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Abstract We study the inflation and the cosmological perturbations generated during the inflation
in a local scale invariant model. The local scale invariant model introduces a vector field Sµ in this
theory. In this paper, for simplicity, we consider the temporal part of the vector field St. We show
that the temporal part is associated with the slow roll parameter of scalar field. We consider a
cosmological solution which provides sufficient number of e-foldings for the inflation. Finally, we
estimate the power spectrum of scalar perturbation in terms of the parameters of the theory.

Keywords: Scale invariance, cosmological perturbation, inflation.

1 Introduction

In modern cosmology, the theory of inflation provides a platform to understand the early universe. The
beauty of inflation is that it not only solves many problems of standard model of cosmology such as
horizon problem, flatness problem, entropy problem, etc [1–9], but also generates the perturbation which
can act as seed for structure formation and simultaneously provides the explanation for the anisotropy
in CMBR spectrum. The simplest model of inflation usually contains a scalar field with a nearly flat
potential. During inflation, the universe goes through an exponential expansion for a sufficient amount of
time with a nearly de-Sitter background. In order to solve problems associated with standard model of
cosmology the number of required e-folding is around sixty which is related to duration of inflationary
phase. The background value of slowly rolling scalar field and its potential energy are responsible for
providing required number of e-foldings for inflation.

In this paper, we look for the solution giving rise to inflation in a local scale invariant model. Earlier,
this model has been explored in the context to explain current acceleration of the universe [10–12]. This
model does not have any dimensionful parameter. There is no cosmological constant present in this theory
because local scale symmetry is preserved here. However, the cosmological constant can be generated
when the scale invariance is broken cosmologically [10]. Cosmological constant is constrained by the scale
symmetry and hence it might solve the fine tuning problem associated with cosmological constant [12,13].
Once the symmetry is broken, the other dimensionful parameter such as gravitational constant is also
generated [10]. Thus, the scale invariance could be one of the appropriate symmetry to describe the
current universe. Some works related to removal of anomaly in conformal invariance and applications of
conformal invariance have been discussed in Refs. [10–23].

The local scale transformation is direct product of general coordinate transformation and pseudo scale
transformation [22]. These pseudo scale transformations are given by

xµ → xµ,

φ→ φ/Λ, gµν → gµν/Λ2,

Aµ → Aµ, → /Λ3/2, (1)

where, xµ is space-time coordinate, φ is a scalar field, gµν is the metric, Aµ is U(1) gauge field, ψ is
the fermionic field and Λ(x) is scale of the transformation. Therefore, the action which already respects
general coordinate transformations, only needs to respect the pseudo scale invariance to have the local

Journal of Particle Physics, Vol. 2, No. 3, July 2018 
https://dx.doi.org/10.22606/jpp.2018.23001 23

Copyright © 2018 Isaac Scientific Publishing JPP



scale invariance. A vector field Sµ; called vector meson; is introduced here to preserve the local scale
invariance, where this vector meson transforms as

Sµ → Sµ −
1
f
∂µ(lnΛ), (2)

under the pseudo transformation and thus the corresponding covariant derivative is given by D′µφ ≡
(∂µ − fSµ)φ, where f is the gauge coupling constant. Incorporating the covariant derivatives, we can
write modified Ricci scalar R̃ as

R̃ = R− 6f2SµSµ − 6fSµ;µ. (3)

Here, Sµ = (St,Si), Sµ;ν is usual covariant derivative of Sµ in the gravitational background and R̃ respects
the pseudo scale invariance . In Ref. [11], the background value of temporal part of vector meson St(= St)
is taken to be zero as a solution. Under this condition, one obtains the de-Sitter solution if we consider
spatial part Si = 0. We can also consider Si 6= 0. The very small background value of Si(= Si) in early
universe epoch as an initial condition [11] explains the cold dark matter of universe today. In Ref. [11], it
is also argued that Si oscillates over time, however, averaging over time, the energy density corresponding
to Si drops as 1/a3 and corresponding pressure is approximately zero. Thus, Si may be a candidate for
cold dark matter of the current universe.

