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Abstract As an alternative formulation of quantum mechanics, path integral is based on the
notion of transition amplitude which gives the wave function of a quantum system at a time tf by
acting on the wave function at an earlier time ti. We show that for a general quadratic form for the
Lagrangian of the system, transition amplitude has the form f(tf − ti)e

i
h̄

Sclass. , where Sclass. is the
classical action. We then present an algebraic method to evaluate the function f(tf − ti) without
refereing to the path integral calculations. We examine the presented method to the cases of free
particle and harmonic oscillator and obtain their propagators.
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1 Introduction

The formulation of quantum mechanics is based on the commutation relations between the conjugate
variables (q, p), as [q, p] = ih̄. In Heisenberg picture the coordinate (or any other) operator at time
t is given by q(t) = ei/h̄Htq0e

−i/h̄Ht, where H is the Hamiltonian operator and q0 is the coordinate
operator at time t = 0. Now, if one denotes the eigenstates of the operator q0 with |q′ > corresponds
to the eigenvalue q′, then eigenstates of q(t′) with eigenvalue q′ will be |q′, t′ >= e

i
h̄Ht|q′ >. According

to the basic principles of quantum mechanics a quantum system can be completely described by the
transition amplitude (propagator) < q′′, t′′|q′, t′ >=< q′′|e− i

h̄H(t′′−t′)|q′ >. One of the most powerful
methods to evaluate this amplitude is the Feynman path integral through which the above propagator can
be expressed in terms of the classical Lagrangian of the system without any references to the operators and
Hilbert space [1]. The main idea in relation between the quantum propagators and the classical characters
of a system returned to the Dirac’s work [2], according to which the amplitude should be proportional to
e
i
h̄Sclass. . This statement had been justified later by the Feynman’s path integral formulation of quantum

mechanics.
In this letter after a brief review on the subject, we introduce the amplitude formula for the free particle

and harmonic oscillator and show that they have the form f(T )e ih̄S[qcl], where T is the time interval
between the initial and final states. Then, in section 3, we will introduce a wide class of Lagrangians for
which the propagator can be written of this form. At the end of this section we present a path integral
formula to evaluate the function f(T ). In section 4, a systematic algebraic method is introduced to obtain
the function f(T ) without reference to the path integral calculations. Section 5 is devoted to the summary
and conclusions.

2 Path Integral and Propagators: a Brief Review

It is well-known that the wave function in Schrödinger equation at an arbitrary time t can be obtained
from the action of the time evolution operator G(t, t0) on the wave function at some initial time t0

|Ψ(t) >= G(t, t0)|Ψ(t0) > . (1)

For a time-independent Hamiltonian we have

G(t, t0) = θ(t− t0)e− i
h̄ (t−t0)H , (2)
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where θ(t − t0) is the Heaviside step function. It is clear that this operator is nothing but the Green
function for the time-dependent Schrödinger equation, that is(

ih̄
∂

∂t
−H

)
G(t, t0) = ih̄δ(t− t0). (3)

Having the function G, one can evaluate its matrix elements in a given basis. Therefore, in coordinate
basis X|x >= x|x >, we have < x|G(t, t0)|x0 >= G(t, x; t0, x0). If we have the function G(t, x; t0, x0),
then the time evolution of the Schrödinger wave function can be written as

Ψ(x, t) =
∫

dx′G(t, x; t′, x′)Ψ(x′, t′). (4)

It should be noted that the dependence on the intermediate times drops out in the above equation. In
Schrödinger picture the quantum states |Ψ(t) > carry time dependence while the operators are time
independent. In Heisenberg picture, on the other hand, quantum states are time-independent such that
we can identify a Heisenberg state |Ψ >H with its Schrödinger counterpart |Ψ(t) >S with |Ψ >H=
e
i
h̄ tH |Ψ(t) >S . In this picture the operators carry all time dependence in such a way that an operator in

Heisenberg picture is related to its Schrödinger picture through the relation AH(t) = e
i
h̄ tHAe−

i
h̄ tH . For

example, the eigenstates of the position operator satisfying XH(t)|x, t >H= x|x, t >H , are then easily
seen to be related to the coordinate basis in Schrödinger picture as |x, t >H= e

i
h̄ tH |x >. Now, it is easy

to see that for t > t0, we have

H < x, t|x0, t0 >H=< x|e− i
h̄ tHe

i
h̄ t0H |x0 >=< x|e− i

h̄ (t−t0)H |x0 >

=< x|G(t, t0)|x0 >= G(t, x; t0, x0). (5)

Therefore, we see that the matrix elements of the time evolution operator is indeed the time ordered
transition amplitude between the coordinates basis states in the Heisenberg pictures. In path integral
picture to evaluate the transition amplitude, one usually divides the time interval between the initial and
final time into N equal segments of infinitesimal length ε as ε = (tf − ti)/N and in the end takes the
continuum limit ε→ 0 and N →∞. In this set-up we can write

