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Abstract. In this paper, the quantum theory of the infinite-component Majorana field for the 
fermionic tower is formulated. This study proves that the energy states with increasing spin are 
simply composite systems made by a bradyon and antitachyons with half-integer spin. The quantum 
field describing these exotic states is obtained by the infinite sum of four-spinor operators, in which 
each operator depends on the spin and the rest mass of the bradyon in its fundamental state. The 
interaction between bradyon-tachyon, tachyon-tachyon and tachyon-luxon has also been considered 
and included in the total Lagrangian. The obtained theory is consistent with the CPT invariance and 
the spin-statistics theorem and could explain the existence of new forms of matter not predictable 
within the standard model. 
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1   Introduction 

The formulation of the quantum field theory based on the finite-dimensional representation of the 
Lorentz group led to the standard model (SM) and coherently explained most of the experimental 
results [1–4]. However, the representation is neither complete nor unitary [5,6]. This gap can be filled 
through an infinite-dimensional representation, where boosts and rotations take the form of infinite 
matrices. In principle, a theory whose equations are covariant with respect to the infinite-dimensional 
representations could predict new particles or new structures of matter not contemplated in the picture 
of the SM. Although with different aims, Majorana formulated in 1932 a relativistic equation for particle 
with arbitrary spin [7], which it is a universal equation that describes the physical nature of bosons, 
fermions and luxons that depends on the considered spin and mass. In other words, all spins are 
simultaneously representations of the inhomogeneous Lorentz groups obtained while only considering the 
spacetime symmetries [8]. The Majorana equation has two possible applications depending on the 
interpretation given to the wave function: particles with arbitrary spin or composite systems [8–11]. 
Therefore, this equation may be particularly useful in studying the structure of nuclear systems and 
their prospective high energy exotic states. However, the solution of the Majorana equation leads to 
results that contrast with physical reality (particle with only positive frequency, mass spectrum that 
asymptotically decreases with spin increasing, spacelike solutions) [12]. Moreover, the attempt to 
quantise the infinite-component Majorana field violates CPT invariance and is inconsistent with the 
spin-statistic theorem. In addition, explaining the existence of tachyonic solutions that are incoherent 
with the classical theory of relativity is difficult [12–14]. Sudarshan managed these difficulties while 
separately investigating the three classes of particles predicted by the Majorana equation: slower than 
light particles, luxons and faster than light particles [15]. The method used by Sudarshan, therefore, is 
indirect and is based on the decomposition of the Majorana spinor, i.e. its bradyonic, tachyonic and 
luminal components. However, a direct method to quantise the Majorana field in a coherent manner 
with the fundamental theorems of modern quantum mechanics does not yet exist. Moreover, little has 
been done to apply Majorana field theory to composite (multimass) systems [9]. 

This study investigates the physical nature of the energy states with increasing spins that form the 
Majorana bradyonic tower, but this study is limited to only investigating fermions. These states are also 
proven to be simply exotic composite systems made by a bradyon and antitachyons, in which all these 
components are with half-integer spin. In this sense, the bradyonic tower includes all the possible 
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solutions of the infinite-component equation without needing to face the quantisation process for each 
type of particles (bradyon, tachyon, luxon). However, once again, the field theory is formulated in an 
indirect way as the sum of the (local) Dirac field [16] with positive frequency and the tachyonic (local) 
field with negative frequency [17]. These two fields are connected to each other by a Lorentz 
superluminal transformation [18-19], which also represents the bradyon-tachyon interaction mechanism. 
The Majorana field is, therefore, the infinite sum of four-spinor operators which depend on the spin J. In 
forming this theory, the tachyon-tachyon and tachyon-luxon interactions are considered. Because of the 
lack of experimental data, these interactions are introduced in the Lagrangian, making use of some 
speculative theories available in the scientific literature [20,21]. Therefore, the total Lagrangian is the 
following: 
 int .M D t+ −

= + +      (1) 

where M is the Lagrangian of Majorana field, D+
 is the Lagrangian of the Dirac field with positive 

frequencies, t−
 is the Lagrangian of the tachyonic field with negative frequencies and int. is the 

Lagrangian of the interactions between the local fields. Overall, the obtained theory is consistent with 
the CPT invariance and with the spin-statistics theorem. 

