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Abstract. Fuel cells serve as clean, renewable and an efficient source of electrical energy. The power 
conditioning system associated with their applications consists of a DC-DC Converter stage and a 
DC-AC inverter stage. In a single-phase fuel cell system, the single-phase inverter introduces a second
harmonic component in the current drawn from the fuel cell source. This low-frequency current ripple
has been found to be detrimental to the performance, lifespan, and efficiency of the fuel cell, if not
adequately controlled. The paper presents a single loop current control method for the DC-DC
converter stage that reduces the input current ripple drawn from the source in the single-phase fuel
cell system. Simulations are carried out using MATLAB; the results compared with the conventional
method. To validate the proposed approach, experimental results from a laboratory prototype are
presented. The proposed method uses a Digital Signal Processor for control system monitoring and
control.

Keywords: Fuel cell, second harmonic current ripple, DC-DC boost converter, power electronics, 
single phase inverter. 

1   Introduction 

With the increase in demand for electrical power generation, there has been an increase in the usage of 
fossil fuels. The depletion of these non-renewable sources of energy has necessitated the use of renewable 
energy sources, like wind energy, solar energy, fuel cells, tidal energy-to name a few. Fuel cells are one of 
the cleanest sources of energy and are being used for transportation, stationary and portable power 
applications. Since these are single-phase applications, the power conditioning system associated with 
the fuel cell stack is a DC-DC converter connected to a DC-AC Single Phase Inverter. The DC-AC 
stage introduces a second harmonic ripple current which gets imposed on the fuel cell. This low order 
current ripple reduces the lifetime of fuel cells, deteriorates their performance and hence, decreases the 
overall efficiency. It can reduce the fuel cell output power by 6% due to internal losses, and cause an 
increase in the distortion of its terminal voltage [1], [2], [3]. Thus, there is a need to mitigate the second 
order ripple component in the fuel cell input current. A lot of research work to reduce the ripple element 
has been conducted till date. The work in [4] adds an active filtering circuit across the DC-DC converter 
to supply an equal magnitude second harmonic current component with complementary phase. [8] uses 
an LC series resonance circuit tuned to twice the output frequency connected in parallel to the DC bus 
capacitor in a pulse width modulated voltage source inverter. Similar methods of using an active filter 
for current ripple reduction were proposed in [9] and [10]. Although the methods mentioned above can 
reduce the low order ripple current efficiently, yet the addition of an external circuit, large capacitor or 
high-power switches may result in an increase in cost, power losses and system complexity. The 
reliability of the system is also affected. [11] suggests a waveform control scheme to mitigate the low-
frequency current ripple. [12] puts forward a model predictive control strategy for second order harmonic 
reduction which tries modifying the duty cycle to minimize the second harmonic current. Another 
alternative way to eliminate the ripple is to adopt a control strategy such that the DC- bus capacitor 
supplies the entirety of the second harmonic current, leading the input current ripple to approach zero. 
[13] proposes a load current feed-forward (LCFF) control mechanism to modify the bus capacitance to
supply the inverter input current. However, the control scheme is suggested for Buck Converter. Most of
the industrial applications such as portable power generation from fuel cells, automotive body electronics
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and lighting system, space and avionics, wireless communication systems-to name a few, require a DC-
DC converter to boost up the voltage. Fuel cells also find use in residential and business applications 
such as HVAC heating, ventilation, and air-conditioning systems. [13] also suggests that the presence of 
an input inductor in a DC-DC Boost Converter can smoothen the input current by filtering out the 
ripple to some extent. But, the design of the inductor while keeping the system cost at a minimum, 
becomes challenging. Therefore, this research work focuses on a DC-DC boost converter in conjunction 
with a DC-AC Single Phase inverter. In this paper, a method to suppress the second harmonic current 
drawn from the fuel cell system is propounded. The proposed method: (1) does not require any 
additional circuitry in the power conditioning stage. (2) is less complicated as it involves only a single 
current control loop. (3) can be applied to the boost DC-DC converter stage used in most fuel cell 
applications. (4) helps maintain the system efficiency and reliability. 