G(tf , xf ; ti, xi) =H< xf , tf |xi, ti >H=
limε→0,N→∞

∫
dx1...dxN−1 < xf , tf |xN−1, tN−1 > ... < x1, t1|xi, ti >, (6)

in which we have used
∫

dx|x, t >< x, t| = 1. Also, all of the intermediates kets are in Heisenberg picture
and we have assumed an inherent time ordering from left to right. A straightforward calculation can show
that for the systems with Hamiltonian H = p2/2m+ V (x) the above formula takes the form [3]

G(tf , xf ; ti, xi) =

limε→0,N→∞
(

m
2πih̄ε

)N/2 ∫ dx1...dxN−1 exp
{
iε
h̄

∑N
n=1

[
m
2

(
xn−xn−1

ε

)2
− V

(
xn+xn+1

2

)]}
. (7)

A glance at the expression under the exponential function shows that in the continuum limit it tends to
the expression i

h̄

∫ tf
ti
dt( 1

2mẋ
2 − V (x)), which in turn is nothing other than the action S[x] of the system.

Thus, we are led to the following well-known expression for the path integral

G(tf , xf ; ti, xi) = A

∫
Dxe ih̄S[x], (8)

where A is a constant independent of the dynamics of the system.
It is seen that the path integral is a functional integral, namely, the integrand which is the phase

factor is a functional of the trajectory between the initial and the final points. Although, in general the
evaluation of such an integral may be a difficult task, its evaluation for the simple systems can be found
in any text books of quantum mechanics. For example, in the case of a one dimensional free particle
whose action is S[x] =

∫ tf
ti
dt 1

2mẋ
2, the result is

G(tf , xf ; ti, xi) =
[

m

2πih̄(tf − ti)

]1/2
exp

[
i

h̄

1
2m

(xf − xi)2

(tf − ti)

]
. (9)
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Noting that for a free particle we have ẋ = v = xf−xi
tf−ti , one immediately concludes that in terms of the

classical trajectory for which we have ẋcl = v, the action takes the form

S[xcl] = 1
2m

(xf − xi)2

(tf − ti)
. (10)

Therefore, the expression (9) will be simplified as

G(tf , xf ; ti, xi) =
[ m

2πih̄T

]1/2
e
i
h̄S[xcl], (11)

where T = tf − ti. Another system for which the path integral (8) can be analytically evaluated is the
one dimensional harmonic oscillator with action S[x] =

∫ tf
ti
dt 1

2m
(
ẋ2 − ω2x2). In this case calculations

yield to

G(tf , xf ; ti, xi) =
[ mω

2πih̄ sinωT

]1/2
e
i
h̄S[xcl], (12)

which reduces to the transition amplitude for the free particle in the limit ω → 0. We see from above two
examples that in both cases the transition amplitude has the form

G(tf , xf ; ti, xi) = f(T )e ih̄S[xcl], (13)

where f(T ) is a function of T = tf − ti. In the next section we are going to present a wide class of
dynamical systems whose transition amplitudes have the form of the relation (13) and then will give a
systematic method to find the function f(T ).

3 The Model

In this section we consider a dynamical system with action

S[q] =
∫ tf

ti

L(q, q̇)dt, (14)

in which the Lagrangian function has the form [4]

L(q, q̇) = a(t)q̇2 + b(t)q̇q + c(t)q2 + d(t)q̇ + e(t)q. (15)

Variation the above action with respect to q shows that the classical trajectory satisfies the following
equation

2aq̈cl + 2ȧ ˙qcl + (ḃ− 2c)qcl + ḋ− e = 0. (16)

To evaluate the propagator G(tf , qf ; ti, qi) = A
∫
Dqe ih̄S[q], let us use the change of variable

q(t) = qcl(t) + η(t), (17)

in which η(t) is a variation around the classical path qcl and vanishes at the end points: η(ti) = η(tf ) = 0.
Under this change of path, the propagator takes the form

G(tf , qf ; ti, qi) = A

∫
Dηe ih̄S[qcl+η], (18)

where

S[qcl + η] =
∫ tf

ti

dt
[
a( ˙qcl + η̇)2 + b( ˙qcl + η̇)(qcl + η) + c(qcl + η)2 + d( ˙qcl + η̇) + e(qcl + η)

]
. (19)
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It is easy to show that the above integral can be rewritten in the form

S[qcl + η] = S[qcl] +
∫ tf

ti

dt
(
aη̇2 + bη̇η + cη2)