For St = 0, we can have the inflation for the infinite period. However, we would not have the definite
value of the power spectrum of the scalar perturbation since the slow roll parameter becomes zero. To
achieve the definite value of the scalar power spectrum we consider very small value of St in this paper.
In addition, we assume Si = 0 since it does not play any role during the inflation. Considering a solution
for St, we break the scale invariance [10,11,24,25]. We call this phenomenon as “soft local scale symmetry
breaking” [24, 25] similar to spontaneous local symmetry breaking. In the case of soft symmetry breaking,
a nearly de-Sitter solution can be obtained for certain choice of parameters.

The paper is organized as follows. In Sec. (2), we consider a local scale invariant scalar field model,
write all the background equations and show that we can have required number of e-folding during the
inflation. In Sec. (3), we perturb the Einstein’ equation, vector field equation and scalar field equation at
linear level. In Sec. (4), we calculate the power spectrum and finally the conclusions are drawn in Sec. (5).

2 Background Equations of Motion
In this section, we consider a local scale invariant action with a scalar field and a vector meson [10]. We
solve for all the background equations in terms of cosmological time and show that we have near de-Sitter
solution. Introducing a vector meson and corresponding covariant derivative, we may write the local scale
invariant action which respects the transformations (1) for a scalar field as following,

L = −β8 φ
2R̃+ Lmatter, (4)

where,

Lmatter = 1
2g

µνD′µ(Φ)D′ν(Φ)− λΦ4

4 − 1
4g

µρgνρEµνEρσ, (5)

Eµν = ∂µSν − ∂νSµ, R̃ is a modified curvature scalar, which is covariant under local pseudo-scale
transformation. We here note that we can not include any dimensionful parameter such as cosmological
constant in the action. The Lagrangian (4) has been studied in Ref. [10, 11] to describe the current
acceleration of the universe. Here, we explore the inflation in this model. The Einstein equation for
Lagrangian (4) can be written as

Bαβ + 1
Φ2 ∂λ(Φ2)Cλαβ + 1

Φ2 (Φ2);λ;κD
αβκλ = 4

βΦ2T
αβ = T̃αβ , (6)
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where, the tensors Bαβ , Cλαβ and D κλ
αβ are given as,

Bαβ = −1
2gαβR+Rαβ + 3f2gαβS · S − 6f2SαSβ , (7)

Cλαβ = −3fgαβSλ + 3f
(
Sβgλα + Sαgλβ

)
, (8)

D κλ
αβ = −1

2
(
gλαg

κ
β + gκαg

λ
β

)
+ gαβg

λκ (9)

respectively and for given Lmatter, the energy momentum tensor Tµν takes form as following,

Tµν = −Lmattergµν +D′µΦD′νΦ−
1
2
(
EανEβµg

αβ + EµαEνβg
αβ
)
. (10)

Varying the action with respect to Φ and Sµ fields, we have equations of Φ and Sµ,

gµν∂ν(∂µΦ− fSµΦ) + (∂µΦ− fSµΦ)
[

1
2g

µνgαβ∂νgαβ + ∂νg
µν

]
+ fgµνSν (∂µΦ− fSµΦ)

+λΦ3 + β

4ΦR̃ = 0, (11)

and

∂ν [gνρgµσ(∂ρSσ − ∂σSρ)] + 1
2g

νρgµσgαβ∂νgαβ(∂ρSσ − ∂σSρ) + 3
2βf

2Φ2gηµSη − fgµνΦD′νΦ

−3
4fβg

µκ∂κΦ
2 = 0, (12)

respectively. We use FRW metric [1,−a2,−a2,−a2], where a(t) is the scale factor, to compute the
background equations. The equations of motion of vector field become,

fSt = φ̇

φ
(13)