2   Second Harmonic Ripple Current Generation in Fuel Cell based Power 
Electronic System 

Before explaining the ripple reduction method proposed by this paper, it is important to understand the 
power electronics circuitry involved with a fuel cell system and the cause of the low order ripple current. 
The output that can be achieved from a fuel cell is DC. Majority of the electrical loads require AC 
power for operation, which consequently augments a need for power conversion from DC to AC. A 
Power Electronic System(PES) is required to produce commercially usable AC power with the 
fundamental frequency of 60Hz. The fuel cell PES consists of a DC-DC converter connected to a DC-AC 
inverter which feeds the AC load as shown in Figure 1. 

Figure 1. Conventional fuel cell PES 

It is noteworthy to mention here that this research aims at low to medium power applications. As 
most of these applications require a higher output voltage, the Power Electronic System of the fuel cell 
employs a DC-DC boost converter. The following sections discuss the stages of the PES. 

2.1   Boost Converter Stage 

Figure 2 below shows a DC-DC Boost converter. A stepped-up output voltage, , is produced by 
controlling the switching of the high-frequency switch, S. 

Figure 2. DC-DC boost converter 

The ratio determining the output voltage of the boost converter [7] is expressed as, 

= =
−
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1
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V T D

(1) 

where outVb =Output voltage of the boost converter 
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  inVb =Input voltage applied to the boost converter 
  offT =Switch off time 
 T=Switching period 

    D=Duty Cycle. 
The boost converter switching frequency is kept at 20 kHz. The duty cycle of the converter is 

controlled by a conventional closed loop control system. This conventional control system will be 
discussed in detail in section 3. 

The boost converter input inductor is designed by the equation 2 as below: 

=
∆

*
*

in

l in

Vb T
L

i Ib
(2) 

where L=Input inductor 
 inVb =Input voltage applied to the boost converter 
 T=Switching period 
 Δ li =Current Ripple in the boost input inductor 
 inIb =Boost converter input current. 

Considering a power rating of 50W with boost input voltage of 5V, the boost input current, inIb , is 
found as: 

= = =
  50  10

5in
in

Power ratingIb A
Vb

(3) 

Also, 

=
1T
f

(4) 

where inVb =Input voltage applied to the boost converter 
  f =Switching frequency 
  T=Switching period. 

Substituting values from equation 3 and equation 4 in equation 2 and assuming the input current 
ripple, ∆  li , to be 1%, boost input inductor, L is found as 250uH. 

Similarly, the capacitor can be designed by the equation 5 given below: 

=
∆

  *
*dc out

Power rating TC
V Vb

(5) 

where C =boost converter capacitor 
 outVb =Output voltage of the boost converter 

  T=Switching period 
 Δ dcV =Output Voltage Ripple in the boost converter. 

Substituting the values of switching period, power rating in equation 5 and assuming the required 
output voltage and its ripple to be 50V and 1% respectively, the capacitor, C’s value is 450uF. 

2.2   Single Phase Inverter Stage 

A full bridge single-phase inverter is shown in figure 3 below. 

Figure 3. Single phase inverter 
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As the name suggests, it provides a symmetrical AC output from a DC input. The switches of a 
branch are turned on complementarily to avoid short circuit of the DC bus. This means that high-
frequency switches, S1 and S2 are never turned on at the same time and vice versa. The switches are 
controlled by bipolar pulse width modulating (BPWM) signals where the modulating signal, a sine wave, 
at the required output frequency, is compared with a high-frequency carrier wave, which is the 
triangular or saw-tooth wave. These signals have constant magnitude and frequency. The PWM signals, 
also called switching functions, are represented mathematically as Fourier series expressions. In order to 
ensure complementary switching pattern on the same leg, the switching functions for S1 and S3 are 
given by equation 6 and equation 7 below: 

 ( )∞
ω

=
= + ∑ 1

1 sinn nn
S A A n t   (6) 

 ( )∞
ω π

=
= + −∑ 1

3 sinn nn
S A A n t n   (7) 

where ω=desired frequency at the inverter output in radians 
      T=time variable  
      ……0 1 2, 3, , .. nA A A A A  are the Fourier series constants. 

Also, the switching functions for switches S4 and S2 are the same as equation 6 and equation 7 
respectively. The inverter is designed to work at the same frequency as the boost converter for easier 
hardware implementation. Accordingly, 20 kHz is selected as the switching frequency for the inverter as 
well. 

