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Abstract. The first principle of thermodynamics under relativistic conditions and with allowance for 
surface tension was formulated. With the help of this law it was shown that the temperature of the 
system studied had varied according to H.Ott at the adiabatic and non-adiabatic acceleration, i.e., it 
(the temperature) had increased for the observer in the laboratory reference frame if the velocity of 
the object, in turn, had increased. A.Einstein considered that the temperature had, on the contrary, 
to decrease under these conditions when the velocity increased. It was shown where he had made an 
error. 
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1    Introduction 

Relativistic thermodynamics was born more than century ago – in 1907 when Kurd von Mosengeil’s 
article had been published [1]; he was Plank’s pupil. According to conclusions done by K. von Mosengeil 
and M.Planck, the temperature T of the system under study has to vary with proportion to 

21 β− under relativistic conditions and at adiabatic acceleration; /v cβ = ; v is the velocity of the 
system studied by an observer being in the reference frame at rest; c is the velocity of light. A. Einstein 
came to the similar conclusion [2]. 

Studying the first principle of thermodynamics under relativistic conditions, nobody in the 20th 
century took into consideration the surface tension; meanwhile it is an important thermodynamic 
parameter, so important as pressure p. The both M.Planck with his pupil and A. Einstein wrote down 
the first principle of thermodynamics under relativistic conditions without the surface tension as well. 
Besides, the both great scientists made an error integrating further Gibbs’ equation; we shall show it 
below, in section 2.  

E.V.Veitsman was the first researcher who had understood the importance of the surface tension for 
relativistic thermodynamics [3–5]. He showed that the surface tension is a Lorentz invariant [3]; he 
showed as well that the interface equations of state were correct under relativistic conditions exclusively 
if the temperature of system under study varied in inverse proportion to 21 β− [4]. E.Veitsman also 
obtained expressions for specific thermodynamic functions (J·cm-2) under the relativistic conditions [5] 
(the internal energy U, the enthalpy H, the free energy F, and free enthalpy G). These functions are 
correct under the relativistic ones if 2~ 1 / 1 .T β−  Thus the results obtained by Veitsman are in a full 
accordance with a result obtained by H.Ott for the relativistic temperature T, i.e., 2

0 / 1T T β= −  [6]; 
(here and below the symbol "0" denotes that this quantity is at rest). All above results are completely 
correct for the adiabatic acceleration of the system. 

At last H. Callen and G. Horwitz consider that the temperature T in general is a relativistic invariant 
[7].  

M. Planck writes down the first principle of thermodynamics  
 dU dQ dA= +   (1) 
as 
 0 0 0 0dU dQ p dV= −   (2) 
where Q is the heat put into the system or carried off it (J); A the work done by the system or with it 
(J).  
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Under relativistic conditions the work A is written down by M. Planck as 
 ·dA pdV d= − + v G   (3) 

 0 0 0

2 21

U p V

c β
=

+

−
G   (4) 

where v is the vector of the system velocity; G the momentum, the symbol “·” means vector 
multiplication [8]. 

G and 

 ( )i U pV
c

+   (5) 

form the four-dimensional vector (4-vector) of energy-momentum, which has an invariant length equal 
to 

 ( )0 0 0
i U p V
c

+   (6) 

i is the imaginary unit.  
Evidently, we can write down the first principle of thermodynamics in view of the surface tension 

(normal case) as 
 0 0 0 0 0 0dU dQ p dV dσ ω= − +   (7) 
where 0ω is the element of area (cm2). 

Then the relations (3) and (4) are written down as  
 ·dA dpdV dσ ω= − + + v G   (8) 

 0 0 0 0 0

2 21

U p V

c

σ ω

β

+ −

−
  (9) 

And, consequently, the relations (5) and (6) should have a form   

 ( )i U pV
c

σω+ −   (10) 

 ( )0 0 0 0 0
i U p V
c

σ ω+ −   (11) 

Here we have to note that the quantity ω  will transform as v c→  in different ways: depending on 
the orientation of the surface in space (see Veitsman’s articles [3, 9] and Fig.1 and 2(see Appendix)). 
Attempting to obtain the transformation law of the temperature as v c→ , M.Planck used dependences 
(3) and (4) but not (10) and (11). Other researchers did the same not taking account of surface tension, 
therefore the results obtained by them were incorrect. So the main goals of this paper are:  

1.the obtaining of the first principle of thermodynamics under relativistic conditions in view of 
the surface tension;  

2.the obtaining of the temperature transformation under these conditions from the above 
mentioned principle at the adiabatic and non-adiabatic acceleration. 

