively for outgoing and ingoing rays, with r and −r the
corresponding affine parameters. These results can be summarized in the equations

d

dr
kt ± 2M

fr2 k
tkr = 0 (24)

and
d

dr
kr ± M

r2 (f(kt)2 − f−1(kr)2) = d

dr
kr = 0 (25)

with the upper (lower) sign corresponding to outgoing (ingoing) geodesics, and f(kt)2−f−1(kr)2 = k2 = 0.

3 Kruskal-Szekeres-Penrose Picture

The use of the Kruskal-Szekeres coordinates V and U allows the maximal extension of the Schwarzschild
metric, leading to the appearance of the new region ((I ′) ≡ Ū) with r > 2M and U < 0. (In Figures 3α
and 3β we show the corresponding Penrose diagrams with coordinates τ ∈ [−π/2,+π/2], ρ ∈ [−π,+π],
with V + U = tg( τ+ρ

2 ), V − U = tg( τ−ρ2 ).) In each region, the dependence of U and V with t and r is
given as follows:

Region (I) ≡ U , r > 2M , U > 0:

V (t, r) =
√
r/2M − 1er/4MSh(t/4M), (26)

U(t, r) =
√
r/2M − 1er/4MCh(t/4M). (27)

Region (II) ≡ BH, r < 2M , V > 0:

V (t, r) =
√

1− r/2Mer/4MCh(t/4M), (28)
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Figure 2. Radial null ingoing and outgoing geodesics in BH and U(α) and WH and U(β)

U(t, r) =
√

1− r/2Mer/4MSh(t/4M). (29)

Region (II ′) ≡WH, r < 2M , V < 0:

V (t, r) = −
√

1− r/2Mer/4MCh(t/4M), (30)

U(t, r) = −
√

1− r/2Mer/4MSh(t/4M). (31)

Region (I ′ ≡ Ū), r > 2M , U < 0:

V (t, r) = −
√
r/2M − 1er/4MSh(t/4M), (32)

U(t, r) = −
√
r/2M − 1er/4MCh(t/4M). (33)

All radial null geodesics become straight lines at 45◦/135◦ and, using the dependence t = t(r), one
obtains the picture shown in Figures 3α and 3β:

geodesics (a′): past singularity at r = 0 → right future null infinity J+
R ,

geodesics (a): right past null infinity J−R → future singularity at r = 0,
geodesics (b′): past singularity at r = 0 → left future null infinity J+

L ,
geodesics (b): left past null infinity J−L → future singularity at r = 0,
geodesics (c) ≡ geodesics (a′) beyond r = 2M ,
geodesics (c′) ≡ geodesics (a) up to r = 2M .

4 Raychaudhuri Equations and Expansion Coefficients

As is well known, any congruence of affine parametrized null geodesics in a spacetime obey the Raychaudhuri
equation

dΘ

dλ
= −1

2Θ
2 + ωµνω

µν − σµνσµν −Rµνkµkν (34)

where:
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Figure 3. Penrose diagrams of radial null geodesics in SKS spacetime. (α): (a): ingoing, (a′): outgoing; (β): (b):
ingoing, (b′): outgoing

i) Θ, the expansion scalar, given by the covariant divergence of the tangent vectors to the geodesics,

Θ = kµ;µ , (35)

measures the fractional rate of change of the cross sectional area to the geodesics (i.e. how much the
congruence diverges or converges if initially Θ > 0 or Θ < 0);

ii) ωµν = −ωνµ is the rotation tensor;
iii) σµν = σνµ is the shear tensor;
and
iv) Rµν is the Ricci tensor.
(ωµν and σµν obey Raychaudhuri equations similar to (34).)
For a vacuum solution Rµν = 0; also, for the Schwarzschild case, ωµν = σµν = 0. So, the resulting

Raychaudhuri equation is
dΘ

dλ
= −1

2Θ
2. (36)

Using (17), (18), (23) and (16), a straightforward calculation leads to:

Θ
(a)
in = Θ

(b)
in = −2

r
∈ (−∞, 0), (37)

→ −∞, r → 0+ (future singularity), (38)

→ 0−, r → +∞ (right J−R and left J−L past null infinities), (39)

dΘ
(x)
in

d(−r) = −1
2(Θ(x)

in )2, x = a, b; (40)

Θ
(a′)
out = Θ

(b′)
out = +2

r
∈ (0,+∞), (41)

→ +∞, r → 0+ (past singularity), (42)

→ 0+, r → +∞ (right J+
R and left J+

L future null infinities), (43)

dΘ
(y)
out

dr
= −1

2(Θ(y)
out)2, y = a′, b′. (44)

At the horizons r = 2M ,
Θ

(x)
in = − 1

M
, Θ

(y)
out = + 1

M
. (45)
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(37) and (38) say that each point of the future singularity is a caustic of the (a) and (b) congruences.
Obviously, the Raychaudhuri equation looses its validity at these points and at the past singularity.
Classically, however, this fact is harmless since both r = 0 future and past singularities do not belong to
the spacetime. Instead, as will be shown in the next section, the eikonal functions are well behaved in the
neighbourhood of these points.