2.3   Origin of Second Harmonic Component 

When a single-phase load is connected across the fuel cell PES, a second harmonic current flows through 
the system in addition to the fundamental current as shown in figure 4. 

 
Figure 4. Second harmonic current flow in fuel cell PES connected to a single-phase load. 

This part of the paper explains the cause of this current component in single-phase fuel cell system.  
The inverter output current is modelled as a sinusoidal wave. Neglecting higher order harmonics for a 

Bipolar Pulse Width Modulation, the mathematical function for output current is 
 ( )ω= 0 sinoi I t   (8) 

where oi =load Current 
      0I =Amplitude of the load current 
      ω=inverter output frequency in radians. 

Now, by using the switching functions from equation 6 and equation 7, the inverter current through 
the switches S1 and S3 can be approximated as: 
 ( ) ( ) ( )ω ω ω= + 2

0 0 0 1 0sin .S1 sin sinI t A I t A I t   (9) 

 ( ) ( ) ( )ω ω ω= − 2
0 0 0 1 0sin .S3 sin sinI t A I t A I t   (10) 

Equation 9 and equation 10 represent the current flowing through the inverter legs. The inverter 
input current,   ini , can be obtained by subtracting equation 10 from equation 9 and is given as: 

 ( ) ( )ω ω= −0 0sin .S1 sin .S3ini I t I t   (11) 

 ( )ω= 2
1 02.ini A I sin t   (12) 

This simplifies to: 
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 ( )ω= −1 0 1 0 2ini A I A I cos t   (13) 
where ω=output frequency in radians 
      T=time variable  
      ini =inverter input current 
  0 1,A A  are the Fourier series constants. 

Hence, equation 13 shows that the single-phase inverter current has a second order harmonic current 
(2ω  component) in addit ion to a DC component . This second harmonic current  flows through the boost  
output side to its input and appears in an amplified form. It also flows through the fuel cell and affects 
its performance. Hence, it is essential to eliminate the second harmonic current component. 

3   Proposed System 

The previous section established mathematically the presence of the second harmonic current ripple (i.e., 
120Hz) in a single-phase fuel cell power electronic system. This paper proposes a method which modifies 
the control system associated conventional fuel cell PES of figure 1. Hence, it is necessary to first 
understand the control system of the conventional fuel cell PES before delving into the proposed control 
system design. 

3.1   Conventional Control System 

In power system applications, the boost output voltage should be regulated. To do so the DC-DC boost 
converter is designed for closed loop control. Figure 5(a) and figure 5(b) show the conventionally closed 
loop control diagram for a boost derived fuel cell PES. The fuel cell is modelled as a DC source.  vG  is 
the voltage controller, and  iG  is the current controller. A Discrete Proportional-Integral (PI) controller, 
as shown in figure 6, is employed to implement both the voltage and current controllers. Hence,  vG  is 
expressed as: 

 ( ) = +
−

 
1

iv
v pv

K
G z K

z
  (14) 

where pvK =Proportional Constant 
      ivK =Integral Constant 

Similarly, the transfer function for current controller is defined as: 

 ( ) = +
−

 
1

i
i pi

K
G z K

z
  (15) 

where,   piK =Proportional Constant 
       iK =Integral Constant. 

pwmG  represents the gain of the pulse width modulator. Also, the DC-bus impedance transfer function 
is given as, 

 ( ) = 1
DC

bus

G s
sC

  (16) 

In discrete time domain, the DC-bus impedance transfer function is, 

 ( ) ( )
=

− 1DC
bus

zG z
z C

  (17) 

where busC =DC bus capacitance. 
The closed loop control maintains the boost output voltage at a constant value irrespective of the 

variation in system parameters. As can be seen from figure 5(b), the output voltage, outVb , is sensed 
and compared to a reference value, refVb . The controller,   vG , takes the error in the two as the input 
signal and produces a current reference signal, refI . The newly generated current reference, refI  and 
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the measured input current, inIb  are compared next. The output of the comparator feeds into the 
current controller, iG  which outputs the duty cycle. The duty cycle is used to generate PWM signals 
which drive the switch S. 