2   The Majorana Bradyonic Tower as Composite Systems 

The solution of the Majorana equation for arbitrary spin leads to a discrete mass spectrum: 

 ( ) 0

1
2

m
m J

J
=
 

+ 
 

  (2) 

where 0m  is the rest mass of the particle in the fundamental state. In addition, this study only 

considers fermions with half-integer spin, i.e. 1 3 5, , ,...
2 2 2

J =  

The occupation probability of a Majorana state with spin J is the following [22]: 

 ( ) ( ) 1 2
1nnp J β β + = −  

  (3) 

where ( )1 2n J= +  and β  is the relativistic factor. Using the energy-momentum relation, the energy 
difference between whatever state with spin J  and the fundamental state is the following: 
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Equation (4) is the typical form of the energy-momentum relation for a tachyon with imaginary mass: 

 ( ) ( )
( )

2

0

1 2 1

1 2

J
J i m

J
µ

+ −
=

+
  (5) 

Equation (5) suggests that the Majorana states with decreasing mass are the results of the interactions 
between the ½-spin bradyon quantum field and the ½-spin tachyon field. To this purpose, the Majorana 
equation predicts a discrete bradyonic mass spectrum with only positive frequency and a continuous 
imaginary mass spectrum with both positive and negative frequencies [7]. Therefore, Majorana states 
with spin J > J0 may be considered as composite systems made by a 1/2-spin bradyon of rest mass m0 
and 1/2-spin tachyons with imaginary mass. Starting from this assumption, a field theory consistent 
with the spin-statistic theorem and whose Hamiltonian operator is upper bound is established. 

3   The Dirac Field with Positive Energies 

The Dirac field is a four-dimension spinor that transforms from a given reference frame to another under 
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the action of the symmetry elements of the Lorentz group in its four-dimensional representation [1]. The 
Lagrangian density of the Dirac group is the following: 
 ( )0

u
D D Di mµψ γ ψ= ∂ −   (6) 

where γµ are the four Dirac matrices (µ=0,…,3) and the conjugate field is the following: 
 † 0

D Dψ ψ γ=   (7) 
The Dirac field current is the following: 
 ( )x D DJ µ µψ γ ψ=   (8) 
whose divergence is identically zero: 
 ( ) ( ) 0 0x = ( ) 0D D D D D D D DJ im imµ µ µ

µ µ µψ γ ψ ψ γ ψ ψ ψ ψ ψ∂ ∂ + ∂ = + − =   (9) 

Therefore, the Dirac current is a conserved quantity. In addition, the Dirac field is quantised by the 
anticommutation rule: 

 
{ } ( ) ( )
{ } { }
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, , 0
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 = −
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  (10) 

As explained in the previous section, the solutions with positive energy are desired, which are the 
same solutions as the Majorana equation for a particle with 1/2-spin [7]. To do this, γ0 = 𝟙 must be set 
so that relation (7) becomes the following: 
 †

D Dψ ψ
+ +
=   (11) 

and equation (6) becomes the following: 
 ( )†

0D D Di mµ
µψ γ ψ

+ +
∂ −=   (12) 

The field operators are obtained solving the Lagrangian equations, and their Fourier expansions in 
terms of creator and annihilator operators are as follows [1]: 
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∑∫

∑∫
  (13) 

where ED+ = �p2c2 + m0
2c4, ω = ED+/ℏ and k = p/ℏ, while us(p) is the spinor function. The creator 

and annihilator operators must satisfy the anticommutation relation: 

 ( ){ } ( ) ( ) ( )† 3 3, 2r s
p q rsa a p qπ δ δ= −   (14) 

The current (8) becomes the following: 
 ( ) †x = D DJ µ µψ γ ψ

+ +
  (15) 

whose gradient is always zero: 
 ( ) ( )

+ + + +

† † †
0 0x = ( ) 0D D D D D D D DJ im imµ µ µ

µ µ µψ γ ψ ψ γ ψ ψ ψ ψ ψ
+ + +

∂ ∂ + ∂ = + − =   (16) 

Equation (16) shows that ψD+
† = �ψD+�

−1, which agrees with the Majorana equation [7] for j0 = 1/2. 
Therefore, the field current is conserved for the Dirac field with positive energies. Moreover, since γ0 = 𝟙, 
the explicit form of the current is the following: 
 ( )

+ + +

† † †x = + =1+      =1,2,3D D D D D DJ µ µψ ψ ψ γ ψ ψ ψ γ
+ + +

  (17) 

Equation (17) shows that the current always has a positive time component, which confirms that the 
particle is a bradyon.  