+
∫ tf

ti

dt [η̇ (2a ˙qcl + bqcl + d) + η (b ˙qcl + 2cqcl + e)] , (20)

where
S[qcl] =

∫ tf

ti

dt
(
a ˙qcl2 + bqcl ˙qcl + cq2

cl + d ˙qcl + eqcl
)
. (21)

Now, let us focus on the last term of (20). By integration by parts and noting that η(ti) = η(tf ) = 0, this
term takes the form

−
∫ tf

ti

dt
[
2aq̈cl + 2ȧ ˙qcl + (ḃ− 2c)qcl + ḋ− e

]
η(t), (22)

which vanishes due to the equation (16). Therefore, with the help of (20), the expression for the propagator
(18) takes the form

G(tf , qf ; ti, qi) = f(ti, tf )e ih̄S[qcl], (23)
in which

f(ti, tf ) = A

∫
Dη(t) exp

[
i

h̄

∫ tf

ti

dt
(
aη̇2 + bη̇η + cη2)] . (24)

Thus, for any dynamical system whose Lagrangian can be written in the form of the relation (15), the
quantum propagator is in the form of (23). In the next section we are going to evaluate the function f by
an algebraic method without a direct use of the path integral formula (24).

4 A Method for Evaluation f(ti, tf)

As we have seen in the previous section, for a wide class of Lagrangian systems the propagator has the
form of relation (23). Therefore, the function f(ti, tf ) plays an important role since all information of the
path integral propagator is now encoded in it. Our goal in this section is to present a systematic method
to evaluate this function without dealing with the path integral formula (24). As usual let us consider the
free particle case. According to a well-known property of the propagators we have

G(qf , tf ; qi, ti) =
∫

dqcG(qf , tf ; qc, tc)G(qc, tc; qi, ti). (25)

For a free particle this relation takes the form

f(tf − ti)e
im
2h̄

(qf−qi)
2

tf−ti =
∫

dqcf(tf − tc)f(tc − ti) exp
[
im

2h̄

(
(qf − qc)2

tf − tc
+ (qc − qi)2

tc − ti

)]
, (26)

in which we have used the relation (10). If we examine this relation in the case where qf = qi = 0, we get

f(t+ s) =
∫

dqcf(t)f(s) exp
[
im

h̄

(
1
t

+ 1
s

)
q2
c

]
, (27)

where t = tf − tc and s = tc − ti. The above integral can be evaluated with the help of the integration
formula

∫
eiλx

2dx =
√
iπ/λ, leading to

f̃(t+ s) =
√
iπh̄

m
f̃(t)f̃(s), (28)

in which we have defined f̃(t) =
√
tf(t). It is clear that the functions of the form f̃(t) =

√
m
iπh̄e

αt satisfy
this equation. Therefore, we find the following form for the function f(t)

f(t) =
√

m

2πih̄te
αt. (29)
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In what follows we will see how this method may lead us to the right form for the function f(ti, tf ) which
we need in front of the factor e ih̄S[qcl] in the path integral propagator. Inspired of the free particle, our
method is based on the three steps:

I) The condition (25) should be satisfied by a propagator.
II) We will show that this condition leads us to an equation of the form

f(t+ s) = F (f(t), f(s)) , (30)

which can be transformed to the differential equation

F̃ (f(t), f ′(t)) = 0. (31)

III) we demand
G(qf , tf ; qi, tf ) = δ(qf − qi), (32)

which means that the eigenstates of the position operator are non-degenerate and its eigenvalues are
continuous.

At the beginning of this section we saw how applying the step I on a free particle led us to the
equation (28) which is of the form of the equations (30) introduced in step II. To see how step III can
help us to find the complete form of the solution of (30), let us take a look at the equations of the form
f(t+ s) = f(t)f(s). Taking s = dt we have

f(t+ dt) = f(t)f(dt), (33)

which upon expanding both sides will transform to

f(t) + df(t) = f(t) (f(0) + dtf ′(0)) , (34)

from which we get
f(0) = 1, df(t) = f ′(0)f(t)dt. (35)

This is nothing other than a first order differential equation whose initial condition is coded in itself.
With α = f ′(0) we obtain a class of one parameter solutions as

f(t) = eαt. (36)

For the free particle, up to a numerical factor we had

f(t+ s) =
√

ts

t+ s
f(t)f(s), (37)

which with s = dt takes the form

f(t+ dt) = f(t)f(dt)

√(
1− dt

t

)
dt. (38)

Now, let us follow what we have done above and expand both sides of this equation. The result is

f(t) + df(t) = f(t) (f(0) + f ′(0)dt)
(

1− dt
2t

)√
dt. (39)

After evaluating the square of the both sides, this equation takes the form

f(t)2 + 2f(t)df(t) = f(t)2f(0)2dt. (40)