2    Solving the Problem 

Write down the first principle of thermodynamics (normal conditions) in view of the surface tension as 
 0  ·kin acdQ dU dE p dV d dA dσ ω= + + −− − v G   (12) 
where kinE  is the macrokinetic energy of the object under study; acA  the work expended on the system 
acceleration up to a velocity v c<< ; .kin acE A=  The momentum G is taken here according to (9). 

We will adiabatically accelerate the object up to a relativistic velocity v now and will integrate (12) 
term by term from state 1 of the system to state 2 for the case represented in Fig.1 (see Appendix) 
taking into account (8), (9) and the equalities 0 0 0, ,p p σ σ ω ω= = = ; we have to note as well that here 
and below we do not study a whole object – only its part (a subsystem):  

 
2 2 2 2 2

0 0
1 1 1 1 1

,dQ dU p dV d vdGσ ω= + − −∫ ∫ ∫ ∫ ∫   (13) 
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 { }
2

2 (0)1 2 (0)1 0 2 0 (0)1 0 0 0 0 0321
2

2

( )

1

dvQ v Q U U p V p V v U p V
vc
c

σ ω− = − + − − + −
⎛ ⎞

−⎜ ⎟⎜ ⎟
⎝ ⎠

∫   (14) 

Now we take the integral in (14).  

 { } { }

{ } { }

2 2

0 0 0 0 0 0 0 0 0 93 2 321 1
2

2

2

0 0 0 0 0 0 0 0 0 02 2
1

(1 )
1

1 1 1 , / .(15)
1 1

ddvv U p V U p V
vc
c

U p V U p V v c

βσ ω σ ω β
β

σ ω σ ω β
β β

+ − = + − =
−⎛ ⎞

−⎜ ⎟⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟= + − = + − − =
⎜ ⎟− −⎝ ⎠

∫ ∫   (15) 

According to M. Planck [8], 

 2
0 0 02

1 { },
1

U U p Vβ
β

= +
−

  (16) 

in view of the surface tension we have: 

 
( )2 2

0 0 0 0 0

2

1 1

1

U p V
U

β σ ω β

β

+ + − −
=

−
  (17) 

Then taking into consideration (16), we can write down (14) as 

 

{ }

{ }

2 2 2
2 (0)1 0 0 0 0 0 0 0 02

0 0 0 0 0 0 0 2

1( ) ( 1 1) 1
1

1 1
1

Q v Q U p V U p V

p V U p V

β σ ω β β
β

σ ω
β

− = + + − − − + − −
−

⎛ ⎞
⎜ ⎟− − + − −
⎜ ⎟−⎝ ⎠

  (18) 

If we do not input the heat in an accelerated system from its source, then the left side of (18) equals 
zero, and we cannot obtain any dependences of the kind ( )T T v= ; at first sight the dependence (18) 
does not contain the temperature. However, this relationship contains it – in a latent form. Show it. Let 
an object be, e.g., the liquid moving with a relativistic velocity v. For the observer being at rest in a 
laboratory reference frame the temperature of this liquid depends on the cooperative velocity v of the 
microparticles in the object relative to its centre of mass. Then for the researcher the velocity 
components of the total velocity w of certain microparticle in the moving liquid equal [10]:  

 
1

1

'
1

'

2
1

=
w v

vw
c

w
+

+

  (19) 

 
' 2
2

1
2

2 '

1

1
=

w
vw

w

c

β−

+

  (20) 

 
' 2
3

1
2

3 '

1

1
=

w
vw

w

c

β−

+

  (21) 

where ( )' 1,2,3iw i =  are the velocity components of the microparticle in the moving reference frame.  