Having limited the Dirac field to the only positive frequencies, the Hamiltonian density becomes the 
following: 
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( )

( ) ( )
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d p E p a a
π +

= ∑∫   (18) 

Equation (18) is not upper bound and, as expected, is similar to the Hamiltonian obtained when the 
Majorana field is directly quantised [12]. However, for our purpose, the Dirac field with positive energies 
is only a tool needed to coherently quantise the infinite-component field. Nonetheless, the trouble 
produced from equation (18) is overcome when in the desired theory the tachyonic field is introduced. 

4   The Tachyonic Field with Negative Energies 

The 1/2–spin tachyonic field theory is developed by limiting the Lemke equation [17] to solutions with 
negative energies. The Lagrangian density is the following: 
 ( )L L Li imµ

µψ γ ψ
− − −
= ∂ +   (19) 

where γµ are the Dirac matrices with γ0 = 𝟙. In this theory, the mass m must satisfy equation (5); thus, 
the Lemke Lagrangian may be rewritten as the following: 
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   (20) 

whose negative energies are the following: 
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Equation (21) has physical meaning only if the following constraint is verified: 
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J
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+ −
 − ≥ 

+
  (22) 

Therefore, once the impulse of the starting bradyon with J0 = 1/2  is defined, the antitachyon 
interacting with it must have an impulse such that the constraint (22) is fulfilled. This means that the 
Majorana state with spin j must be the following: 

 ( ) ( ) ( )
( )

2

2 2 2 2
0 02

1 2 1

1 2

J
p J p J m c

J

+ −
≥ +

+
  (23) 

At the limit j → ∞, the squared impulse becomes equal to (p2(J0) + m0
2c2), i.e. by increasing the spin 

the impulse of the exotic state reaches a minimum value different from zero. Furthermore, relativistic 
kinematics shows that the velocity of the bradyon in the exotic state must be greater than c/√2. 
Equation (23) also shows that when the velocity of the bradyon in the exotic state with spin J 
approaches the speed of light, the impulse p(J0) tends to m0c and the impulse p(J) of the composite 
particle tends to zero. Therefore, to this kinematic limit, the antitachyon energy tends to zero, thus 
being upper bound. 

The tachyonic field with negative energy as Fourier expansions of creator annihilator operators is the 
following: 
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  (24) 

In this case, the sum runs also on the spin index, and the quantities k and ω depend on it: 
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Therefore, the exponential functions in the Fourier expansions (24) may be written as follows: 
 ( ){ } ( ) ( )( ){ } ( ) ( )( ){ }0 0exp exp expi kx wt i k j x w j t i k j x w j t± − = ± − ± −   (26) 

The operator �tp
s,j�

†
 creates a tachyon with an impulse that, in accordance with equation (23), depends 

on the momentum of the 1/2-spin bradyon. This means that the creator and annihilator tachyonic 
operators implicitly depend on those bradyonic with positive energies.  

Since γ0 = 𝟙, the conjugate tachyonic field is equal to its adjoint, and the scalar product between the 
two fields ψ�L− and ψL− is zero [17]: 
 † 0 0L L L Lψ ψ ψ γ ψ

− − − −
= =   (27) 

By the orthogonality property (27), it follows that the tachyonic current is the following: 
 ( ) † † †x =        =1,2,3L L L L L L LJ µ µ µψ ψ ψ γ ψ ψ γ ψ γ

− − − − − − −
+ =   (28) 

As expected, the tachyonic current does not have the time coordinate but only the space coordinates. 
The next step should be the quantisation of the tachyonic field, but, the following section proves that 

the tachyonic field is connected with the Dirac field by SLT symmetry and that the anticommutation 
relations fulfilling the Dirac field also hold for the tachyonic one. In other words, the quantisation of the 
Dirac field with positive energies also implies quantisation of the tachyonic field with negative energies. 

