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Abstract Through a Möbius transformation, we study aspects like topology, ligth cones, horizons,
curvature singularity, lines of constant Schwarzschild coordinates r and t, null geodesics, and
transformed metric, of the spacetime (SKS/2)′ that results from: i) the antipode identification in
the Schwarzschild-Kruskal-Szekeres (SKS) spacetime, and ii) the suppression of the consequent
conical singularity. In particular, one obtains a non simply-connected topology: (SKS/2)′ ∼= R2∗×S2

and, as expected, bending light cones.
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1 Introduction

In 1965, Rindler suggested the possibility of the antipode identification of coordinates (V,U) ≡ (−V,−U)
in the maximal analytic extension of the Schwarzschild metric, the Schwarzschild-Kruskal-Szekeres (SKS)
spacetime. Later, Sanchez and Whiting (1987) and more recently ’t Hooft (2018) used it (or a variation
of it) for the study of quantum field theory in black holes. The identification allows to obtain SKS/2,
closer than SKS to the physical spacetime associated with the total collapse of a spherically symmetric
star: both the mirror image of “our” asymptotically flat region, and the white hole region together with
its associated past singularity sp, dissappear. The conical singularity appearing as a consequence of
this identification must be excluded from the spacetime, leading to the space (SKS/2)′. Inserting its
(V,U) part in the upper part of a complex half plane, a Möbius-type complex transformation φ exhibits
(SKS/2)′ with the topology (S2

1 \ ({N,S} ∪ φ(sf ) ∪ int(φ(sf ))))× S2 ∼= R2∗ × S2, where N and S are
the north and south poles of the unit 2-sphere S2

1 and sf is the future singularity. Precisely due to the
suppression of the conical singularity, its boundary, image of the past horizon -which dissappears in
a physical collapse- can not be associated to a closed causal (null) curve. Also, the same suppression
produces a non simply-connected space, since π1((SKS/2)′) ∼= Z.

2 Antipode Identification

The maximal analytic extension of the Schwarzschild metric (with coordinates (t, r, θ, ϕ), t ∈ (−∞,+∞),
r > 0, θ ∈ (0, π), ϕ ∈ [0, 2π)), is that of Kruskal-Szekeres (1960) with coordinates (V,U, θ, ϕ) (V ∈
(−∞,+∞): temporal, U ∈ (−∞,+∞): spatial, θ, ϕ as in Schwarzschild, angular coordinates). The V/U
part is given by the following diagram:

In Fig. 1: U : “our” universe; Ū : anti-universe; B: black hole;W : white hole; dashed red lines: future and
past singularities sf and sp, respectively given by the hyperboles V = ±

√
1 + U2, which are asymptotic

to the future and past horizons h+, h−; h+, h− and sf , sp consist of points where r = 2M and r = 0
respectively; the remaining hyperbole filling the V/U plane correspond to fixed values of r, and the lines
through the origin correspond to fixed values of t; each point has associated with it a 2-sphere S2 = S2

r

of radius r, S2(r, θ, ϕ); the light cones are at ±45◦ everywhere: particle trajectories in their interior are
timelike and on their boundaries are null (light rays) ; sf , sp and the shaded regions do not belong to the
SKS spacetime, which turns out to be non compact, 1-connected, globally hyperbolic (it has a global
Cauchy surface) and geodesically incomplete; M is the gravitating mass; since V,U ∈ (−∞,+∞), then,
topologically,

SKS ∼= R2 × S2. (1)
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Figure 1. SKS solution

It can be shown that the “lines” h± (together with the corresponding S2
2M = S2(r = 2M, θ, ϕ)) are null

hypersurfaces; for the homotopy groups,

πk(SKS) ∼= πk(R2 × S2) ∼= πk(S2) (2)

(0 for k=1, Z for k=2,3, Z2 for k=4, etc.); U and Ū are asymptotically flat at r → +∞ (Minkowski
spacetime).

