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Abstract One-dimensional, inviscid, compressible and isentropic fluids under gravity are considered,
here, as usefull preambles relevant to the theory of uni-axial meteorological phenomena,[4] .We shaw
that there are two new Riemann invariants, [1], incorporating gravity, which are constants of the
motion. Expressing the mass densities occuring in these Invariants as product of their initial values
times the inverse Jacobian of the characteristics of these fluids with respect to their initial values,
we propose, central in this work, first order non-linear PDE’s of Charpit type [2] satisfied by these
invariants. Examples of solutions are given and checked to conform with results of, gravity-free,
similar PDE’s published in [3].
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1 Continuity and Euler Equatuins, Matrix Formulation, Invariants

Let z(y, t) be the coordinate of the characteristics at time t, with initial value z(y, 0) = y > 0 and
z(y, t) < ∞; let g be the gravitational constant, ρ(z, t) ≥ 0, the mass density, u(z, t) ∈ R, the velocity
field and cS(ρ) = const · ρ := κρ, often and simply quoted as cS ,the isentropic sound velocity. With the
column vectors V =:

(
ρ

u+gt
)
and

(
continuity eq.
Euler eq.

)
=
(0

0
)
, with the matrix AS = ( u

(cS)2ρ−1
ρ
u ), the continuity

and Euler equations of these fluids are

∂

∂t

(
ρ

u+ gt

)
+
(

u ρ
cS(ρ)2ρ−1 u

)
∂

∂z

(
ρ

u+ gt

)
=
(
contuinity eq.
Euler eq.

)
=
(

0
0

)
(1)

and in a compact form
∂

∂t
V + AS

∂

∂z
V= 0 (2)

The eigenvalues, λS , of the 2 by 2 matrix AS , are, in setting ε = ±1: λS = u + ε · cS(ρ) and their
eigenvectors are:

( 1
εcSρ−1

)
:= ϑε,S . A unique property of these eigenvectors, and., ipso facto, of the matrices

MS := (ϑ+1,S , ϑ−1,S), is that they are constants since cS/ρ = κ 6= 0. With the diagonalizing vector W ,
i.e. V = MSW and AS MS = λSMS , MS 6= 0, the diagonalized version of the two PDE’s (2) is

∂

∂t
W + λS

∂

∂z
W = 0. (3)

The indefinite integral solutions of (3) read

W (z, t; ε) = u+ gt+ ε

∫ ρ(z,t)
dρ′ · cSρ′)ρ′−1 = u+ gt+ εcS(ρ(z, t)). (4)

It is readily checked that (4) are constants of the motion, properly identified as " Gravitationsl Riemann
Invariants". We have indeed

∂

∂t
W + λS

∂

∂z
W = (Euler eq.) + (εcS/ρ) · (continuity eq.) = 0. (5)

Lastly, if y.is the initial value of z,W (y, 0; ε) , that of W (z, t; ε), we have

W (z, t; ε) = W (y, 0; ε) (6)
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Figure 1. Chaeacteristics (9) and Density (10)

2 PDEs of (6)

Consider next the formal solution of the densities occuring in [6]. Since ρ(z, t)dz = ρ0(y)dy and with the
Jacobian ∂z(y, t)/∂y, we find

ρ(z, t) = ρ0(y)(∂z/∂y)−1 (7)

Central in this work, we obtain the following first order, non-linear PDE’s of Charpit type, for the
two isentropic cases given by [6], and with u(z, t) = ∂z/∂t, namely

∂z/∂t+ εcS(ρ0(y))
(

(∂z/∂y)−1 − 1
)

+ gt− u(y) = 0. (8)

3 Examples

Using the Charpit scheme, whose general purpose is to convert first order non-linear PDE’s of, say 2n
independent variables in a set of 2n ODE’s [2] and to solve the latter, a purpose similar but more general
than that of Hamilton-Jacobi’s scheme in Analytical Mechanics, our examples consist of systems of two
independant variables, i.e. y and t. Considering, for illustration, the case ρ0(y) = ρ0 and u(y) = y/τ ,τ
being a reference time constant ,we find, in setting g = 0, two particular solutions of the general ones
given in [3]

z(y, t) = (1 + t/τ)(y + εcS(ρ0)τ)− εcS(ρ0)τ − 1
2gt

2 − εcS(ρ0) ln (1 + t/τ) , (9)

and the equation for the density is simply:

ρ(y, t) = ρ0 (1 + t/τ)−1 . (10)

On Fig. 1, four examples of the characteristics [9]are presented and one for the density [10] the
latter, plotted in units of ρ0. If s = t/τ , if z and if y are plotted in units cS(ρ0)τ while g, in units of
cS(ρ0)/τ , is choosen to be = 5, then, the four figures shown correspond to the initial values (ε, y) =
((−1, 1), (1, 1), (−1, 2), (1, 2)):
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