5   Algebraic Connection Between the Bradyonic and Tachyonic Fields 

The infinite-component Majorana equation provides both bradyonic and tachyonic solutions [7]. This 
suggests that the two fields should coexist and that one should be the algebraic connection of the other. 
This is equivalent to claiming that a symmetry transformation exists between the bradyonic operators 
�aps �

†and aps  with the tachyonic ones �tp
s,j�

†
 and tp

s,j and that a similar transformation exists between the 
spinors us(p) and ws,j(p). In other words, an invertible transformation that changes a timelike solution 
in a spacelike solution is determined. This symmetry transformation is the interaction force which holds 
together the exotic state formed by a 1/2-spin bradyon and a given number of 1/2-spin antitachyons to 
be compatible with the total spin J. In agreement with Recami [18,19], the desired SLT transformation is 
antiorthogonal: 

 ΛTΛ = −𝟙 (29) 
The transformation depends on the spin J such that acting on the bradyonic operator aps  gives the 
tachyonic operator tp

s,j. This transformation occurs through the similarity transformation: 

 ( ) 1 ,s s j
J p J pa t

−
Λ Λ =   (29) 

Using the properties (29), equation (30) may be rewritten as the following: 
   �ΛJ�

−1aps ΛJ = −ΛJ−1aps ΛJ�ΛJ−1ΛJ� = −tp
s,jΛJ−1ΛJ  (31) 

Furthermore, applying equation (31) to the spinor gives the following: 
�−ΛJ−1aps ΛJ�ΛJ−1ΛJ��ws,j(p) = −ΛJ−1aps �ΛJΛJ−1�ΛJws,j(p) = 

 = −ΛJ−1aps �ΛJws,j(p)� = −ΛJ−1aps us(p) (32) 
Equation (32) is the algebraic transformation, linking the bradyonic state with rest mass m0 and the 
tachyonic states with mass m(J). The following equations then generalise the transformations: 

 �
tp
s,jws,j(p) = −ΛJ−1aps us(p)

�tp
s,j�

†
w� s,j(p) = −ΛJ−1�aps �

†u�s(p)
 (33) 

The antitachyon field operators become the following: 
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ψ�L− = −∫ d3p

(2π)3
∑ 1

�2Ep
ΛJ−1�aps �

†u�s(p)exp{−i(kx − ωt)}s,j

ψL− = −∫ d3p
(2π)3

∑ 1

�2Ep
ΛJ−1apsus(p)exp{i(kx −ωt)}s,j

 (34) 

Since the bradyonic operators aps  and �aps �
† satisfy the anticommutation relations (14), the tachyonic 

operators comply with the same relations, as follows: 

�tp
s,j, �tp

s,j�
†
� = ΛJ−1aps ΛJΛJ−1�aps �

†ΛJ + ΛJ−1�aps �
†ΛJΛJ

−1
aps ΛJ = −ΛJ−1aps �aps �

†ΛJ − ΛJ−1�aps �
†aps ΛJ =

−ΛJ−1 �apr , �aqs �
†� ΛJ = −ΛJ−1aps �aps �

†ΛJ − ΛJ−1�aps �
†aps ΛJ = −ΛJ−1 �apr , �aqs �

†� ΛJ (35) 
Relation (35) proves that the tachyonic field is quantised according to the anticommutation rules. 
Following the same approach, the anticommutation relation between the tachyonic fields shown in 
equation (24) is proven by the following relation: 
 �ψL− ,ψL−

† � = δ(3)(p − p′) (36) 

6   The Infinite-Component Majorana Field 

In section 4, the relationship between the impulses of the exotic state with spin J  and of the 
fundamental state was obtained and shown in equation (23). Now the following constraint is established: 

 �p2(J0)c2 + m0
2c4 = �p2(J)c2 − m0

2c4

(J+1/2)2
 (37) 

from which the following equation is obtained: 
 p2(J) = p2(J0) + (J+1/2)2+1

(J+1/2)2
m0
2c2 (38) 

