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Abstract. The information of interest is contained in the variance matrix, σ −= 2 1V Q , or 
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1   Introduction-Existing Knowledge 

The experimental designs are used to estimate the parameters of interest in a stochastic model. A classic 
book on this subject is the book by W.G. Cochran and G.M. Cox (1957). 

The research of optimal designs actually started by the 1950. In 1958 Kiefer extended Wald's research 
on D-optimization of Latin square designs in a wider context which uses the Generalized Youden 
Designs (GYD). 

The concept of universally optimal designs was given by Kiefer (1975 a), who generalized the idea of a 
Balanced Block Design (BBD) and showed when the GYD is universally optimal. Also he worked on 
their construction (Kiefer, 1975 b) and generalized the results of the work of Agrawal (1966), Hartley 
and Smith (1948), Shrikhande (1951). 

A lot of paper followed, giving optimal design for the estimation of the parameters or optimal designs 
for the comparison of treatments with one or more controls. 

An overview of results in homogeneous and heterogeneous populations given by Hedayat, Jacroux and 
Majundar (1988), and some treatments compared with a control examined by Bechhofer and Tamhane 
(1981). There followed a lot of work in this area, such as those of Hedayat and Majumbar (1985), 
Jacroux (1987), Stufken (1987), etc. 

Optimal designs with dependent observations were examined by Martin and Eccleston (1993), Morgan 
and Uddin (2003), etc. 

Bibliography on finding and constructing universally optimal designs and optimal designs satisfying 
some criteria are quite extensive. Interesting is the case of two treatments with independent 
observations and with even number of units (Κounias and Chalikias 2008a, 2015; Chalikias and Kounias 
2012, 2017). In contrast, the bibliography on cases of three or more treatments is limited (Chalikias 
2017). This happens because when the number of treatments is ≥ 3v , the theoretical and 
computational aspects demand a different approach. 

In this paper the row designs with homogeneous populations under dependence will be investigated 
especially the Balance Block Designs and the row-column designs with two and three treatments and 
depended observations are mentioned. Moreover we will examine the comparisons of v  treatments with 
a standard treatment under dependence. 

Kiefer (1975 a) introduced a new method to generalize the existing results. An improved approach on 
the same subject is given in the book by F. Pukelsheim (1993). 

Many researchers worked with problems of optimal designs using the model with dependent 
observations, such as Chauhan (2000), Chauhan and Martin (2001), Kunert (1988), Martin and 
Eccleston (1993), Morgan and Uddin (1991), Uddin (1997), Uddin and Morgan (1991). 
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Optimal row-column designs when the treatments are two with positive dependence between the 
observations have been examined by Morgan and Uddin (2002). 

Pericleous and Kounias (2010) worked in finding universally optimal designs comparing v treatments 
with a standard (control) treatment. We examined cases where experimental units are homogeneous or 
heterogeneous with one characteristic. The concept of mazorization was applied and the universally 
optimal design was presented when the population is homogeneous. In heterogeneous populations 
Pericleous and Kounias first applied the concept of mazorization and then found A-, D- and MV-optimal 
designs. 

The definitions of information function and information matrix were given in (Pericleous and Kounias, 
2011), in the line followed by Pukelsheim (1993). The definitions of information function and 
information matrix are given. Homogeneous populations set in a row with dependent observations are 
examined and properties of the optimal designs are presented, two treatments are studied in more detail 
and the optimal designs are given. Non homogeneous populations by one characteristic set in p rows and 
q columns, with independent observations, are analyzed and examples of Balanced Treatments Block 
designs are given. 

Row designs are examined (Pericleous and Kounias 2012) with three treatments, homogeneous 
population with dependent observations. The dependence follows a first order autoregression (AR(1)). A 
filtering procedure was presented to reduce the number of competing designs.  

In the case of optimal designs in 3k  fractional factorial for the estimating linear and quadratic 
contrasts, most of the works for constructing optimal designs for parameter estimation in fractional 
factorials are concentrated in factors at two levels. It is of interested estimating linear and quadratic 
contrasts, in fractional factorials, with each factor at three levels. The books by Dey and Mukerjee (1999) 
and Wu and Hamada (2000), cover the topic, with a lot references. If the number of runs is N=0mod9, 
the orthogonal arrays, OA(N; k; 3; 2), are Φ-optimal under different type of criteria, Kiefer(1958, 1960). 
If N=1mod9 the plan obtained by augmentation of a run to an OA(N -1; k; 3; 2) is D-optimal, Kolyva-
Machera (1989a), G-optimal, Kolyva-Machera(1989b), and optimal under Cheng's type 1 criteria, 
Mukerjee (1999). These efforts were concentrated in adding runs to an OA(N; k; 3; 2) so that the 
resulting design is optimal in some sense. 