S̈i + ȧ

a
Ṡi +

(
3
2β + 1

)
f2φ2Si = 0. (14)

Here, φ(t) and Sµ(t) are the background values of scalar field Φ(x, t) and vector field Sµ(x, t) respectively.
The background values for i− 0 components of energy momentum tensor T̃µν , Einstein tensor Gµν , C
and D terms of modified equation Eq. (6) are given as

Ti0 = 4fSi
β

(
fSt −

φ̇

φ

)
= 0 (15)

Gi0 = Ri0 −
1
2gi0R = 0 (16)

φ2
;λ;kD

kλ
i0 = 0 (17)

∂λ(φ2)
φ2 Cλi0 = 6fSi

φ̇

φ
(18)

and also,

3fgi0SµSµ − 6f2SiSt = −6f2SiSt. (19)

From Eq. (18) and Eq. (19) using Eq. (13), the i−0 component of modified Einstein equation (6) vanishes.
After simplifications, the background values of Lmatter, T00 and Tjk can be written as

Lmatter = 1
2a2

(
Ṡ2
i − f2S2

i φ
2)− λφ4

4 , (20)

T00 = 1
2a2

(
Ṡ2
i + f2S2

i φ
2)+ λφ4

4 , (21)

Tjk = 1
2

(
Ṡi

2 − f2S2
i φ

2
)
δjk + f2SjSkφ

2 − ṠjṠk −
λφ2

4 a2δjk. (22)
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Using equation of motion fSt = φ̇
φ (t is cosmological time), the equation of motion of φ can be written as

λφ2 = −f2S
2
i

a2 −
β

4 R̃, (23)

which can be simplified as

R− 6 φ̈
φ
− 18 ȧ

a

φ̇

φ
+ 4f2S2

i

βa2

(
3β
2 + 1

)
= −4λφ2

β
. (24)

(0, 0) component of Einstein equation gives(
ȧ

a

)2
+
(
φ̇

φ

)2

+ 2 φ̇
φ

ȧ

a
= 4

3βφ2

[ 1
2a2

{
Ṡi

2 + (3β/2 + 1)f2S2
i φ

2
}

+ λφ4

4

]
, (25)

and taking trace of (i, j) component of Einstein equation, we have

2ä
a

+
(
ȧ

a

)2
+ 2φ̈

φ
−
(
φ̇

φ

)2

+ 4 ȧ
a

φ̇

φ
= 4
βφ2

[
− 1

6a2

{
Ṡi

2 − (3β/2 + 1)f2S2
i φ

2
}

+ λφ4

4

]
. (26)

If we consider very small coupling constant f << 1, Eq. (14) becomes

S̈i = − ȧ
a
Si =⇒ Ṡi = C1/a. (27)

If C1 is very small, after a small time Ṡi = 0, and so Si becomes nearly constant. For simplifications, we
assume Si = 0. From Eq. (25) and Eq. (26), we have

ä

a
= λφ2

3β −
[ φ̈
φ
−
(
φ̇

φ

)2

+ ȧ

a

φ̇

φ

]
. (28)

From Eq. (25), we have

H + φ̇

φ
=

√
λ

3βφ (29)

Differentiating Eq. (29) and plugging for φ̈ and φ̇ in (28), we observe the consistency relation, (ä/a =
Ḣ +H2). We don’t have independent equation of motion of φ since the combination of Einstein equations
(25) and (26) gives Eq. (24) of scalar field φ. We assume very slow varying scalar field such that inflation
can occur. We choose a power law solution for scalar field as,

φ = α(tc − t)n, (30)

where, α and tc are constants. Inflation begins at time ti. We assume tc − ti >> N/H, N is number of
e-folding during inflation, so that φ is nearly constant during inflation. Here we consider n < 1. Therefore,
| φ̇φ | =

n
tc−t <<

nH
N << H. Therefore from Eq. (29),

H ≈

√
λ

3βφ, (31)

and hence the scale factor a grows exponentially, i.e., a ∼ a0e
Ht ∼ a0e

√
λ

3β φt. The slow roll paramter ε
turns out to be,

ε = − Ḣ

H2 =
√

3β
λ
nα

1
n

1
φ
n+1
n

. (32)
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At the end of the inflation, the value of scalar field would be