Therefore, the energy of the exotic state ranges within �0,�p2(J0)c2 + m0
2c4�, and the energy of the 

tachyonic component contributing to the exotic state is the following: 
 Et = ε(J)E(J0)     0 ≤ ε(J) ≤ 1 (39) 
The phases of the exponential functions appearing in the Fourier expansion of the quantum fields are 
the following: 
 exp{±i(ktx −ωtt)} = exp{±ε(J)i(k0x − ω0t)} = g�ε(J)�exp{±i(k0x − ω0t)} (40) 
where the wave vector and the pulsation of the bradyon in the fundamental state are denoted by k0 and 
ω0, respectively. g�ε(J)� is a continuous function to be found. Therefore, the antitachyon field operators 
may be rewritten as the following: 

 �
ψ�L− = −∑ g�ε(J)�

�ε(J)
ΛJ−1J ψ�D+

ψL− = −∑ g�ε(J)�
�ε(J)

ΛJ
−1

J ψ+

 (41) 

By (41), the Lagrangian (19) may be written as the following: 
 ℒL− = ∑ g�ε(J)�

�ε(J)
�ΛJ−1ψ�D+�iγµ ∂µ + im�ΛJ−1ψD+�J  (42) 

As a result, the tachyonic mass is the following: 
 µ(J) = i �(J+1/2)2−1

(J+1/2)
m0 = η(J)m0 (43) 

When η(J) ranges between [0,1], the Lagrangian (42) becomes the following: 
 ℒL− = ∑ g�ε(J)�

�ε(J)
�ΛJ−1ψ�D+�iγµ ∂µ − η(J)m0�ΛJ−1ψD+�J  (44) 

The Lagrangian of the Majorana exotic state with spin J can then be presented as the following: 
 ℒM(J) = ∑ g�ε(J)�

�ε(J)
�ΛJ−1ψ��iγµ ∂µ�ΛJ−1ψ − η(J)m0ΛJ−1ψ�ΛJ−1ψ� + �ψ��iγµ ∂µ�ψ − m0ψ�ψ�J  (45) 

To simplify the notation, the subscripts distinguishing the bradyonic and tachyonic fields have been 
eliminated. Thus, the Lagrangian (45) must be equivalent to: 
 ℒM = ψ�M�iγM

µ ∂µ − m0�ψM (46) 
The infinite-component Majorana field is denoted by ψM, while γM

µ  represents the infinite matrices which 
develop in block, increasing the value of the spin: 
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 γM
µ = �

σµ(1/2) 0 ⋯
0 σµ(3/2) …
⋮ ⋮ ⋱

� (47) 

where σµ(n/2) is the spin matrix for the particle with spin n/2. Thus, by the equivalence of the 
Lagrangians (45) and (46), the following is obtained: 

 �
ψ�M�iγM

µ ∂µ�ψM ≈ �∑ g�ε(J)�
�ε(J)

�ΛJ−1ψ��iγµ ∂µ�ΛJ−1ψ� + �ψ��iγµ ∂µ�ψ�J �

m0ψ�MψM ≈ m0�ψ�ψ + ∑ η(J)ΛJ−1ψ�ΛJ−1ψJ �
 (48) 

Since the numerical coefficients ε(J) and η(J) vary within the same range, they can be set to be equal. 
Moreover, since ψ� = ψ†, and the tachyonic fields ψL− and ψL−

† are orthogonal, the second equation in (48) 
becomes the following: 
 ψ�MψM ≈ ψ†ψ (49) 
This result was expected because the Majorana theory reduces for positive frequencies to that of the 
Dirac theory if  J = 1/2. All other infinite components of the Majorana field are such that their product 
is zero, ensuring that the time-component of the current is only that associated to the bradyon. The 
space-components, instead, are the results of the contribution of both the bradyon and tachyon. 
Therefore, the SLT matrices ΛJ−1  transform the Dirac fields ψ  and ψ† , making them orthogonal. 
Therefore, the Majorana field may be explicitly written as the following: 

 𝜓𝑀 =

⎝

⎜
⎜
⎛

ψ

�g�ε(3/2)�Λ3/2
−1ψ

�g�ε(5/2)�Λ5/2
−1ψ

⋮ ⎠

⎟
⎟
⎞

 (50) 

while the adjoining field is the following: 

 ψM
† = �ψ†,−�g�ε(3/2)�Λ3/2

−1ψ†,−�g�ε(5/2)�Λ5/2
−1ψ†, … � (51) 