Chatzopoulos et al. (2009), studied the optimality of designs obtained by adding p runs to an 
orthogonal array for experiments involving m factors each at s levels. The optimality criterion used was 
the Type 1 criterion due to Cheng (1978) which is an extension of Kiefer (1975) universal optimality 
criterion. Unlike what happens with orthogonal array plus one run designs, the behavior of designs 
obtained via augmentation of an orthogonal array by p runs depends on the particular runs added. Onea 
et al. (2009) investigated two techniques of constructing optimal weighing designs under different 
optimality criteria when the number of runs is 3N ≡  (mod 4). The first method was presented by 
Chatzopoulos, Kolyva – Machera and Chaterjee (2009), who studied Type I optimality criteria for sm 
factorial designs obtained by adding p particular runs to an orthogonal array of strength two. In the 
present work the orthogonal arrays OA(N − 3, m, 2, 2) are augmented by three runs. The second one is 
due to Ehlich (1964). In order to compare the two methods they constructed the corresponding 
information matrices, applied D–, E– and A– optimality criteria and explored their efficiency. Chatterjee 
et al. (2011) considered the issue of optimality of fractional factorial experiments involving m factors 
each at two levels. The optimality criteria used here are the type 1 criteria, which include the D- and A-
criteria. It is shown that if there exists an orthogonal array OA(N − ℓ; m; 2; 3), ℓ = 1, 2, then there 
exists an n-run type 1 optimal fractional factorial plan for a 2m experiment under a model that includes 
the mean, all main effects and all two-factor interactions with a factor in common. These plans are 
obtained by adding any one run to an OA(N – 1; m; 2; 3) for 3N ≡  (mod 8) and two specific runs to 
an OA(N – 2; m; 2; 3) for 2N ≡  (mod 8). 

In this project we will deal with factorial designs with factors, each at 3 levels, the primary interest is 
the estimation of linear and quadratic contrasts of factor's effects. Orthogonal designs, called orthogonal 
balanced arrays (OBA), are derived for any value of the number of experimental runs, in which the 
estimators of linear contrasts are uncorrelated with those of quadratic contrasts.  

Another issue of interesting in experimental designs is saturated designs. An experimental design is 
said to be saturated if all degrees of freedom are consumed by the estimation of parameters, leaving no 
degrees of freedom for error variance estimation. Saturated resolution III factorial designs are commonly 
used in screening experiments, to determine which of many factors affects the measure of pertinent 
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quality characteristics. The purpose of this paper is to give saturated resolution III designs, minimizing 
the generalized variance of the main effects and the general mean, that is, D-optimal designs. In recent 
years, there has been a considerable interest in optimal saturated main effect designs. Mukerjee et al. 
(1986) and Kraft (1990) showed that in the two-factor case all such designs are equivalent with respect 
to D-optimality. Later Mukerjee and Sinha (1990) considered optimality results on almost saturated 
main effect designs in the two-factor case. The result was also obtained by Pesotan and Raktoe (1988) 
in the special case of 2mfactorials, who also worked on a subclass of 3mfactorials. The first attempt to 
extend the two factor results to three factors was done by Chatterjee and Mukerjee (1993). Later 
Chatterjee and Narasimhan (2002) using techniques from Graph Theory and Combinatorics, claimed 
about the upper bound of the determinant of the saturated 3xm2xm3 factorials. Chatzopoulos and 
Machera (2002) considered the class of m1×m2×m3, ≥1 2m , ≥2 1m m , ≥3 2m m  factorial plans with 
the minimum number of observations. Their interest was to find conditions in order to maximize the 
determinant of the information matrix and compare their findings with other researchers’ findings. 
Chatzopoulos and Kolyva-Machera (2005), considered the problem of finding an algorithm in order to 
construct D-optimal saturated factorial designs with three factors. The interest was to estimate the 
general mean and main effects while all higher order interactions are negligible, that is Resolution III 
plans. In order to reduce the steps of the algorithm, they diminish the number of the cases and have to 
search by studying the design matrix. The algorithm they suggested, leads in finding the upper bound of 
the determinant of the design and moreover in constructing the D-optimal design. They apply an 
algorithm in order to find the D-optimal saturated 4× 4× m3, ≥3 6m  design and compare their results 
with those are mentioned in bibliography. Moreover they verify the findings for the 4 × 4 × 4 and 4 × 4 
× 5 D-optimal saturated designs and expand their results by applying the algorithm for the saturated 4 
× 5 × 5 and 4 × 5 × 6 designs. Moreover, Chatzopoulos and Kolyva-Macher (2006) extended the 
results concerning D-optimal saturated main effect designs for 2×m2×m3 to 3×m2×m3 factorials, when 
≤ ≥23 6m  and ≥3 2m m . Recently Karagiannis and Moyssiadis (2005, 2008) extended the above cases 

and studied the D-optimal 3×m2×m2 and 3×m2×(m2+1) saturated designs. 
Although the issue has been studied by many researchers it is not exhausted. This area of research is 

far from complete because of the difficulty of the calculations for designs that are not symmetrical. 
Optimal designs are found only in certain cases. 