Taking into consideration the dependences (19-20), it is easy to understand that the heat in the 
moving system increases for the observer as v c→ , since for him the cooperative velocity of the 
microparticles increases in the system moving relative to its mass centre. If the heat increases, so does 
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the temperature. However, 0S S= in our case, this means dQ SdT= , and (15) contains, in fact, two 
parts. The first one is related to the internal energy, the second to the heat. Then (18) takes the form  

 

{ }

( ){ }
{ }

2 (0)1 0 0 0 0 0 2

2 2 2
0 0 0 0 0 0 0 0 0 02

0 0 0 0 0 2

1( ) 1
1

1 1 1 1
1

1 1 ; 1;0 1.
1

Q v Q U p V

U p V U p V p V

U p V

γ σ ω
β

β σ ω β β
β

α σ ω α γ α
β

⎛ ⎞
⎜ ⎟− = + − − =
⎜ ⎟−⎝ ⎠

= + + − − − + − − −
−

⎛ ⎞
⎜ ⎟− + − − + = ≤ <
⎜ ⎟−⎝ ⎠

  (22) 

Equation (22) is completely consistently; it is correct in the range of velocities 0 − v for 

( ) 0
2 21

Q
Q v

β
=

−
. As a result, 2

0 / 1T T β= − , i.e., in accordance to H.Ott. If it were 

( ) 2
2 0 1Q v Q β= − , we would сome to absurdity as v c→ . Indeed, the left side of (22) here tends to 

zero but the right side of (22) does to .∞   
M.Planck as well as A. Einstein were mistaken considering that the temperature had to transform at 

adiabatic acceleration according to the law 
 2

0 1 ,T T β= −   (23) 
as v → ∞ . The cause of this mistake will be shown below, in discussion. 

Now we study the second case represented in Fig.2 (see Appendix).  
The relation (14) should now be written down in view of the relation 

 2
0 1ω ω β= −   (24) 

as 

 { }
2 2

2 (0)1 0 2 0 (0)1 0 2 0 (0)1 0 0 0 0 0321 1
2

2
1

dvdQ U U p V p V v U p V
vc
c

σ ω σ ω σ ω= − + − − + − + −
⎛ ⎞

−⎜ ⎟⎜ ⎟
⎝ ⎠

∫ ∫   (25) 

Since instead of the ratio (17), we have now the ratio 

 
2

0 0 0 0 0

2

( )

1

U p V
U

β σ ω

β

+ −
=

−
  (26) 

then the formula (18) takes the form: 

 

{ }

{ }

{ }

2 (0)1 0 0 0 0 0 2

2 2
0 0 0 0 0 0 0 02

2
0 0 0 0 0 0 0 0 0 0 0 2

1( ) 1
1

1 ( ) 1
1

11 1
1

Q v Q U p V

U p V U p V

p V U p V

γ σ ω
β

β σ ω β
β

σ ω β σ ω α σ ω
β

⎛ ⎞
⎜ ⎟− = + − − =
⎜ ⎟−⎝ ⎠

+ − − + − −
−

⎛ ⎞
⎜ ⎟− − − + − + − −
⎜ ⎟−⎝ ⎠

  (27) 

taking into consideration (19-21), we have now: 

 

{ }

{ }

2 2 2
2 0 0 0 0 0 0 0 0 02

0 0 0 0 0 2

1( ) ( ) 1 1
1

1 1
1

Q v U p V p V

U PV

β σ ω β σ ω β
β

α σ ω
β

= + − + − − − −
−

⎛ ⎞
⎜ ⎟− + − −
⎜ ⎟−⎝ ⎠

  (28) 
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{ }

{ }

2 2 2
2 0 0 0 0 0 0 0 0 02

0 0 0 0 0 2

1( ) ( ) 1 1
1

1 1
1

Q v U p V p V

U PV

β σ ω β σ ω β
β

α σ ω
β

= + − + − − − −
−

⎛ ⎞
⎜ ⎟− + − −
⎜ ⎟−⎝ ⎠

  (29) 

The equation (29) is correct as and in case 1, if ( ) 0
2 21

Q
Q v

β
=

−
; it is incorrect if ( ) 2

2 0 1Q v Q β= − . 

There are more complicated cases than ones represented in Fig.1 and 2(see Appendix), in particular, 
the cases of the droplet or bubble, however we do not study them in this paper.  

We should here add that we come to the absurdity, if we consider that the temperature T is the 
Lorentz-invariant. 