Equation (51) shows that �ΛJ−1�
† = ΛJ−1 since antiorthogonal STL are also antiunitary, i.e. (ΛΛ∗)T =

(ΛΛ−1)T = (Λ−1Λ) = −𝟙. Using the obtained results, the Majorana Lagrangian may be written as the 
following: 
 ℒM = ψ† �i �∑ g�ε(J)�

�ε(J)
�ΛJ−1�

TγµΛJ−1J � ∂µ − m0�ψ (52) 

Equation (52) shows that the action of the infinite Majorana matrices is equivalent to that of the 
infinite sum of Dirac matrices transformed by SLT transformations: 
 γM

µ = �∑ g�ε(J)�
�ε(J)

�ΛJ−1�
TγµΛJ−1J � (53) 

where the coefficient ε(J) represents the expansion of the bradyonic tower with discrete mass spectrum, 
while the matrices ΛJ represent the expansion of the tachyonic counterpart with a continuous mass 
spectrum. This is a relevant result, since an infinite matrix may be easily obtained using only finite 4x4 
well-known matrices. 

This theoretical approach also solves the problem affecting the Majorana Hamiltonian [12]; in fact, in 
terms of creator and annihilator operators, the Hamiltonian is the following: 
 ℋ = ∫ d3p

(2π)3
∑ Ep(J)s,J ��aps �

†aps + �tp
s,j�

†
tp
s,j� == ∫ d3p

(2π)3
∑ Ep(J)s,J ��aps �

†aps + ΛJ−1�aps �
†ΛJ−1aps � (54) 

where Ep(J) is the energy of the Majorana state with spin J. Hamiltonian (54) is lower bound by the 
tachyonic term that, therefore, corresponds to the contribution given by the antiparticle in the Dirac 
Hamiltonian. The particle energy always remains positive and tends to zero, increasing the number of 
tachyons bound to the bradyon with J = 1/2. Therefore, the Majorana particle with positive energy can 
never be superluminal because of the antitachyon that decreases the energy as the particle velocity 
approaches the speed of light, which is similar to the process that occurs in the Dirac theory when the 
antiparticle is considered. If the theory had been constructed using the tachyonic field with positive 

Journal of Particle Physics, Vol. 2, No. 4, October 2018 39

Copyright © 2018 Isaac Scientific Publishing JPP



energy, then the Hamiltonian would never been lower bound and would have suffered the same troubles 
encountered when the quantisation of Majorana field is faced directly [12]. Moreover, since the energy of 
the bradyon is lower bound (never lower than zero), the energy of the antitachyon cannot be infinite or 
zero. This explains why the Majorana exotic states are made by a bradyon particle and antitachyon 
particles. 

Regarding the Majorana field, since the Lagrangian is given by the contribution of the Dirac field 
with positive energy and the tachyonic field with negative energy, the following equation can be 
obtained: 
JM
µ (x) = ψ�MγM

µ ψM = ψD+
† ψD+ + ψD+

† γµψD+ + ψL−
† ψL− + ψL−

† γµψL− = ψD+
† ψD+ + ψD+

† γµψD+ +
ΛJ−1ψD+

† γµΛJ−1ψD+      γ = 1,2,3  (55) 
The current is given by a time component and two spacelike components, of which one corresponds to 
the bradyonic aspect and the other corresponds to the tachyonic aspect. The divergences of the current 
(55) and any of its components are zero. 

Lastly, in the Majorana field, the vacuum energy corresponds to an exotic state with infinite value of 
the spin. Therefore, the Majorana quantum vacuum may form particle-antitachyon pairs, and a luxon is 
a composite particle in the limit of infinite J. The idea of luxon being a composite particle originates 
from the beginning of quantum mechanics and has been reconsidered in the last decades in the ambit of 
the high energy physics [23-24]. 

7   Particle-Tachyon Interaction Terms 

In addition, there is an interaction term between a bradyon and a tachyon that is responsible for the 
existence of the Majorana exotic states. Since no experimental data exists corresponding to this 
interaction, its physical nature can be determined based on the results of previous studies and some 
inherent properties of the theory. The theoretical assumptions are as follows: 
1)  The kinematic theory of Lemke on the decay of an ordinary particle predicts the emission of luxons γ 

[25]. 
2)  The Majorana states with spin J  are formed only at very high energies and, considering the 

uncertainty principle, they have very short lifetimes that are inversely proportional to the spin. 
Therefore, the interaction force is of a weak nature. 