φe =
(

3β
λ

) n
2(n+1)

n
n
n+1α

1
n+1 . (33)

Now the number of e-folding N is calculated as

N =
∫ φe

φi

Hdt = n

n+ 1

[(φi
φe

)n+1
n

− 1
]
, (34)

where, φi is the value of scalar field at the begining of inflation. From Eq. (34), it can be expressed as,

φi = φe

[
1 + N (n+ 1)

n

] n
n+1

. (35)

The value of slow roll parameter εi at the beginning of inflation is given by,

εi = 1
1 + N (n+1)

n

. (36)

We note that the inflation ends after certain time due to the non zero value of St (= φ̇
fφ ). Thus, St plays

important role in natural exit of inflation and reheating the universe.

3 Cosmological Perturbations

In this section, we write all the perturbation equations in conformal time. We consider Newtonian gauge
and so the perturbed metric takes the form

gµν = a(η)2[1 + 2A, (−1 + 2ψ)δij ], (37)

where, A and ψ are scalar perturbations. In conformal time η, the background equations of motion for
vector field are given as

fS0 = φ′

φ
; (38)

S′′i + f2(3β
2 + 1)a2φ2Si = 0. (39)

Here, prime ′ represents the derivatives with respect to conformal time. We note that we use φ̇/φ =
φ′/(aφ) [S0 = aSt]. We perturb all the fields as Φ = φ(η) + φ̂(η, x, y, z), Si = Si(η) + Ŝi(η, x, y, z) and
S0 = S0(η) + Ŝ0(η, x, y, z). Therefore, the time-component of the perturbation equations of vector field is
given as

1
a4

[
2S′i∂i(ψ −A)− ∂2

i Ŝ0 + ∂iŜ
′
i

]
+ S′i
a4 ∂i(A− 3ψ) + 3βf2

2a2

[
2φS0φ̂− 2φ2S0A+ φ2Ŝ0

]
−fφ
a2

[
φ̂′ − fφŜ0 − fS0φ̂

]
− 3fβ

2a2

[
− 2φφ′A+ φ′φ̂+ φφ̂′

]
= 0 (40)

Or,

f

(
3β
2 + 1

)
a2
(
fφ2Ŝ0 + φ′φ̂− φφ̂′

)
− ∂i(A+ ψ)S′i − ∂2

i Ŝ0 + ∂iŜ′i = 0, (41)

and expanding the spatial component of vector equation,

−8S′ia′(A− ψ)
a5 + 2S′i(A′ − ψ′)

a4 + 2S′′i (A− ψ)
a4 + 4a′

a5

(
Ŝ′i − ∂iŜ0

)
− 1
a4

(
Ŝ′′i − ∂iŜ′0

)
+ 1
a4

(
∂2
l Ŝi − ∂i∂lŜl

)
+ 8a′S′i

a5 (A− ψ)− 4a′

a5

(
Ŝ′i − ∂iŜ0

)
− S′i
a4 (A′ − 3ψ′)− 3βf2

2a2

[
2φSiφ̂

+2φ2Siψ + φ2Ŝi

]
− fφ

a2

(
2fφSiψ + 2fSiφ̂+ fφŜi − ∂iφ̂

)
+ 3fβφ

2a2 ∂iφ̂ = 0. (42)
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Simplifying, we get

−f
(

3β
2 + 1

)
a2φ
[
fŜiφ+2fSi

(
φ̂+ φψ

)
−∂iφ̂

]
+
[
2(A−ψ)S′′i +∂2

l Ŝi−∂i∂lŜl+S′i (A′ + ψ′)+∂iŜ0
′
−Ŝ′′i

]
= 0.

