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Abstract It is shown in this note that a noncommutative-geometry background determines the
modified-gravity function f(R) for modeling dark matter.
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1 Introduction

It is well known that f(R) modified gravitational theories can account for dark matter in the sense that
the galactic dynamics of massive test particles can be explained in the framework of f(R) gravity without
the need for dark matter [1,2,3]. For a general discussion of dark matter as a geometric effect of f(R)
gravity, see Ref. [4]. Less well known is that noncommutative geometry can play a similar role [5,6].
The purpose of this note is to explain the reason for the connection between the two theories. Given
that noncommutative geometry is an offshoot of string theory, the results of this note may be viewed as
indirect evidence for the latter.

2 Noncommutative Geometry and f(R) Modified Gravity

Noncommutative geometry is based on the following outcome of string theory: coordinates may become
noncommuting operators on a D-brane [7,8]. This statement refers to the commutator [xµ,xν ] = iθµν ,
where θµν is an antisymmetric matrix. Noncommutativity replaces point-like structures by smeared
objects. As discussed in Refs. [9,10], the aim is to eliminate the divergences that normally occur in general
relativity. A good way to accomplish the smearing effect is to assume that the energy density of the static
and spherically symmetric and particle-like gravitational source has the form [11,12]

ρ(r) = M
√
β

π2(r2 + β)2 (1)

in spherical coordinates and is interpreted to mean that the mass M of the particle is diffused throughout
the region of linear dimension

√
β due to the uncertainty.

The study of dark matter and dark energy has led to a renewed interest in modified theories of
gravity. One of the most important of these, f(R) modified gravity, replaces the Ricci scalar R in the
Einstein-Hilbert action

SEH =
∫ √
−g R d4x

by a nonlinear function f(R):

Sf(R) =
∫ √
−g f(R) d4x.

(For a review, see Refs. [13,14,15].)
Since both theories can account for dark matter, it is important to determine a possible connection.
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3 Noncommutative Geometry and Dark Matter

We start with the general metric of a static and spherically symmetric line element, using units in which
c = G = 1 [16]:

ds2 = −e2Φ(r)dt2 + dr2

1− 2m(r)
r

+ r2(dθ2 + sin2θ dφ2). (2)

Here m(r) is the effective mass inside a sphere of radius r with m(0) = 0. We also require that
limr→∞Φ(r) = 0 and limr→∞m(r)/r = 0, usually referred to as asymptotic flatness.

Because of the spherical symmetry, the only nonzero components of the stress-energy tensor are
T t t = −ρ(r), the energy density, T r r = pr(r), the radial pressure, and T θ θ = Tφ φ = pt(r), the lateral
pressure. Assuming the conservation law Tα β;α = 0, there are only two independent Einstein field
equations,

ρ(r) = 1
8π

2m′(r)
r2 (3)

and
pr(r) = 1

8π

[
−2m(r)

r3 + 2Φ′(r)
r

(
1− 2m(r)

r

)]
. (4)

Next, we need to recall that galaxies exhibit flat rotation curves (constant tangential velocities)
sufficiently far from the galactic center, due to the existence of dark matter [17]. This behavior indicates
that the matter in the galaxy increases linearly in the outward radial direction. More precisely, the total
mass MT (r) enclosed in a sphere of radius r has the form

MT (r) = v2r, (5)

where v is the constant tangential velocity; here v2 = 0.000001 in geometrized units [18].
To connect these ideas to noncommutative geometry, we start with a thin spherical shell of radius

r = r0. So instead of a smeared object, we now have a smeared spherical surface. Let us consider the
smearing in the outward radial direction only, that being the analogue of a smeared particle at the origin.
So Eq. (1) is replaced by

ρ(r) = Mr0

√
β

π2[(r − r0)2 + β]2 , (6)

where Mr0 is the mass of the shell. According to Ref. [5], the smeared mass mβ(r) is given by

mβ(r) = 2Mr0

π

[
tan−1 r − r0√

β
− (r − r0)

√
β

(r − r0)2 + β

]
. (7)

Observe that
limβ→0 mβ(r) = Mr0 .

So the mass of the shell is zero at r = r0 and rapidly rises to Mr0 . (We will see later that r − r0 has to
exceed

√
β.)