To ensure that the steady state error is zero and the system dynamics is improved, iK  and pK  
values for both the controllers are selected as below: 

Voltage controller,   vG : = pvK 1 and ivK =10. 
Current Controller,   iG : =piK 5 and  iK =1000. 

 
Figure 5(a). Conventional control system of a fuel cell PES 

 
Figure 5(b). Equivalent control block diagram 

 
Figure 6. Discrete PI controller 

3.2   Proposed Control System 

Figure 7 below shows the proposed control system and its block diagram representation. The proposed 
method adds a second harmonic current feedback to the closed loop control system of figure 5. The 
design parameters remain the same as those of the control system of figure 5. vG , iG  are the voltage 
and current controllers given by equation 14 and equation 15 respectively.  pwmG  represents the gain of 
the pulse width modulator. DCG  is the DC-bus impedance transfer function defined by equation 16. 
This paper proposes a single loop current control method to eliminate the 120 Hz current ripple by 
adding an equal magnitude of low order ripple to the DC Bus voltage. In other words, the DC-bus 
capacitor is made to supply the 120 Hz harmonic component, leaving the input current ripple free. [13] 
introduced a High Pass filter to compensate for the DC bias produced due to load current feed forward 
control by a continuous integral action of the DC-bus impedance function. However, the design proposed 
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by this paper prevents the production of a dc bias voltage, thereby eliminating the need to add a high 
pass filter and reducing the complexity further. 

The second harmonic current, 2ndi , is extracted from the boost input current, inIb  by using a band 
pass filter(BPF). The low order current ripple is used to calculate the equivalent low order voltage 
ripple, 2ndV . The boost output voltage reference changes to 2ndV + refV . 

Section 7 elaborates the proposed control system design. First, the band pass filter model is discussed, 
followed by the method used to extract the second harmonic current ripple. Finally, a subsection 
explains the steps involved in the generation of the time varying duty cycle to control boost converter 
switching. 

Figure 7(a). Proposed control system 

Figure 7(b). Block diagram representation of the proposed system 

Band pass filter design(BPF) 
A band pass filter is used to extract the second harmonic current (120 Hz component) from the boost 

input current. As the system runs in discrete time steps, the band pass filter must also work in discrete 
time domain. Also, the filter should allow signals only at the frequency of 120 Hz. The BPF must reject 
all the other frequencies. The transfer function of the BPF in s-domain, ( ) ,bpfG s  is given as: 

( ) ( )
( ) ( )

ω

ω ω
=

+ +
22

2
 

2

b
bpf

b b

s
G s

s s
(18) 

here, ω π= =  2 120b bandpass frequency . 
On substituting the value of ωb and solving the above equation to obtain the z-domain form, the 

equivalent transfer function for BPF, ( ) ,bpfG z  is found to be: 

( ) ( )
( ) ( )

ω−
=

− +
22

2 1
 

1.926 0.9274

b
bpf

z
G z

z z
(19) 
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It can be inferred from the Bode plot of BPF in figure 8, the magnitude of the band pass filter is 
equal to 0 dB at a frequency of 120 Hz and relatively lower at other frequencies. The phase angle at this 
frequency equals 0°. Thus, the BPF can extract the second harmonics altogether, filtering out other 
components well. 
Extracting second harmonic ripple current  

This step helps in obtaining the second harmonic current component from the boost input current. 
The current flowing through boost input inductor is measured and passed through the BPF of equation 
19 which extracts the second harmonic current ripple from it. 

In other words, 
( )=2nd bpf ini G z Ib (20) 

where 2  ndi =second harmonic current on boost input side 
   inIb =Boost converter input current 
   ( )bpfG z =BPF transfer function (from equation 19). 

The equivalent voltage ripple value, 2ndV , is calculated from the second harmonic current ripple and 
the DC-bus impedance by employing Ohm’s law. 

Or, the voltage ripple is given as, 
( )2 2nd DC ndV G z i= (21) 

where, ( )DCG z  and 2ndi  are found from equation 20 and equation 21 respectively. 

Figure 8. Bode plot of the band pass filter with ωb  of 2ωo . 