(43)
The perturbed part of scalar field equation becomes,

1
a2

[
φ̂′′ − fŜ′0φ− fŜ0φ

′ − fS′0φ̂− fS0φ̂
′ − ∂2

i φ̂+ f∂iŜiφ+ fSi∂iφ̂
]

+ β

4 φ̂R̃

+β

4 φ
[
δR− 6f

[
− 2S′0

A

a2 − 4 a
′

a3AS0 + 1
a2

(
Ŝ0
′
− ∂iŜi

)
− 1
a2Sk∂k(A− ψ)− S0

a2 A
′ − 3S0

a2 ψ
′ + 2 a

′

a3 Ŝ0

]
+12f

2

a2

[
S2

0A+ S2
i ψ − S0Ŝ0 + SiŜi

]]
+ 2 a

′

a3

(
φ̂′ − fφŜ0 − fS0φ̂

)
+ fSiφ

a2 ∂i (A− ψ)

+2f2φ

a2

(
S2
i ψ + SiŜi

)
+ fS0

a2

[
φ̂′ − fφŜ0 − fS0φ̂

]
− fSi

a2

(
∂iφ̂− fSiφ̂

)
+ 3λφ2φ̂ = 0.(44)

Now we write the perturbation of each terms of left hand side of Eq. (6) except Gµν = Rµν − 1
2gµνR

which appears in Bαβ given in Eq. (7). Those are as following,

δ
(
3f2g00S

µSµ − 6f2S0S0
)

= −6f2
[
S0Ŝ0 + SiŜi + S2

i (A+ ψ)
]
, (45)

δ
(
3f2gi0S

µSµ − 6f2SiS0
)

= −6f2
(
S0Ŝi + SiŜ0

)
, (46)

δ
(
3f2gijS

µSµ − 6f2SiSj
)

= −6f2
(
SiŜj + SjŜi

)
(i 6= j), (47)

δ
(
3f2gijS

µSµ − 6f2SiSj
)

= 6f2
(
−S0Ŝ0δij + S2

0(A+ ψ)δij + δijSkŜk − SiŜj − SjŜi
)
,

(48)

δ

(
∂λΦ

2

Φ2 Cλ00

)
= 6f
φ2

[
φφ′Ŝ0 + φSi∂iφ̂− S0φ

′φ̂+ S0φφ̂
′
]
, (49)

δ

(
∂λΦ

2

Φ2 Cλi0

)
= 6f
φ2

[
φφ′Ŝi + S0φ∂iφ̂+ Si

(
−φ′φ̂+ φφ̂′

) ]
, (50)

δ

(
∂λΦ

2

Φ2 Cλij

)
= 6f

φ

[
Sj∂iφ̂+ Si∂j φ̂

]
(i 6= j), (51)

δ

(
∂λΦ

2

Φ2 Cλij

)
= −6f

φ2

[
(−φφ′Ŝ0 + 2φφ′S0A+ S0φ

′φ̂+ 2φS0φ
′ψ − S0φφ̂

′)δij + δijφSk∂kφ̂

−2Siφ∂j φ̂
]
, (52)

δ

(
Φ2

;λ;k

Φ2 D kλ
00

)
= −2∂2

i φ̂

φ
−

6
[
a′φ′φ̂+ φ

(
−a′φ̂′ + aφ′ψ′

) ]
aφ2 , (53)

δ

(
Φ2

;λ;k

Φ2 D kλ
i0

)
= −2∂i(φ′φ̂+ φφ̂′)

φ2 +
2
[
aφ′∂iA+ a′∂iφ̂

]
aφ

, (54)