3)  Considering an electrically charged bradyon, antitachyons forming the composite particle may be 
charged or neutral. (the Majorana equation applies both for charged and neutral particles, as well as 
luxons). Therefore, we may assume that the tachyonic tower also has an electric charge (which is 
indicated with qt) that interacts with the electric charge of the bradyon. 
Thus, the interaction between bradyon and antitachyons always has an exchange component (the 

STL matrices are just the algebraic formulation of this interaction) and if the bradyon is in its 
fundamental state, the interaction has a component of electrical nature. Regarding the first interaction 
term, the following Fermi method can calculate the weak interaction [26-27]: 
 ℒint.(exchange) = GF�ψ�L−γ

µψD+� + c. c. = GF�ΛJ−1ψ†γµψ� + c. c. (56) 
where c.c. represents complex conjugate. Regarding the interaction between Coulomb charges and 
tachyonic charges, their respective vector potentials can be calculated by the following: 
 ℒint.(charge) = i�qAµψ�D+γ

µψD+�i�qtAµtψ�L−γ
µψL−� (57) 

where Aµ is the vector potential of the electromagnetic field and Aµt  is the potential vector of the 
tachyonic field. The latter is potentially connected to the fifth force [28], and the source transporting the 
tachyonic and electric charge always has subluminal behaviour. In addition, the potential generated by 
the tachyonic charge is not related to the propagation of the tachyonic wave [29]; therefore, it is 
consistent with the theory constructed since it is inherent to the only bradyonic tower. 

The potential vector of the quantum electrodynamics is as follows: 

 Aµ = ∑ � ℏ
2ωkε0

�εµλαkλeik∙x + εµλ∗ αkλ
† e−ik∙x�k,λ  (58) 

where εµλ  (λ = 1,2) is the polarisation vector of photon while αkλ  and αkλ
†  are their creator and 

annihilator operators. The potential vector of tachyons (gauge invariant) can also have the same 
structure of (58): 
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 Aµt = ∑ �
ℏ

2ωktε0
�εµλtαkλte

ik∙x + εµλt
∗ αkλt

† e−ik∙x�k,λ  (59) 

where ωkt  is the frequency of the luxon mediating the tachyon-tachyon interaction, εµλt  is its 
polarisation vector (and therefore is a boson with spin 1), and αkλt  and αkλt

†  are their creator and 
annihilator operators. 

Since the Majorana exotic states are formed by a half-integer spin bradyon and antitachyons with 
negative half-integer spin, in the case of a charged particle, the Lagrangian must also include a term 
describing the field of luxons mediator of the interacting force due to the charge qt. By analogy with the 
quantum electrodynamics, this field is given by the following: 
 ℒluxon = − 1

4µ0
FµυtFt

µυ (60) 
where Fµυt = �∂µAυt − ∂υAµt�. The Lemke Lagrangian can be corrected by introducing an interaction 
term. Using the method of minimal substitution, the following is obtained: 
 ℒL− = ∑ g�ε(J)�

�ε(J)
�ΛJ−1ψ† �iγµ�∂µ − iqtAµt�� ΛJ

−1ψ − ε(J)m0ΛJ−1ψ†ΛJ−1ψ�J  (61) 

The explicit form of Lagrangian (1) is then the following: 
�∑ g�ε(J)�

�ε(J)
�ΛJ−1ψ† �iγµ�∂µ − iqtAµt�� ΛJ

−1ψ� + ψ†�iγµ ∂µ�ψJ − m0ψ†ψ − 1
4µ0

FµυtFt
µυ� =

= GF ��ΛJ−1�
Tψ†γµψ� + �GF ��ΛJ−1�

Tψ†γµψ��
∗
− �qAµψ†γµψ� �qtAµt�ΛJ

−1�Tψ†γµΛJ−1ψ�  (62) 

8   Discussion 

This study has shown that the Majorana equation for particle with arbitrary spin hides a deeper 
structure where the particles with increasing spin are composite systems formed by a half-integer spin 
bradyon and half-integer spin antitachyons. Within the quantum field theory, these systems are 
produced by the interaction between the Dirac field with positive energies and the tachyonic field with 
negative energies. This interaction leads to a lower bound Hamiltonian constructed by field operators 
that are coherent with the spin-statistic theorem. The Majorana field describes these systems by an 
infinite sum of Dirac fields which differ in mass and the SLT matrix that transforms the spinor of the 
bradyon in its fundamental state in a tachyon spinor. This approach solves all troubles encountered by 
directly facing the quantisation of a field with infinite components with positive energies. 

