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Abstract In quantum theory particles are represented as wave packets. Shock wave analysis of
quantum equations of motion shows that wave function representation in general and wave packet
description in particular contain discontinuities due to a non-zero quantum force corresponding
to quantum potential. The quantum force causes wave packet dispersion which results in the
intersection of characteristic curves developing a shock discontinuity. Since quantum force vanishes
for localized quantum density waves [1], it is thus established that localized quantum density waves
form the only class of continuous wave representation of particles in quantum theory.

1 Introduction

Wave-particle duality is a central aspect of quantum processes. It is well known that the Schrédinger
equation describes such a duality in the form of wave packets solutions, particularly with the Gaussian
wave packets [2-5]. Wave packet solutions of the Schrédinger equation possess the properly that even in
the absence of an external potential they exhibit dispersion. Such a dispersion occurs at very short time
scales, and is responsible interference of electron waves.

In quantum potential formalism, wave packet dispersion results from the tendency of quantum
trajectories to accelerate away from each other. Quantum trajectories for a free Gaussian wave packet,
given by z(t) = ugt + xo\/1 + (ht/2mo3)?, indicate that components of the wave packet starting off
at close by yet different initial positions and initial speeds intersect after a short time, exhibiting a
shock formation. Intersection of characteristics lines is a typical aspect of nonlinear systems. However, in
quantum dynamics of wave packets, quantum trajectories are assumed to be non-crossing. In the following
exact analysis of quantum wave packet dynamics we drop this assumption, and the complete nonlinear
system is analyzed using general theory of Riemann invariants. This leads to the interesting result that
quantum wave packets develop shock wave discontinuities immediately after their formation.

Beginning with the next Section, we investigate the existence of shock wave phenomenon in quantum
hydrodynamic formulation of the Schrédinger wave equation. It is shown that for a general wave function
solution of the Schrédinger equation a non-zero quantum force causes characteristics to intersect, hence
generates shock wave discontinuities in a quantized system. Such discontinuities have a travelling wave
form, and correspond to particle motion in the free particle case. We take the example of a Gaussian wave
packet to calculate the position and time of formation of quantum shocks in Section 3, whereas Section
4 gives a summary of the main conclusions of the work and its relation to some recent experiments on
electron waves.

2 Shock Wave Analysis

In the quantum potential approach, the general form of the wave function can be written as ¥(r,t) =
R(r,t) expiS(r,t)/h. Then the time-dependent Schrédinger equation, with an external potential: ihdvy(r, t) /0t =
—(h2/2m)V2¢(r,t) + V(r)(r,t) gives, after separating real and imaginary parts, the following equations

ap(({;; 2 + V- (p(r,t)v(r,t)) =0, S
WED 1) D)V 1) =~ V() - mQr, 1) @
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where Q(r,t) = —(h?/2m?R(r,t))V2R(r,t), and p(r,t) = R(r,t). Equations (1) and (2) are the basic
equations of quantum dynamics [6] in a fixed Eulerian frame, with respect to which the relative velocity
of an element is v(r,t).

We write the equation (1) and (2) as a single matrix equation, and keep to the one dimensional case
only. Then equations (1) and (2) give,

o[+ [o )] o @

where u is the component of the velocity v along the z-direction. Here p; = dp/0t and Q, = 0Q/0p, etc.
The eigenvalues and eigenvectors for system (3) can be calculated from the characteristic equation

a2, 0] =0 @)

which gives ,
(u—N)?=pQ, = 0. (5)

/\1)2 =ux \/@ (6)

According to Riemann theory of shock waves [7], these eigenvalues give the characteristic speed for families
of characteristics C'y and C_. Thus we have

Thus the two eigenvalues \; o are

d

C+:)\:d—i=u+\/pr=/\1, (7)
dx

C_S)\:E:U*\/pr:)\Qy (8)

and the corresponding eigenvectors are given by

] [+7%).

r

In general, equations for characteristic lines for the system can be written as

Xetto) =olto) + () (1) (10)
dt J,_y,
where (dx/dt),_, = A(t = to). For shocks to develop, characteristics (10) must intersect at some common
point in space. This occurs if the slope of each characteristic increases with the initial time ty. In view
of equations (7) and (8) this is the case provided @, # 0, that is, if the quantum force 9Q/0x does
not vanish. Another way to state shock condition is to expand function X4 (t,tg) for dtp << 1 in the
neighborhood of each characteristics as

OXy(t,t
X (t, to + 6to) ~ X (t, to) + gi ) sto, (11)
0
then any two neighboring characteristics X4 (¢,t9) and X4 (¢,to + dtg) intersect provided
0X 4 (t,t0)
—F———= =0. 12
Dty (12)

This is the shock condition for the system (3), which we shall use in the following to calculate the time of
shock formation.