Now determine, how the temperature and heat have to transform under relativistic conditions when 
the heat is input into the system from the outside. To solve this problem, we should take into 
consideration that the thermodynamical state of the system is independent of the way of its transition 
to it. Let there be two states of the system (1 and 2) and two its intermediate ones ( '1 and '2 ). In state 1 
the system is at rest and contains some quantity of heat which is equal to 01Q . We input into the 
system an additional quantity of the heat 01QΔ ; now the system is in the '1 . The heat in the system 
equals 01 01.Q Q+ Δ  Accelerate adiabatic the system up to velocity v. Now the system is in state 2; the 
heat of the system is 

 01 01
2 21

Q Q
Q

β

+ Δ
=

−
  (30) 

However, the system can go to state 2 otherwise: through state '2 . To do that, we must accelerate 
adiabatic the system being in state '1  up to the velocity v. Then the system will be in state '2 . Its heat 
equals  

 '
01

2 21

Q
Q

β
=

−
  (31) 

Further, we input a quantity of heat into the system '2
QΔ and transfer it to state 2. Then the 

quantity of heat in the system '
2Q  equals 

 ' ' '
01

2 2 2 221

Q
Q Q Q Q

β
= + Δ = + Δ

−
  (32) 

Evidently, 

 '
01 1 01

22 21 1

Q Q Q
Q

β β

+ Δ
= + Δ

− −
  (33) 

From equation (33) it follows that  

 '
01

221

Q
Q

β

Δ
= Δ

−
  (34) 

Now we can formulate the first principle of thermodynamics under relativistic conditions (3-D 
formalism): 
 ,s sT ddU dQ dQ dA d= + + ⋅+ v G   (35) 
where sQ is the heat changing the entropy of the system (entropic heat). i.e., dQ TdS= ; TQ  the heat 
not changing the entropy of the system (relativistic heat), i.e., dQ SdT= ; dA  the work of deformation, 
e.g., ddA pdV dσ ω= − + ; v·dGs the increment of the work expended on the increasing of microparticles 
velocity of the system moving relative to its mass centre minus the increment ( TdQ ) of the work 
transformed into heat for the observer being in the laboratory reference frame (see above). 

If v=0, the law (35) will be transformed in the law (1). 
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Taking into consideration the relations (9) – (11), we can write down: 

 
( ) ( )0 0 0 0 0

2 2
;

1
xT

U p V i U pV
v

cc

γ σ ω γ σω

β

⎧ ⎫+ − + −⎪ ⎪= ⎨ ⎬
⎪ ⎪−⎩ ⎭

G   (36) 

 
( ) ( )0 0 0 0 0

2 2
;

1
xs

U p V i U pV
v

cc

α σ ω α σω

β

⎧ ⎫+ − + −⎪ ⎪= ⎨ ⎬
⎪ ⎪−⎩ ⎭

G  (37) 

The quantities in braces of (36) and (37) form, in Minkowski, space vectors of energy-momentum 
( 0)x yv v= =  having invariant lengths equal to 

 
( )0 0 0 0 0 ; , .

i U p V

c

ζ σ ω
ζ α γ

+ −
=   (38) 

We do not exclude the case when 0,α =  then 1γ =  and the ratio (34) disappears but the formulas 
containing α  are simplified.  

In [11] C.MØller represents a quantity sQΔ  as 

 ( ) }  ,{ h iQ Q
c

Δ = Δ ΔG   (39) 

where ΔG(h) 
2

Q v
c
Δ

= ; QΔ is here the amount of heat transferred to the system during the process; in 

fact. QΔ = sdQ  (see above the law (35)). 
The relation (39) was obtained by MØller with taking into account the influence of the vessel walls, 

containing (the vessel) our substance, i.e., in fact, for a system consisting of two subsystems: a substance 
and the vessel with its walls. It is important to note that the law (32) was obtained without the 
influence of the walls of the vessel. 

The law (35) is correct in Euclidian space up to a velocity of the system motion maxv . If maxv v> , the 
microparticle velocities for the observer in the laboratory reference frame begin to prevail in the 
direction X1 over the microparticle ones in the directions X2 and X3 with accordance to the relativistic 
law of the velocity composition. Now both the heat and temperature are not already scalars they are 
vectors. Then we can write down the law (35) as  
 ( ) ( )k s k T d sdU dQ k d dQ k dA= + + ⋅+ v G   (40) 

where k 
1
1
1

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 is the dimensionless vector; ( )k sQ and ( )k TQ are the vectors; k=1,2,3. 

