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Abstract We argue that a great circle in the 7-sphere plays the role of an Einstein-Rosen bridge
in Einstein-Podolsky-Rosen-Bohm decays.
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1 Introduction

In recent years, it has been pointed out [1] that even in simple quantum mechanical entangled systems
like Einstein-Podolsky-Rosen-Bohm (EPRB) [2,3] decaying processes producing pairs of spin 1

2 particles
or photons, an Einstein-Rosen bridge or wormhole between the decay products exists. However, except
for qualitative arguments in favour of this idea, no explicite example for this fact exists in the literature.

In this note, for the case of an entangled pair of i) two spin 1
2 massive particles flying (non relativistically)

appart from each other, product of the decay of an initial particle in a singlet spin state, and ii) two
photons e.g. in positronium decay e+e− → γγ (odd parity) [4] or in radiative cascade of calcium
J = 0 → J = 1 → J = 0 (even parity) [5], we show that the geometrical object which plays the role
of a bridge between the decaying particles is a great circle of the unit 7-sphere (S7), geodesic [6] of the
Fubini-Study metric [7] in the 3-dimensional complex projective space (CP 3). In contradistinction with
the spacetime bridges usually associated with the description of classical black holes, this great circle, the
orbit of the decay products, does not live in ordinary space or spacetime, but in the Hermitian complex
space C4 ∼= C2 ⊗ C2, which is the “abstract” Hilbert space of the quantum system.

2 Non Relativistic EPRB Decay

The initial normalized state of two massive spin 1
2 particles with magnetic moment µ flying apart from

each other in the y-direction, decay products of an initial particle with total zero spin, is the entangled
pure state
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where we have chosen to make the spin measurements in the z-direction with two Stern-Gerlach (S.G.)
apparata with exterior magnetic field Bz = B0 +αz, α = const. > 0. (See Fig. 1, where x, y, z are ordinary
space coordinates, and t is the time interval that each of the particles spends in the corresponding S.G.)
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Figure 1. Stern-Gerlach apparata

The total Hilbert space of the system is H = C2 ⊗ C2 ∼= C4 = {(z1, z2, z3, z4), zk ∈ C, k = 1, 2, 3, 4}
and clearly |ψ(t = 0) >∈ S7 ⊂ H. After time t the state vector becomes [3]
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with κ = µα
~ and −2z = z2 − z1 since z2 = −z1 = −z where z1 and z2 are the vertical deviation

of the particles in the measurement process. When t varies, so do z1 and z2, and therefore z. These
changes reflect themselves in (0, z2, z3, 0) = 1√

2 (0, e−2iκtz,−e2iκtz, 0) = 1√
2 (0, e−2iκtz1 ,−e−2iκtz2 , 0) which

moves along a great circle S1 in S7. It can be shown that if < v > is the average vertical (z direction)
velocity of the decaying particles, the period for running through the circle is ∆t =

√
π

κ<v> . In fact,
ei2κ(t+∆t)(z+∆z) = ei2κtz, with ∆z =< v > ∆t implies ∆t(< v > t+ z+ < v > ∆t) = π

κ which leads to
the above ∆t using the initial condition (t, z) = (0, 0). So S1 ⊂ S7 plays the role of a bridge or “wormhole”
between the two non interacting (and therefore not violating causality [8]) correlated (entangled) particles
1 and 2.

Since |ψ(t, z) > is equivalent to |ψ(t, z) >′= eiϕ|ψ(t, z) >≡ |ψ(t, z;ϕ) > with ϕ ∈ [0, 2π), the “real”
quantum state of the particles is represented by the great circle in S7

{|ψ(t, z;ϕ) >}ϕ∈[0,2π) ∼=





0
ei(ϕ−2κtz)
√

2
−e

i(ϕ+2κtz)
√

2
0




ϕ∈[0,2π)
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which is nothing but a point in CP 3, base space of the U(1)-bundle

U(1)→ S7 → CP 3. (4)

CP 3 is the space of complex lines through the origin in C4; each complex line intersects S7 in a unit
great circle (3) which is a geodesic [6] of the Fubini-Study metric [7] of CP 3 which, in terms of the affine
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coordinates Zi{n}, i = 1, 2, 3, n = 1, 2, 3, 4 in CP 3 is given by

gCP 3{n} = gCP 3
†
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It is easy to verify that any of the states in Ψ(t, z) is entangled i.e. it has associated with it a non
vanishing entanglement entropy (E.E.). In fact, the density operator of the pure state |ψ(t, z;ϕ) > is

ρ = |ψ(t, z;ϕ) > ⊗ < ψ(t, z;ϕ)|

= 1
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(7)

with reduced density operators

ρred.1 = tr2ρ =<↑2 |ρ| ↑2> + <↓2 |ρ| ↓2>,

ρred.2 = tr1ρ =<↑1 |ρ| ↑1> + <↓1 |ρ| ↓1>,
(8)

which in matrix form are
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2
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Therefore, the entanglement entropy of Ψ(t, z) is

E.E.(Ψ(t, z)) = S(ρred.1 ) = S(ρred.2 ) = 2× (−1
2 ln

1
2) = ln2 > 0. (10)

3 γγ Decays

The previous analysis repeats almost unmodified for two photon decays in the cases:
i) negative parity, e.g. e+e− → γγ, with
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and
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ii) positive parity, e.g. J = 0→ J = 1→ J = 0,

ψ + (t = 0) = 1√
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In both cases,
E.E.(ψ−) = E.E.(ψ+) = ln2. (13)

Again, the bridge between the escaping photons is a great circle in S7 with U(1) → S7 → CP 3 the
relevant U(1)-bundle.

4 Conclusions

We show that the unique candidate for playing the role of an Einstein-Rosen bridge in Einstein-Podolsky-
Rosen-Bohm two particle decays, is a great unit circle S1 in the 7-sphere. Though this S1 does not live in
ordinary spacetime but lies in the complex Hilbert space of the system (S1 ⊂ S7 ⊂ C2 × C2 ∼= C4 ≡ H),
it has an explicite relation with the spacetime variables {t, z} of the measuring S.G. apparata. The
period for running around the circle is ∆t =

√
π

κ<v> ' 5 × 10−4s, for α ' 1Gaussm , < v >' 1ms , and
µ ' 10−20 erg

Gauss ; in this sense, if ∆t > t, S1 is a traversable bridge, in contradistinction with the usual
wormholes in the spacetime of black holes in general relativity [9].
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