δ

(
Φ2

;λ;k

Φ2 D kλ
ij

)
= 1
φ2

[2φ̂
φ

(φ2)′′δij − (2φφ̂),ij − (2φφ̂)′′δij + (2φφ̂),mmδij

+ 2(φ2)′
(

(A+ ψ)a
′

a
+ ψ′

)
δij + (φ2)′A′δij + 2a

′

a

(
φ′φ̂− φφ̂′

)
δij

+ 2(A+ ψ)(φ2)′′δij
]
. (55)
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Perturbing the right hand side of Eq. (6), we have δT̃αβ = − 8φ̂
φ3Tαβ + 4

βφ2 δTαβ , where,

δTαβ = −δLmattergαβ − Lmatterδgαβ + δ
[
D′αΦD′βΦ−

1
2 (EµβEναgµν + EαµEβνg

µν)
]

≡ −δLmattergαβ − Lmatterδgαβ + δXαβ , (56)

and using fS0 = φ′

φ , we have

Lmatter = −1
2
f2S2

i φ
2

a2 − λφ4

4 + S′2i
2a4 ,

δLmatter = −f
2S2

i φ
2

a2 ψ + fSiφ

a2

[
∂iφ̂− fSiφ̂− fŜiφ

]
− λφ3φ̂− 1

a4

[
S′2i (A− ψ)− S′i(Ŝi

′
− ∂iŜ0)

]
,

δX00 = − 2
a2

[
S′i(∂iŜ0 − Ŝ′i)− S2

i ψ
]
,

δXij = −fSiφ(∂j φ̂− fφŜj − fSj φ̂)− fSjφ(∂iφ̂− fφŜi − fSiφ̂)

− 1
a2

[
S′j(Ŝ′i − ∂iŜ0) + S′i(Ŝ′j − ∂jŜ0)− 2S′iS′jA

]
,

δXi0 = δTi0 = −fSiφ
[
φ̂′ − fŜ0φ− fS0φ̂

]
− S′k
a2 (∂kŜi − ∂iŜk). (57)

In the next section, we utilize these perturbation equations derived here to compute the power spectrum
of scalar perturbation. The perturbation equations for i− 0 and i 6= j of Eq. (6) are useful in eliminating
the gravitational scalar perturbation fields. However, in the next section, we show that for smaller β we
don’t need to eliminate these fields as these become much smaller than that of matter scalar perturbation
and hence we can drop these fields.

4 Power Spectrum

Now we focus on the power spectrum of the scalar perturbation. We only consider the background
value S0 which is due to scale invariance. However, we assume Ŝi as zero considering the coupling f is
very small and we also assume Ŝ0 = 0 for the same reason. Using δRi0 = −2a

′

a A − 2ψ′ ∼ −2a
′

a A and
δRij = ∂i∂j(A− ψ) for i 6= j and taking i0 and ij(i 6= j) components of perturbed part of Eq. (6), we
have

A ∼ φ̂

φ
, A− ψ = 2 φ̂

φ
or, A ∼ −ψ. (58)

Considering, the very small value for β, we may write the equation of motion (44) as,

φ̂′′ + 2a
′

a
φ̂′ +

[
k2 +m2a2

]
φ̂+ 12f2S2

0A ' 0, (59)

where, m2 is given as,

m2 = −
(

3β
2 + 1

)
1
a2

[
fS′0 + f2S2

0 + 2f a
′

a
S0

]
+
[βR

4 + 3λφ2
]

(60)

The contribution from A ∼ φ̂
φ in Eq. (59) is very small, and hence using the redefinition φ̂ = σ/a, the

scalar perturbation equation may be written as

σ′′ +
[
k2 +m2a2 − a′′

a

]
σ ' 0. (61)

This is the standard perturbation equation and hence we can write its solution in the terms of Hankel’s
function. The solution of Eq. (61) is given by,

σ =
√
−η
[
c1(k)H(1)(−kη) + c2(k)H(2)(−kη)

]
, (62)
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where H(1,2) is the Hankel function of first and second kind. For k � aH(−kη � 1), we have

H(1)(−kη � 1) ≈
√
− 2
πkη

ei(−kη−πνχ/2−π/4), H(2)(−kη � 1) ≈
√
− 2
πkη

e−i(−kη−πνχ/2−π/4). (63)