The interaction between the Dirac field with positive energies and the tachyonic field leads to 
interaction terms between bradyon-tachyon, tachyon-tachyon and the respective charges. In addition, 
the probability of existence of an exotic state is proportional to the relativistic factor β and, once the 
energy is established, the probability decreases as spin J increases [22]. This suggests that the exotic 
states are instable and that their instability increases as the number of antitachyons forming the states 
increases. Based on these argumentations, the bradyon-tachyon interaction is a weak nature. 
Furthermore, the previous section proved that this interaction is given by the transformation of the 
bradyon spinor performed by the SLT matrices. The SLT matrices depend on the spin value J, but the 
explicit form of this algebraic dependence has not yet been determined. To do this, the numerical factor 
η(J) = �(J + 1/2)2 − 1/(J + 1/2) that ranges between zero, when the bradyon is in its fundamental 
state corresponding to J = 1/2 (minimum energy), and one, when the bradyon is in an exited state with 
a spin value that tends to infinite (maximum energy corresponding at the limit v → c), must be 
determined. Therefore, the factor η(J)  coincides with the relativistic factor β , and since the SLT 
matrices are constructed using this factor [30], their functional dependence becomes explicit. 

Overall, the Majorana quantum field theory is formulated simply by Dirac gamma matrices and SLT 
matrices, both of finite dimensions, which act on a Dirac four-spinor. However, the nature of the 
bradyon-tachyon interaction and, above all, the tachyon-tachyon interaction must be investigated, not 
only for the purely quantum aspect, but also for aspects concerning their charge (not necessarily of 
electrical nature). This information does not directly emerge from the Majorana equation and goes 
beyond the main purpose of this study, which aims to find an alternative way to quantise an infinite 
component field that is consistent with the laws of quantum theory. Even regarding the fine structure of 
the internal exotic states, due to the projection of the total spin about the z-axis, a more in-depth 
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analysis is needed. Consequently, the investigation of these aspects will be postponed to a more specific 
study. 

9   Conclusion 

The quantisation of Majorana field allows the study of new composite quantum systems whose stability 
is achieved only in extreme energy conditions where the bradyonic field interacts with the tachyonic 
field [31]. The internal structure of these exotic systems can be imagined as a planet (the bradyon) 
orbiting a system of stars (an even number of antitachyons) such that the total spin is n/2 (where n is 
an integer number) and the mass is always real. These systems may be the precursors or a part of the 
primordial particle broth which gave rise to the topical quantum particles. High energy composite 
particles of exotic nature have already been detected in LHCb [32], and experimentalists are engaged in 
the research of similar objects that better explain the matter genesis (in all its forms). The results 
obtained in this work also show that elementary particles have an internal structure, at least under 
extreme conditions, which could be the starting point for explaining phenomena not yet well understood, 
such as the oscillation of the particle mass [33] or the lack of fermions with high spin values, and 
physicists are trying to explain these concepts by string theory. In this sense, the Majorana field theory 
could be the link between the quantum mechanics and the new theoretical models where elementary 
particles are objects with spatial extensions. A proof of this link is that the spin of a hadron is never 
greater than a certain multiple of the root of its energy. No simple hadronic model, such as the model 
that considers particles as composed of a set of smaller particles interacting by a force, explains these 
relationships [34]. Using the energy-momentum relation for whatever Majorana exotic state, it is easy to 
find that the total spin J is given by the following: 
 J = √E 2γE0−E

E√E
 (63) 

where E is the relativistic energy of the exotic state, E0 is the energy of the bradyon in its fundamental 
state and γ is the Lorentz factor. Equation (63) proves that the spin of a particle is a certain multiple of 
the root of its energy, confirming the above statement. 
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