3    Discussion 

As seen above, the temperature of the system is present in the first principle of thermodynamics in a 
latent form – by means of the second principle of thermodynamics  

 ,QS
T
δδ =   (41) 

where S is the entropy, which is Lorentz-invariant according to Planck, i.e.,  
 0 .S S=   (42) 

If we write down the transformation of heat Q under relativistic conditions as 
 2

0 1 ,Q Q β= −   (43) 
then the temperature has to transform under these conditions according to (23), i.e., according to 
M.Planck. However, if we write down the transformation of Q as 

 0

21

Q
Q

β
=

−
  (44) 

then the temperature T has to transform under these conditions according to the following formula 
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 0

21

T
T

β
=

−
  (45) 

i.e., according to H.Ott. 
As we have seen above, relations (44) and (45) do not lead to the absurdity, relations (23) and (43), 

on the contrary, lead to it. Where were Planck and Einstein mistaken? We make an attempt to show it 
making a start from (2). Einstein proceeds from Gibb’s equation taken in the form (normal state): 
 ,TdS dE pdV vdG= + −   (46) 
where E is the internal energy. 

Accelerate adiabatically our system up to the velocity v. Further, integrate (43) term by term from 
state 1 (v=0) up to state 2 (v→∞ ): 

 
2 2 2 2

1 1 1 1

TdS dE pdV vdG= + −∫ ∫ ∫ ∫   (47) 

Since 0S S= , then in view of (16) 

 ( )2 1 0 0 0 0 0 0 2

1 1 0.
1

E E p V p V U p V
β

⎛ ⎞
⎜ ⎟− + − − + − =
⎜ ⎟−⎝ ⎠

  (48) 

However, Einstein meanwhile operates with TdS, when there is not any input of heat in the system! 
We cannot use the above Gibbs ratio here, we are to use only the first principle of thermodynamics 
under condition that 0dQ S dT= (see above)! If we input the heat in our system accelerated up to a 
velocity v, then the increment of the heat dQ will contain the term TdS, however the heart of the 
matter has not to change. As before, we come to absurdity considering that the temperature will be 
transformed according to Planck-Einstein’s law. Taking the transformation of the temperature according 
to H.Ott under these conditions, we have no contradictions.  

The transformation of heat and temperature under relativistic conditions is considered to depend on 
the velocity of the source of heat coming to the system (see, e.g., van Kampen work [12]). In this regard 
the author of [12] examines two cases: 1. when the object under study and the source of heat are moving 
with the same velocity, 2. when they have different velocities. The problem is solved in Minkowski space 
under some assumptions. In particular, van Kampen proceeds from the assumption that the internal 
energy U will not transform under relativistic conditions of the system by formula (16), but as  

 0

21

U
U

β
=

−
  (49) 

Then in the first case the heat had to transform in an adiabatic acceleration of the system according 
to (44) and the temperature had to transform according to (45) if entropy 0 .S S=   

In the second case the heat transforms under relativistic conditions according to complicated laws. In 
order to find them, van Kampen uses an imaginary model. There are two black bodies a and b separated 
by a thin metallic sheet. Relative to the laboratory frame, a and b have velocities au and bu  parallel to 
the sheet. The heat may be leaking from the subsystem a to the subsystem b. Of course, such a system 
does not exist in nature and cannot be created artifically. According to van Kampen, the heat Q in the 
subsystems a and b has to transform under relativistic conditions as 
 a

a bdQ ρ γρ= − +   (50) 
 b

b adQ ρ γρ= − +   (51) 

where aρ  and bρ are the energy density in the subsystems multiplied by 1 ,
4

A tΔ Δ  ( ) 1/221 ;uγ
−

= − AΔ is 

the area of a small hole through which the heat goes from the subsystem a to the subsystem b, tΔ  the 

interval of time when the hole is open; u= v
с

, c is the velocity of light adopted equal to 1. Then we have 

for the whole system 
 ( ) ( )1 0a b a bdQ dQ γ ρ ρ+ = − + >   (52) 
and should note the following. Using the above model, van Kampen has obtained a complicated law of 
the heat transformation under relativistic conditions. 
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However, using of different imaginary models, we can obtain some special relations not having any 
fundamental importance.   

4    Conclusions 

1.The first principle of thermodynamics was obtained under relativistic conditions in view of the 
surface tension. 

2.Using the first principle of thermodynamics, it was shown that the temperature varied under 
relativistic conditions in adiabatic acceleration according to H.Ott, i.e., in inverse proportion 
to 21 β− . 

3.It was shown where A.Einstein made the mistake which led afterwards to the incorrect 
dependence 2

0 1 .T T β= −  
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Appendix 

 

Figure 1. The moving flat interface; the velocity v of its motion is perpendicular to the flat one. LΔ is the 
thickness of the surface. 
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Figure 2. The moving flat interface; the velocity v of its motion is parallel to the flat one. LΔ is the thickness of 
the surface. 
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