The SKS metric is

ds2 = 32M3

r
er/2M (dV 2 − dU2)− r2(dθ2 + sin2θdϕ2), (3)

where the relations between the (r, t) and (V,U) is given by

(1− r

2M )er/2M = V 2 − U2 (4)

which gives r = r(V,U) through the Lambert W function defined via µeµ = ν ⇒ µ = W (ν) (Corless et
al., 1996), and

t

4M = Th−1((V
U

)sg(r/2M−1)×1), r 6= 2M, (5)

with t = ±∞ at the horizons V = ±U .
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ds2 has the symmetry PT with P the spatial inversion U → −U and T the time inversion V → −V ,
so that PT : (V,U) → (−V,−U). Since (PT )2 = Id, the associated symmetry group is (Id, PT ) ∼= Z2.
This permits the antipode (through the origin (V,U) = (0, 0)) identification (−V,−U) ≡ (V,U) and
allows to remain with only the “half” spacetime in the Fig. 1, which we call SKS/2. This is illustrated in
Fig. 2.

~

~

Figure 2. SKS/2

If S2(r, θ, ϕ) were identified with S2(r, π − θ, ϕ+ π), then at each r one should have the projective
space S2/Z2 ∼= R3/R∗ = RP 2 which would destroy spatial orientability. Requiring this condition, we
restrict the antipode identification only to the V,U coordinates.
Ū andW dissapear, remaining U , B, sf h+ and h−. Along h−, points denoted by ∼ are identified. The

possibility of this identification was suggested by Rindler (Rindler, 1965), and also previously mentioned
by Szekeres (Szekeres, 1960). The diagram in Fig. 2 is more related than that in Fig. 1 to the diagram
corresponding to the final collapse of a spherical symmetric star and the formation of a real black hole,
where Ū , W , sp and h− do not exist. (This is the reason why the diagram in Fig. 1 is said to represent an
ideal eternal black hole.)

SKS/2 = SKS
Z2

turns out to be a manifold with boundary

∂(SKS/2) = h− ∼= [0,+∞)× S2
2M = Cy3, (6)

an infinite 3-dimensional hypercylinder, and a conical singularity at (V,U) = (0, 0). For its topology one
has

SKS/2 ∼= (R2 × S2) ∪ Cy3. (7)

The conical singularity must be taken off from the spacetime, resulting

(SKS/2)′ ∼= (R2 × S2) ∪ (Cy3)∗ (8)

with h′− ∼= h′+
∼= (Cy3)∗ = R∗ × S2

2M . (See Fig. 3.)
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Figure 3. (SKS/2)′

The dropping of the conical singularity seems to be done by hand; however, it is done to mantain
differentiability at all points of the spacetime.

3 Möbius Transformation

We can ask ourselves for another picture of the topology of (SKS/2)′. With this aim, we consider the
half plane “above” h′− as the complex half-plane

C/2 = {z = x+ iy, x ∈ R, x 6= 0, y ∈ (0,+∞)} (9)

with the x-axis identified with h′− (z = x+ i0) (later we make the identification x ∼ −x), and the half
y-axis identified with h′+ (z = iy), and consider its image into the complex plane

C = {w = ξ + iη, ξ, η ∈ R} (10)

through the Möbius-type mapping

φ : (SKS/2)′ → C, z 7→ φ(z) = w := z − i
z + i

= x+ i(y − 1)
x+ i(y + 1) = ξ(x, y) + iη(x, y), (11)

and S2
r 7→ S2

r , with

ξ(x, y) = x2 + y2 − 1
x2 + (y + 1)2 , η(x, y) = − 2x

x2 + (y + 1)2 . (12)

The relation between the (V,U) coordinates and the (y, x) coordinates is

V = y − x
2 , U = y + x

2 . (13)

(The previous φ is a particular case of z 7→ φ(z) = eiγ( z−z0
z−z̄0

), γ ∈ R, Im(z0) > 0 (Churchill 1984), with
γ = 0 and z0 = i. φ maps the half plane Imz = y > 0 onto the disk |w| < 1, and the boundary of that
half plane (h′−) onto the boundary of that disk.)

