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Abstract Within thermodynamic models of gravity, where the universe is considered as a finite
ensemble of quantum particles, cosmological constant in the Einstein equations appears as a constant
of integration. Then it can be bounded using Karolyhazy uncertainty relation applied for horizon
distances, as the amount of information in principle accessible to an external observer.
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The cosmological constant problem (that its theoretical and observed values differ by many orders of
magnitudes) is one of the biggest challenges in theoretical physics [1,2]. There have been several proposals
to solve this discrepancy, like considering cosmological constant as a Lagrange multiplier, as a constant of
integration, as a stochastic variable, anthropic interpretation, probabilistic interpretation and so on [2].
The effect of the cosmological constant can be also obtained through extended theories of gravity (see [3]
and the references therein). In this article we will concentrate on thermodynamic models of gravity [4–13],
where the cosmological constant arises in the Einstein’s equations as a constant of integration.

Black hole thermodynamics, the Unruh effect and some other evidences suggest that the gravitation
has a fundamental connection to thermodynamics (see the reviews [11–13]). Within the thermodynamic
model spacetime geometry emerges from the properties of the finite unified ensemble of quantum objects
(particles - spacetime atoms). In this approach, the Einstein equations can be derived by combining
general thermodynamic considerations with the equivalence principle and is written as a single scalar
relation [11–14], (

Rµν −
1
2gµνR

)
uµuν = L2

pTµνu
µuν , (1)

where Lp is the reduced Planck length and uν is the 4-velocity. This equation naturally can be interpreted
as the balance of gravitational and matter heat densities, in the spirit of the first law of thermodynamics.
Indeed, the right hand side of (1) can be regarded as the matter heat density, what is obvious, for example,
for the case of ideal fluid using Gibbs-Duhem relation,

Tµνu
µuν → ρ+ P = TS , (2)

where T is the temperature and S is the entropy density of the fluid.
The scalar equation (1) involves additional vector field uν , but contains all information content of the

ordinary tensorial Einstein equations, because it is demanded that it hold for all uν . In addition, if one
assumes that uν is an orthogonal to the observers horizon 4-velocity of light (null vector field) [11–13],

gµνu
µuν = 0 , (3)

in the obtained from (1) tensorial Einstein equations,

Rµν −
1
2gµνR = L2

p (Tµν + gµνΛ) , (4)

the cosmological constant, Λ, arises as an integration constant, as in unimodular theories of gravity
[15]. Unlike the thermodynamic approach, the unimodular models assume the constancy of the metric
determinant in the variational problem without reasonable physical motivation.
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If Λ in (4) is an integration constant, then it is not connected with the large constant vacuum energy
terms in matter Lagrangians and needs to be fixed by an extra physical principle. For example, it can be
identified with the amount of information accessible to an eternal observer at the horizon.

From quantum mechanics we know that information is a physical entity and must be inserted into
the energy balance relations [16,17]. At the same time, an information content of an isolated classical
physical system usually is neglected. However, the entropy associated with observers could be important
to describe properties of the entire universe [10]. So to find the numerical value of Λ we suggest to use
the Károlyházy uncertainty relation [18], which bounds the ultimate precision of Minkowskian time
measurement,

δt ≈ L2/3
p t1/3 . (5)

Due to this uncertainty relation, in the Minkowski space-time there exists a minimal cell, δt3, whose
energy cannot be smaller than

E ∼ 1
t
. (6)

Then the energy density of the metric fluctuations of the Minkowski space-time is

E

δt3
∼ 1
L2
pt

2 . (7)

On the other hand, the vacuum energy density, ρ, of an effective quantum field in a finite region
with the length scale x cannot be arbitrary large, otherwise the region will collapse to a black hole. This
implies that [19]

ρx3 ≤ x

L2
p

, (8)

which leads to

ρ ∼ 1
L2
px

2 . (9)

From the two estimations, (7) and (9), it follows that an observer at the horizon of a spatial region of
the radius, x = t, obtains some constant value of the internal vacuum energy density,

ρmin ≡ Λ = const , (10)

which can be understood as a measure of the quantum information deficit on the holographic screen
around this region. For the case of the whole universe,

t ∼ x ∼ 1
H

(11)

where H is the present value of the Hubble constant, from the two estimations, (7) and (9), it follows
that the minimal energy density in the universe (10), what can measure an external observer, is

Λ ∼ H2

L2
p

. (12)

This value coincides with the observed estimations for the dark energy [20, 21] and can be used to bound
the integration constant Λ in the Einstein equations (4).

To conclude, in this small note we suggest identification of the cosmological constant (which within
the thermodynamic model of gravity appears as a constant of integration) with the amount of information
accessible to an external observer. Then its value can be obtained using the Károlyházy uncertainty
relation applied to the universe, which gives the observed value of the dark energy.
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