A glance at this result shows that while in the left hand side we have an infinitesimal term plus an
additional finite quantity, in the right hand side there is only an infinitesimal term. Therefore, we should
have f(0) = ∞, i.e., the function f(t) should be singular at t = 0. To see how f(t) behaves near its
singular point we consider the following limit
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lim
s→0

f(t+ s) = lim
s→0

√
ts

t+ s
f(t)f(s), (41)

from which we get

f(t) = f(t) lim
s→0

f(s)
√

ts

t+ s
⇒ lim

s→0
f(s) = lim

s→0

√
t+ s

ts
= lim
s→0

√
1
t

+ 1
s
, (42)

which means that

lim
s→0

f(s) = lim
s→0

√
1
s
. (43)

Therefore, when t→ 0 the function f(t) has a behavior as f(t) ∼ 1√
t
such that we may write

f(t) = 1√
t
f̃(t). (44)

Now, from (37) we have f̃(t)f̃(s) = f̃(t + s) which we have already solved it with solution f̃(t) = eαt.
Thus,

f(t) = 1√
t
eαt, (45)

which up to a numerical factor is the same result as we perviously obtained in (29). Finally, to find the
parameter α we should take the third step. For a free particle, by fixing the numerical coefficient this
step yields

δ(tf − ti) = lim
t→0

1
πt
e−

(qf−qi)
2

t = lim
t→0

√
m

2πih̄te
αte−

im
2h̄

(qf−qi)
2

t . (46)

Comparing these two limits shows that α = 0, which finally leads us to

f(T ) =
√

m

2πih̄T , (47)

for the case of a free particle.
Now, let us see how this method may work for the harmonic oscillator. In this case by the step I we

have

f(tf − ti) =
{∫

dqc exp
[
imωq2

c cosω(tf − tc)
2h̄ sinω(tf − tc)

]
exp

[
imωq2

c cosω(tc − ti)
2h̄ sinω(tc − ti)

]}
f(tf − tc)f(tc − ti), (48)

in which we have set qf = qi = 0. With the same notation as before, i.e. t = tf − tc and s = tc − ti, this
equation becomes

f(t+ s) = f(t)f(s)
∫

dqc exp
[
imω

2h̄ q2
c (cotωt+ cotωs)

]
, (49)

which is a Gaussian integral and can be evaluated as

f(t+ s) = f(t)f(s)

√
2πih̄

mω (cotωt+ cotωs) . (50)

To begin the step II we examine the behavior of the function f(t) when t→ 0. To do this, setting s = 0
in the above equation gives f(0) =∞ and so like the case of the free particle the function f(t) exhibits a
singularity in this limit. Following the limiting process (41)-(43) shows that the behavior of this function
in the vicinity of its singular point is

lim
s→0

f(s) = lim
s→0

√
mω

2πih̄ cotωs. (51)
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Thus we may write

f(t) =
√

mω

2πih̄ cotωtf̃(t), (52)

which upon institution in the relation (50), after some algebra gives

f̃(t+ s)
f̃(t)f̃(s)

= 1√
1− tanωt tanωs

. (53)

Now, let us take s = dt to reach
f̃(t+ dt)
f̃(t)f̃(dt)

= 1 + 1
2ωdt tanωt, (54)

which in turn yields to the differential relation

f̃(t) + df̃(t) = f̃(t)f̃(0) + dtf̃(t)
(
f̃(0) + ω

2 tanωt
)
. (55)

Therefore, we are arrived at the following differential equation with initial condition (α = f(0))

f̃(0) = 1, d ln f̃(t) = dt
(
α+ ω

2 tanωt
)
, (56)

whose solution is f̃(t) = eαt√
cosωt , from which we obtain the function f(t) as

f(t) =
√

mω

2πih̄ cotωt eαt√
cosωt

= eαt
√

mω

2πih̄ sinωt . (57)

As in the case of the free particle by taking the step III we can find the numerical value of the parameter
α. However, in the limit ω → 0, the above expression takes the form of the function f(t) for the free
particle for which we have already obtained α = 0. This completes our calculations to evaluate the f(T )
function for harmonic oscillator as

f(T ) =
√

mω

2πih̄ sinωT . (58)

5 Summary

In this letter we have investigated the issue of path integral for a class of systems whose Lagrangian
has a general quadratic form. We showed that the transition amplitude for such systems is proportional
to e ih̄S[qcl] and the coefficient function f(T ) depends only on the initial and final times as T = tf − ti
for which we have obtained a formula in terms of a path integral of the variation function around the
classical trajectory. In the rest of the paper we proposed a systematic algebraic method to evaluate the
function f(T ). The presented method is based on three steps through which we showed that this function
should satisfy a first order differential equation whose initial condition is coded in itself. We applied the
mentioned method to the cases of free particle and harmonic oscillator and showed that the resulting
propagators are exactly the same as are obtained in usual ways in path integral formulation of quantum
mechanics.
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