Here, νχ = 3/2+ε−ηχ and ηχ = m2/3H2 � 1. Imposing the boundary condition c1(k) = (
√
π/2) ei(πνχ/2+π/4)

and c2(k) = 0, the solution becomes a plane wave e−ikη/
√

2k for ultraviolet regime, k >> aH. For this
choice of c1 and c2, we get

φ̂ ≈ H√
2k3

(
k

aH

)3/2−νχ
. (64)

Thus, the power spectrum of curvature perturbation R ≡ ψ + H
φ̇
φ̂ ≈ H

φ̇
φ̂ is given by,

PR '
k3

2π2
H2

φ̇2
|φ̂|2 = λ

12π2β

[
1 + N (n+ 1

n

]2
. (65)

Now it would be clear that choosing n < 1 reduces the tensor-to-scalar ratio r and makes our prediction
compatible with the Planck data. The tensor-to-scalar ratio r is given by,

r = 16εi = 16
1 + N (n+1)

n

. (66)

For n = 1/2 and N = 60, r is 0.088 which is in the observational bound r < 0.11 [26]. The observational
value of curvature power spectrum PR ≈ 2.19× 10−9 [26] gives a λ

β ∼ 7.9× 10−12 for n = 1
2 . Since we

have considered β << 1, the value of λ must be much smaller so that ratio λ
β is approximately order of

10−12. We notice that the power spectrum is similar as we usually obtain in standard Jordan frame. The
only difference here from standard case is that we have reduced mass for m2. Substituting R = 6a′′/a3,
the mass term is simplified as

m2 ≈ 4λφ2. (67)

The second slow roll parameter η becomes η = m2/3H2 ≈ 4λφ2/(3H2) ≈ 4β and hence the spectral index
ns is

ns = 1− 6εi + 2ηi = 1− 6εi + 8β. (68)

β = 1.4 × 10−4 satisfies the observational value of ns = 0.968 [26] for n = 1/2 and N = 60. Thus for
n = 1/2 and PR = 2.19× 10−9, we obtain λ = 1.1× 10−15. At the upper bound of ns = 0.968± .006 [26]
of Planck data 2015 with 1σ confidence level, i.e., at ns = 0.974, r can be reduced to ∼ 0.07 with
β = 1.0× 10−5 and n = 0.355. It can be further reduced to ∼ 0.053 with β ∼ 7.5× 10−6 and n ∼ 0.252
at the upper bound of ns of Planck data 2015 with 2σ confidence level.

5 Conclusion

In this paper, we have implemented the local scale invariance to describe the inflation. Assuming Si = 0
and considering non-zero value for the temporal part St we have obtained the background solution
near the de-Sitter solution. The non-zero value of St fixes the period of inflation. We can have 60
e-folding for very small value of fSt. Further, we have also solved for power spectrum of scalar field
by perturbing all the scalar fields and shown its consistency with the Planck data 2015. Here, we have
considered that the coupling f is very small so that the perturbation fŜ0 in conformal time frame is
smaller than that of perturbed scalar field φ̂. Incorporating the background value of St we have shown
that we have similar perturbation equation as we obtain in the standard scenario. However, we obtain
reduced mass of scalar field by a small fraction which is function of coupling f . Thus, St has also its
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crucial role in obtaining definite value of the scalar power spectrum. The non zero value of f is also
a requirement in the same way as of St, since f = 0 also sets φ̇ = 0 (see Eq. (13)), i.e., φ is constant
and hence it causes problem in the exit of inflation. In this paper, we have considered a scale invariant
φ4 potential. We can generalize it for other scale invariant potentials to explain the cosmological data.
Thus, the scale invariance may be used in wide range to explain both inflation and current acceleration
of the universe. In future, we would like to generalize our results by considering the perturbation Ŝ0 and Ŝt.
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