Having obtained the necessary (and sufficient) shock conditions (12), we can now explicitly determine
the (travelling) shock wave solutions for the system (3). This is done in the Appendix, using Riemann
invariants. These calculations show that the shock waves develop if the quantum force is non-zero, thus
the phenomenon is of purely quantum nature. Since for a free Gaussian wave packet the quantum force
is non-zero in general, this implies the existence of quantum shocks in the case of free Gaussian wave
packets.
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3 Quantum Shocks for the Case of a Gaussian Wave Packet

Gaussian wave packet solution to the Schrodinger equation for a free particle is given by the wave function

(x,t) = exp (zk:(x — ugt/2) — (x — uot)g) /4s0y, (13)

(2ms)>/4

where ug is the uniform constant speed of the wave packet, and the measure of the spread | s |=
o = \/02(1 + (ht/2ma?)?). Correspondingly, the amplitude and the phase functions are given by

R(z,t) = W exp —(z — ugt)? /402, (14)
S(x,t) = _7371 tanfl(LQt) + mu(x — ugt/2) + (z — uot)tht (15)

2mo} 8moio?
and the quantum potential is,
h? (x — uot)?
(3- S, (16)
o

Using u = (05/0x) /m, we obtain from equation (16) the speed of a wave packet element

Q(xvt) =

4m?202

————(x — upt). 17
m oo ( 0 ) ( )
hence by integration, the position of a wave packet component is

ht
0

Here z¢ and ug denote the initial position and velocity of the wave components, respectively.

Since by the above analysis the characteristics along which each wave packet component travels must
intersect, we determine the location of the quantum shock in this case. Using equations (7) and (8), the
equation of characteristic is given by

Xe(t.to) = alto) + (us V/pQ,) _ (t+to). (19)

t=t

Then from the shock condition (12), we have

d (0 /o)

dto

2/ (to) + ot to) — (ut \/p@Q,) =0, (20)

t=to

Substituting for @, u, and x from equations (16), (17) and (18) respectively, and then taking ¢, = 0 we

have, after some simplification,
—8m?o} h?
tg = —5— +4/— 21
T TR \ "7\ 1603 ) (21)

and therefore, from equations (7) and (8),

h2

1ot (22)

s = (up =

Equations (21) and (22) give the time and position for the quantum shock associated with the Gaussian
wave packet (13).
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Figure 1. Quantum force for the Gaussian wave packet (13), with 7, m, oo unity, and up = 10 units.

4 Conclusions

The analysis presented in this paper shows that if in any region of space the quantum force tends to
increase, a shock-like situation will develop. This must be so, since slope of the characteristics (19) then
increases, causing characteristic curves to intersect. This was explicitly shown for the case of Gaussian
wave packets, where the quantum force is equal to A%(z — ugt)/4mao(t)*; which although decreasing first,
then increases, and eventually attains a constant limit as ¢ — oo and ¢ — oo (Fig. 1). This indicates that
the quantum force causes the wave packet to burst rather than spread smoothly.

If the relative velocity of the Gaussian wave packet and the lab frame coincides, quantum shock occurs

at time ¢ty = \/4m20l3/h222, and position x5 = /m20{°/z3, travelling with the speed z4/ts. Equation

(22) shows that this speed differs from the classical formula by a constant 7/ (203/ 2) due to wave packet

dispersion.

A similar analysis can be applied to the case of Airy beams [8], and to the recently observed leviton
structures [9], where limits on electron interferometry has been reduced to the attosecond scale [10,11].
For quantum density soliton waves, representing particle-like localization, such discontinuities do not
form, since quantum force in this case is identically zero. This result also has implications for the problem
of equivalence principle in quantum theory [12].
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APPENDIX: Riemann Invariants and the Shock Wave Solution

To obtain the Riemann invariants for the system (3), we take a linear combination of the equations (3)
with coefficients being the components of the eigenvectors (9), this gives:

(pt + ups + pus) £/ p/Qp (ur + Qppe + uug) = 0. (A1)

Since (0p/dn) / (i\/p/Qp) = (Ou/dn), it follows that

Ou Qp dp P
— =4,/ and - =+, /L. A2
dp P u Qp (A2)

Then substituting for u, = u,pr = £1/Qp/ppz, and py = pyus = £4/p/Qpus, into equation (Al) we

have
(pt + (u + pr) pm) +1/0/Q, (Ut + (u + pr) uw) =0, (A3)

and using equations (7) and (8):

d{ust F(p) =0, where F(o) = [ /Qu/pdp (A4)

Integrating we have the two constants (Riemann invariants), A and B along the characteristics:
u+ F(p) = A(E), along Iy with parameter £ = x + At, (A5)
u— F(p) = B(n), along I'; with parameter ) = x — At. (A6)

Thus eliminating v and F(p), we have the solution for u(z,t) and p(z,t):

u(z,t) = A(z + At) + Bz — At), (A7)
F(p) = A(z + At) — B(z — At). (A8)

which can be easily verified as a (traveling) shock wave solution to the system (3). We notice in the above
analysis that if the quantum force is zero, then the shock speeds A\; and Ay equal the speed wu.
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