Generating new duty cycle for boost converter 
The second harmonic voltage ripple value generated from equation 21 is added to the DC-bus link 

voltage reference as shown in Figure 7. Similar to the working of the closed loop system (figure 5), the 
modified voltage reference signal is compared against the sensed boost output voltage, and the resulting 
signal is passed to Discrete Proportional Integral controller. The new current control variable generated 
is compared to the measured boost input current containing the 120 Hz component. The error signal 
serves as an input for another PI controller. The output of the PI controller produces the new duty cycle. 
The PWM switching of the boost converter is controlled depending on the new duty cycle generated. 
Thus, the 120Hz current component from the input side is removed, thereby leaving the fuel cell current 
ripple free. 
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4   Simulation Results 

Simulations of both the conventional control system (figure 5) and the proposed control system (figure 7) 
are carried out in MATLAB-SIMULINK using discrete sampling time of 1us. A DC source is used to 
model a fuel cell source. Boost switching frequency is kept at 20KHz. The inverter switches utilized 
Sinusoidal Bipolar PWM. A 60 Hz reference sinusoidal wave is compared with 20 kHz triangular carrier 
wave to generate the PWM signals. Also, modulation index for the single-phase inverter is kept at 0.8. 

Figure 9. Simulation result of conventional PES; boost output voltage, boost input current and load current (top 
to bottom). 

Figure 10. Simulation result of the proposed system; boost output voltage, boost input current and load current 
(top to bottom). 

Figure 9 shows the time domain representation of the boost output voltage, boost input current (fuel 
cell current) and the inverter output current for a conventional fuel cell system. The inverter output 
current is a 60 Hz sinusoidal signal. Figure 9 shows that the fuel cell current (the boost input current) 
consists of a significant 120 Hz component riding on the DC value. Figure 10 shows boost output 
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voltage, boost input current (fuel cell current) and the load current waveforms in the time domain for 
the proposed fuel cell system. It is evident from Figure 10 that the 120 Hz component has been 
eliminated from the fuel cell current (middle trace). Table 1 below lists the results from frequency 
Discrete-Time Fourier Transform(DTFT) analysis which further proves that the low order ripple has 
been eliminated from the input current significantly. Though some ripple can be seen riding on the 
boost converter output voltage, it is a small magnitude as shown by the DTFT analysis results 
presented in Table 1. 

Table 1. FFT analysis 

Quantity measured A typical PES of figure 5 Proposed control system shown of figure 7 
65.28% 2.89% 
2.88% 1.89% 

Furthermore, the low order ripple current is limited to less than 5% and hence, meeting the criterion 
suggested by [14]. 

5   Experimental Results 

To verify the effectiveness of the proposed method, the fuel cell system with the conventional PES of 
figure 5 and the modified PES with proposed control system of figure 7 has been realized on two-stage 
single phase inverter. The system is implemented for 50 W power rating. A 5 V DC source is used to 
model the fuel cell. The output voltage is controlled at 50V. An impedance of 0.5 Ω and 5 mH is 
selected at the output to ensure that the rated current flows through the boost input side. A digital 
signal processor forms the core of the control system. The boost output voltage, input current and load 
current waveforms are sensed and plotted using a mixed signal oscilloscope. 

Figure 11. Experimental result for the conventional system; Boost output voltage, boost input current and load 
current (top to bottom). 
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Figure 12. Experimental results for the proposed system; boost output voltage, boost input current and load 
current (top to bottom). 

Figure 11 shows the boost output voltage, boost input current and the load current waveforms for a 
conventional closed loop fuel cell PES. The first trace of figure 11 corresponds to the boost output 
voltage, outVb . The voltage scale is 10V/division. Also, the measured value of the output voltage is 5 
divisions. Therefore, the magnitude of the measured output voltage is: 

= =
10 5 ? 50out

VVb divisions x V
division

(22) 

which matches the system requirements. The second trace of figure 11 corresponds to the boost input 
current or the fuel cell current, inIb . The scale is 2V/division. The value of the measured from the 
graph corresponds to 5 divisions. Thus, the magnitude of the input current is, 

= =
25  10in
VIb divisions x V

division
(23) 

If the impedance of the oscilloscope probe is assumed to be 1Ω, the input current magnitude is 10A, 
which corresponds to the design criteria of rated input current. The third trace of figure 11 is the load 
current, measured on the output of the single-phase inverter, oi . The scale of the graph is 5V/division. 
The load current is oscillating at the fundamental frequency of 60 Hz. The boost input current (second 
trace) is oscillating at twice the fundamental frequency with a large amplitude. In other words, the 
input current has a significant magnitude of the low order current ripple. Further, the boost output 
voltage (third trace), is also oscillating at 120Hz, but the magnitude is small and does not affect the 
performance of the overall system. The percentage of the input ripple current is found to be 66% of the 
DC component, which closely agrees to the simulation result. 