It is also shown in Ref. [5] that
MT (r) = Mr0(r − r0), (8)

in agreement with Eq. (5). As noted in Ref. [5], Mr0 must now be viewed as a dimensionless constant
of proportionality which can be interpreted as the change in the smeared mass per unit length and is
therefore constant throughout. This also follows from Eq. (8) since dMT (r)/dr = Mr0 . We also have from
Eqs. (5) and (8) that v2 = Mr0

(
1− r0

r

)
. So for reasonably large r,

v2 ≈Mr0 . (9)

To reiterate, v2 is approximately equal to the change in the smeared mass per unit length. Since Eq.
(9) holds for every shell, we could simply replace r − r0 in Eq. (6) by a new variable. However, from a
calculational standpoint, it would be simpler to let r0 = 0. Then Eq. (6) becomes

ρ(r) = Mr0

√
β

π2(r2 + β)2 , (10)
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where Mr0 now assumes its original meaning as the mass of the shell.
As a final comment, it was noted after Eq. (7) that r − r0 must exceed

√
β. To make use of Eq. (10)

in Sec. 4, we will need the more precise condition (with r0 = 0)

r ≥ a >
√
β, a > 0. (11)

4 The Connection to f(R) Gravity

Returning now to f(R) gravity, it is convenient, in view of line element (2), to denote MT (r) by m(r).
According to Ref. [19], the Ricci scalar R is given by

R = 4m′(r)
r2 . (12)

From Eq. (5) we then obtain
dMT (r)
dr

= m′(r) = v2 (13)

and
R(r) = 4v2

r2 . (14)

This equation yields

r(R) =
√

4v2

R
. (15)

In f(R) gravity, Eq. (3) is replaced by [19]

ρ(r) = F (r)2m′(r)
r2 , (16)

where F = df
dR . Eq. (10) now yields

F (r) = r2

2m′(r)ρ(r) = r2

2m′(r)
Mr0

√
β

π2(r2 + β)2 (17)

and from Eqs. (12) and (15),

F (R) = 2Mr0

√
β

π2
1

R
( 4v2

R + β
)2 . (18)

Integrating, we get

f(R) = 2Mr0

√
β

π2β2

[
ln (βR+ 4v2)− βR

βR+ 4v2 + lnC
]

= 2Mr0

π2β3/2

[
ln (4v2) + ln

(
1 + βR

4v2

)
− βR

βR+ 4v2 + lnC
]
, (19)

where C is an arbitrary constant.
To simplify the analysis, consider the third term inside the brackets on the right-hand side of Eq. (19).

From Condition (11), r ≥ a >
√
β, a > 0, r is bounded away from 0. As a result,∣∣∣∣− β

β + 4v2/R

∣∣∣∣ =
∣∣∣∣− β

β + r2

∣∣∣∣ ≤ ∣∣∣∣− β

β + a2

∣∣∣∣ ≈ 0

since a2 is fixed and β is close to zero.
In Eq. (19), letting lnC = −ln 4v2 results in

f(R) ≈ 2Mr0

π2β3/2 ln
(

1 + βR

4v2

)
. (20)
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Now recalling that R = 4v2/r2, we have
βR

4v2 = β

r2 < 1

since r >
√
β. Thus

ln
(

1 + βR

4v2

)
= βR

4v2 −
1
2

(
βR

4v2

)2
+ 1

3

(
βR

4v2

)3
− · · · ≈ βR

4v2

and
f(R) ≈ Mr0

2v π2√β
R. (21)

Observe that the coefficient of R is a dimensionless constant. Eq. (21) also implies that

f(R) ≈ Mr0

2v π2√β
R1+ε, ε� 1. (22)

According to Ref. [4], f(R) modified gravity can account for flat galactic rotation curves if

f(R) = kR1+ε, ε� 1, with constant k, (23)

which has the same form as Eq. (22).

5 Conclusion

It is shown in this note that a noncommutative-geometry background yields the form

f(R) ≈ kR1+ε, ε� 1, with constant k, (24)

which is known to account for galactic rotation curves. Noncommutative geometry can therefore serve as
a model for dark matter.
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