The inverse of φ is given by

z = z(w) = φ−1(w) = −iw + 1
w − 1 = x(ξ, η) + iy(ξ, η), (14)
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with
x(ξ, η) = − 2η

(ξ − 1)2 + η2 , y(ξ, η) = − (ξ2 − 1) + η2

(ξ − 1)2 + η2 . (15)

The Cauchy-Riemann (C −R) equations for φ and φ−1 are
∂ξ

∂x
= ∂η

∂y
,
∂ξ

∂y
= −∂η

∂x
(16)

and
∂y

∂η
= ∂x

∂ξ
,
∂y

∂ξ
= −∂x

∂η
, (17)

respectively. The differentiability of φ and φ−1 guarantees that the coordinate transformation (x, y)→ (η, ξ)
is a genuine transformation in the context of general relativity.

φ is analytic:
φ′(z) = dw

dz
= 2i

(z + i)2 (18)

and 1-1. Then, (SKS/2)′ is onto its image and therefore homeomorphic and diffeomorphic to it, which
turns out to be

φ((SKS/2)′) = S2 × (S2
1 \ ({N,S} ∪A)), A = φ(sf ) ∪ int(φ(sf )), (19)

where S2
1 is the unit 2-sphere, the identification ∼ is done, S = φ(0) = (ξ = −1, iη = 0), and N = (ξ =

1, iη = 0) = lim φ(x+ i0) as x→ ±∞. (See Fig. 4.) In turn, one has the homeomorphism

φ((SKS/2)′) ∼= R2∗ × S2 (20)

since S2
1\({S}∪A) ∼= R2\{S} ∼= R2∗, with fundamental group π1(R2∗×S2) ∼= π1(R2∗) ∼= Z. Homotopically,

then,
(SKS/2)′ ∼= φ((SKS/2)′) ' S1 × S2. (21)

Since φ is analytic and φ′(z) 6= 0, φ is also conformal, and so preserves the angles between tangents to
intersecting curves. In particular this will be applied to the transformation of the light cones in (SKS/2)′.

The arrows in the image of h′−,

φ(h′−) = ∂(φ((SKS/2)′)) = (S
1
1 \ {N,S}
∼

)× S2
2M , (22)

corresponds to the path from x = −∞ to x = +∞ (x 6= 0) along h′−, and that in the image of h′+
corresponds to the path from y = 0+ to y = +∞ along h′+. The image of sf is given by the red dashed
curve, obtained from φ(z) with y = − 1

x , x ∈ (−∞, 0); for the point Q one has Q = 0.2 + i0.4. The fact
that S /∈ φ(h′+) implies that there is no (though infinite) closed causal (null) curve (h′− in Fig. 3 or φ(h′−)
in Fig. 4). Anyway, h′− dissappears in a physical collapse.

4 r and t Constant Lines

4.1 r Lines
i) B region:

For 0 < r < 2M , r = 2αM with α ∈ (0, 1). From (4), V 2 − U2 = (1 − α)eα and using (13),
y = − (1−α)eα

x , which replaced in (12) gives

wB(x;α) = (x4 + (1− α)2e2α − x2) + i(−2x3)
x4 + (1− α)2e2α − 2x(1− α)eα + x2 , x ∈ (−∞, 0). (23)

ii) U region:
For 2M < r, r = 2βM with β ∈ (1,+∞). From (4), y = (β−1)eβ

x , which replaced in (12) gives

wU (x;β) = (x4 + (1− β)2e2β − x2) + i(−2x3)
x4 + (1− β)2e2β − 2x(1− β)eβ + x2 , x ∈ (0,+∞). (24)

For β → +∞, y → +∞, wU (x; +∞) = 1 + i0 = N . In Fig. 4 we plot some of these r = const. lines.
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Figure 4. Image of (SKS/2)′ under φ; p′ → q′: null radial geodesic; M = 1

4.2 t Lines

From (5), (13), and (15) we obtain

Th( t

4M ) = ξ2 − 1 + η2 ∓ 2η
ξ2 − 1 + η2 ± 2η (25)

with upper and lower signs respectively corresponding to the r > 2M (U) and r < 2M (B) regions. If we
call

τ := Th( t

4M ) ∈ (−1,+1), (26)

it is easy to obtain ηX(ξ; τ) for X = U and X = B:

ηU (ξ; τ) = (1 + τ

1− τ )−
√

(1 + τ

1− τ )2 + (1− ξ)2, ηB(ξ; τ) = −(1 + τ

1− τ ) +
√

(1 + τ

1− τ )2 + (1− ξ)2. (27)

At the horizons φ(h′−) and φ(h′+), t = −∞ and t = +∞ respectively. For t = 0 we have ηU (ξ; 0) =
1−

√
2− ξ2, ηB(ξ; 0) = −1 +

√
2− ξ2. These lines are plotted in Fig. 4.
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5 Transformed Metric and Light Cones

In the (ξ, η)-plane (remember that topologically C ∼= R2), the metric (3) becomes that of φ((SKS/2)′),
and is given by

ds2 = −32M3

r
er/2M ((∂x

∂ξ
)(∂x
∂η

)(dη2 − dξ2)− (∂x
∂η

2
− ∂x

∂ξ

2
)dηdξ)− r2(dθ2 − sin2θdϕ2) (28)

where the C −R equations (16) and (17) were used, and

∂x

∂ξ
= 4(ξ − 1)η

((ξ − 1)2 + η2)2 ,
∂x

∂η
= −2 (ξ − 1)2 − η2

((ξ − 1)2 + η2)2 . (29)

r = r(ξ, η) through the Lambert W function and (13) and (15). (28) tells us that in the (ξ, η) coordinates
the light cones bend.

Given that φ(z) is analytic and, by (18), φ′(z) 6= 0, φ is conformal and therefore preserves angles
between intersecting curves. Given two such curves in the (V,U) plane (e.g. the lines corresponding to
the boundary of the light cones), then their common rotation angle in the (ξ, η) plane is given by the
argument of φ′(z) = |φ′(z)|eiδφ′(z) :

δφ′(z) = tg−1(x
2 + (y + 1)2

2x(y + 1) ) = tg−1(1
2(1− ξ

η
− (1− ξ

η
)−1)). (30)

Some of these bended light cones are shown in Fig. 4.

6 Null Geodesics

We analize here the image by φ of a typical radial null geodesic p → q in Fig. 1. In SKS, p → q is
described by the equation V = −U + 2 with (V (p), U(p)) = (0, 2). It “dies” at sf at the point q where
−U + 2 = +

√
1 + U2 which implies U = 3/4 and V = 5/4; so (V (q), U(q)) = (5/4, 3/4). From (12) and

(13),

ξ(V,U) = 2(V 2 + U2)− 1
2(V 2 + U2 + V + U) + 1 , η(V,U) = 2(V − U)

2(V 2 + U2 + V + U) + 1; (31)

so the image of p→ q in the (ξ, η) plane is

ξ(U,−U + 2) = 4(U2 − 2U)− 7
4(U2 − 2U) + 13 , η(U,−U + 2) = − 4(U − 1)

4(U2 − 2U) + 13 . (32)

In particular, for p′ = φ(p), and q′ = φ(q), we obtain

(ξ(p′), η(p′)) = (7/13,−4/13) ' (0.54,−0.31), (ξ(q′), η(q′)) = (13/37, 4/37) ' (0.35, 0.11). (33)

It is then easily verified that q′ ∈ φ(sf ) i.e. φ(p→ q) = p′ → q′ dies at φ(sf ), as it must be. (See Fig. 4.)
A similar analysis can be done with any other null geodesic in the image φ((SKS/2)′).

7 Conclusion

The antipodal identification (V,U) ≡ (−V,−U) in the Schwarzschild-Kruskal-Szekeres (SKS) metric can
be done without the introduction of additional singularities, since the requirement of differentiability
makes it necessary to eliminate from the spacetime the emerging conical singularity. At the same time,
this suppression guarantees the non existence of closed (though infinite) causal (null) curves. The Möbius
transformation makes easier to study the topology of the resulting spacetime (SKS/2)′ which, as expected,
and in contradistinction with SKS, becomes non simply connected: φ((SKS/2)′) ∼= R2∗ × S2 ' S1 × S2,
where ' denotes homotopy type. The picture, however, of light cones, r and t constant lines, metric, and
null geodesics, becomes much more involved than before the transformation.
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