Figure 12 illustrates the boost output voltage, boost input current and the load current waveforms for 
proposed system. The analysis made for figure 11 holds true for figure 12 as well. The first trace of 
figure 12 corresponds to the boost output voltage, outVb . It has been scaled to 10V/division. Also, the 
measured value of the output voltage is 5 divisions. Therefore, the magnitude of the measured output 
voltage is: 
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= =
10 5  50out

VVb divisions x V
division

(24) 

again, a match of the system requirements. The second trace of figure 12 corresponds to the boost input 
current or the fuel cell current, inIb . The scale is 1V/division. The value of the measured from the 
graph corresponds to 10 divisions. Thus, the magnitude of the input current, 

= =
25  10in
VIb divisions x V

division
(25) 

Considering the impedance of the oscilloscope to be 1Ω, the input current magnitude is 10A, again 
satisfying the design criteria of rated input current. The third trace of figure 11 is the load current, 
measured on the output of the single-phase inverter, oi . The scale of the graph is 5V/division. The load 
current is oscillating at the fundamental frequency of 60 Hz. It can be seen from figure 12 that the boost 
input current (second trace) is no more oscillating at twice the fundamental frequency. It is a DC value 
of 10A with a negligible amount of low order ripple. Hence, the control system proposed by this paper is 
successful in eliminating the second order ripple from the input current. Additionally, the boost output 
voltage (third trace), shows an insignificant change in the low order voltage ripple. The percentage of 
second order ripple in the input is calculated to be approximately 3%. Thus, the simulation results and 
the experimental results agree with one another. 

6   Discussion of Results 

This section analyses the results obtained from both the simulation and the experimental 
implementation. The simulation of the conventional fuel cell PES of figure 5 delineates an appreciable 
amount of second harmonic ripple on the input current. The Discrete-Time Fourier Transform (DTFT) 
analysis shows that this value was 65.28% of the DC component. In order to verify the presence of the 
ripple current, the system of figure 5 is executed experimentally using a digital signal processor. The 
outcome of the experimental implementation (figure 11) complies with those obtained from simulation, 
thereby, supporting the presence of a significant second order harmonic in input current. Such a high 
magnitude of low order current ripple is detrimental to a fuel cell, affecting its lifetime, performance and 
reliability. Hence, there is a motivation to design a control system for mitigating the 120Hz input 
current ripple which is shown in figure 7. The proposed system is tested both by simulation and 
laboratory experiment to verify it’s working. It can be clearly seen from figure 10 that the boost input 
current has a negligible amount of ripple after the proposed design is implemented. The DTFT analysis 
shows the magnitude of this ripple to be 2.89% of the DC component. Strictly speaking, there is a 95% 
reduction in the input current ripple. The experimental data (figure 12) also backs up this claim. 
Besides, the DC bus voltage ripple in the proposed has a minor variation in magnitude from the 
conventional fuel cell PES. Thus, the proposed system is robust and does not affect the system 
performance adversely. Moreover, though there are some trade-offs in the simulation parameters and the 
experimental implementation, yet the results obtained from both are comparable. 

7   Conclusion 

To solve the problem of input current ripple in single-phase fuel cell power systems, a single loop current 
control method is proposed for the DC-DC boost converter stage. The proposed method does not require 
any additional circuitry and the DC-DC converter control is designed such that the input ripple current 
is supplied by the DC-bus capacitor. The DC-DC converter input side is left ripple free. The proposed 
control is analysed and simulated in MATLAB, and the simulation results are presented. Experimental 
results from a laboratory prototype are presented showing that the proposed approach reduces the 
second harmonic current ripple from 65.28% to 2.88%. The proposed system, after its performance 
optimization, can contribute significantly to increasing the life, efficiency, and reliability of fuel cell 
systems. Specifically, such a system can be targeted for low to medium power residential applications. 
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