5 Eikonal Equations

In the geometric optics approximation i.e. in the short wave length l limit (l << M), light rays are
represented by null geodesics whose tangent vectors kµ are proportional to the wave number vectors k̃µ
given by the gradient of the eikonal function φ(t, r):

k̃µ = ∂φ

∂xµ
, (46)

with [φ] = [L]0. So, k̃µ is normal to the surfaces φ = const. Since [k̃µ] = [L]−1 and [kµ] = [L]0, by
dimensional reasons the relation between both vectors is

kµ = Mk̃µ (47)

since M is the unique length scale of the problem. For the contravariant components one has

kt = gttMk̃t = Mf−1∂tφ, k
r = grrMk̃r = −Mf∂rφ, (48)

and (24) and (25) become
−2M
r2f

φ̇+ φ̇′ ∓ 2M2

r2 φ̇φ′ = 0 (49)

and
−2M
r2 φ′ − fφ

′′
= 0 (50)

where again the upper (lower) sign refers to outgoing (ingoing) rays, φ̇ = ∂φ
∂t , φ

′ = ∂φ
∂r , φ̇

′ = ∂2φ
∂r∂t , and

φ
′′ = ∂2φ

∂r2 . Equations (49) and (50) are the eikonal equations for φ = φout (upper sign) and φ = φin (lower
sign).

It can be easily shown that for the (a′), (a), (b), and (b′) geodesics, the eikonal functions which
reproduce the tangent vectors given by (19), (20), and kµout|(b′) and kµin|(b) in (23), and obey the equations
(49) and (50), are respectively given by

φ
(a′)
out (t, r) = t

M
− r

M
− 2 ln| r2M − 1| = u(t, r)

M
, (51)

φ
(a)
in (t, r) = t

M
+ r

M
+ 2 ln| r2M − 1| = v(t, r)

M
, (52)

φ
(b′)
out(t, r) = − t

M
− r

M
− 2 ln| r2M − 1|, (53)

and
φ

(b)
in (t, r) = − t

M
+ r

M
+ 2 ln| r2M − 1|. (54)

The values that these eikonal functions take at the past and future: singularities, horizons, and null
infinities, are given in the following tables:

For all geodesic congruences, the t values can be read from the Penrose (or Kruskal) diagram as the
t-line passing through the intersection of the light ray in question with the past or future singularity.
Except for light travelling along the future (H+) or past (H−) horizons, where t = ±∞, the corresponding
eikonal is finite at the singularities. Also, the fact that φ(a′),(b′)

out (t, 0+), φ(a),(b)
in (t, 0+) ∼ 1

M , suggests that
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Table 1. Eikonal values at null infinities, horizons and singularities of the (a) and (a′) geodesic congruences

J−R J+
R H+ H− r = 0|− r = 0|+

φ
(a′)
out −∞ +∞ t/M

φ
(a′)
in +∞ −∞ t/M

Table 2. Eikonal values at null infinities, horizons and singularities of the (b) and (b′) geodesic congruences

J−L J+
L H+ H− r = 0|− r = 0|+

φ
(b′)
out −∞ +∞ −t/M
φ

(b′)
in +∞ −∞ −t/M

these quantities are proportional to the Hawking temperature 1
8πM . In fact, through the formal association

of the mechanical action
S = h̄Mφ (55)

and reinserting units, one obtains

S
(a′)
out (t, 0+) = S

(a)
in (t, 0+) = 8πkBTHt, S(b′)

out (t, 0+) = S
(b)
in (t, 0+) = −8πkBTHt (56)

with kB the Boltzmann constant and TH = h̄c3

8πkBGM
the Hawking temperature.

6 Discussion

We study the eikonal function φ associated with the short wave lenght limit (l << M) of radial light rays
propagating in the ideal eternal Schwarzschild-Kruskal-Szekeres-Penrose black/white hole. (Applications
of the eikonal concept in general relativity and the equivalent geometric optics approximation in black
holes, are reviewed in references [11] and [12].) These rays are represented by null geodesics and there are
two sources of them: the past singularity r = 0|−, where the outgoing geodesic congruences end in the
right and left future null infinities J+

R and J+
L , and the left and right past null infinities J−L and J−R , where

the ingoing geodesics end in the future singularity r = 0|+. φ turns out to be finite in the neighbourhood
of the singularities, proportional to 1/M , the inverse mass of the hole. Instead, φ diverges at the horizons
r = 2M . In contradistinction, and for comparison, the expansion scalar Θ of the Raychaudhuri equation
obeyed by the congruences has the opposite behavior: it is finite at the horizons and proportional to 1/M
but diverges at the singularities: θin → −∞ at r = 0|+ and Θout → +∞ at r = 0|−. Though the whole
discussion is classical, it is nevertheless of interest to study the behavior of quantities like the eikonal
(related to the wave propagation of light and its quantization) and the expansion (related to the attractive
nature of gravity) in the interior of the black holes. It is clear that a full understanding of what happens
at the singularities has to wait for a theory of quantum gravity.
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