2   Majorization 

The information of interest is contained in the variance matrix, σ −= 2 1V Q , or equivalently in the 
information matrix Q . There are several optimality criteria in bibliography. The most frequently used 
optimality criteria are: 

G–optimality: If θ= = =1( ) '( ) , ( ) ( ( ),..., ( ))', 1,...,i i i i p iE y f f f f i nx x x x  is the linear model, then 

the variance response surface in points =, 1,...,i i nx , is �θ σ= 2var( '( ) ) '( ) ( )i i if x f x f xV  and for G-
optimality: min max '( ) ( )i id i

f fx V x . 

G-optimality criterion is "a prediction criterion". This criterion latterly is called global or G–
optimality. The aim of G-optimality is a response estimation criterion and can be defined as minimizing 
the maximum variance of any predicted value over the experimental space. 

D-optimality: max det( )dd
Q . 

D–optimality is a quite popular criterion maximizing the determinant of the information matrix, in 
essence D-optimality chooses that design as the “best” for which the volume (expected volume) of the 
joint confidence ellipsoid of the parameters of interest is minimized. 

A-optimality: − −1 1min(trace )  max(trace )d dd d
orV Q . 

A-optimality is defined as minimizing the average variance of the parameter estimates, that is, 
minimizing the average variance of the best linear unbiased estimator (BLUE) of the parameters of 
interest. 

E-optimality: ��λ λmin max ( ) or max min ( )i id i
id

V Q . 
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E–optimality is defined as maximizing the minimum eigenvalue of the information matrix or 
equivalently, minimizing the maximum eigenvalue of the inverse of the information matrix. The aim of 
E-optimality is to minimize the maximum variance of all possible normalized linear combinations of 
parameter estimates.  

MV-optimality: =min max( ), ( )ii ijd i
v vV . 

MV–optimality is defined as minimizing the maximum variance of the parameters of interest.  
Instead of dealing with specific optimality criteria is preferable to work with universal optimality, an 

idea introduced by Kiefer (1975), and Φ-optimality and if such designs do not exist, then go to the 
specific criteria mentioned above. 

Universal and Φ-optimality are defined below: 
Definition 1: If ∈ ( )C nnd k  the function ϕ( )C  is called information function if ϕ → �( ) ,C  and 

the following conditions are satisfied: 
ϕ ϕ

ϕ ϕ ϕ
ϕ ϕ ϕ ϕ
ϕ ϕ

≥ ⇒ ≥
+ − ≥ + − ∀ < < ≥
= ∀ > ≥ ⇒ = ⇒ ≥ ∀ ≥

= ∀ ∈ ∈

( ) ( ) )
( ) ( (1 ) ) ( ) (1 ) ( ) 0 1,
( ) ( ) ( ), 0, ( ) 0 ( ) 0 ,
( ) ( ) ( ') ( ), ( )

i
ii p p p p p
iii dC d C d
iv nnd k perm k

C D C (D
C D C D C,D 0

C 0 0 C C 0
C PCP C P

 

So the information functions are concave and increasing. Here nnd(k) is for non negative definite 
×k k matrix, perm(k) is for permutation ×k k  matrix. 
Definition 2: A design *d  with information matrix *

dC  is universally optimal, in the class F of 
designs, if it maximizes ϕ ∈( ),d d FC , for all information functions φ . 

Definition 3: A design *d  with information matrix *
dC  is Φ-optimal, in the class F of designs, if 

( ) ( )ϕ λ ϕ µ
= =

≤∑ ∑
1 1

v v

i i
i i

 for all continuous, decreasing convex functions φ, where λ λ λ= 1( ,..., )v  are the 

latent roots of *
dC  and µ µ µ= 1( ,..., )v  are the latent roots of ∀ ∈dC d F . 

This is equivalent to: λ µ≺ , that is, the vector λ is majorized by the vector μ (Marshall and Olkin 
p.10). If a design is universally optimal it is also Φ-optimal and if a design is Φ-optimal, it is A-, D-, E-
optimal. Also a design may be optimal for a criterion but not optimal for the other criteria. Note that 
MV-optimality is not covered by Φ-optimality, since it cannot be expressed as a function of the latent 
roots of the information matrix. 

The idea is to use the concept of majorization in order to establish Φ optimality. 

3   Fields of Applications 

They will be present in three fields of application of the concept of majorization, one for each different 
case of experimental designs. 

1) The first idea is for Repeated measurements of p periods, two treatments, 2p  sequences (we use 
the symbolism = 0,1,..., ,is i m  where = − 2 1pm ). 

For the estimation of the parameters we have: 
If n is the total number of experimental units and = 0,1,...,iu i m  is the number of experimental 

units that the sequence is of treatments is applied, then + + + =0 1 ... mu u u n . The model is: 

 τ π δ γ−= + + + +( , ) ( , 1)ij d i j j d i j i ijY e   (1) 

where, = …1, , ,i n  refers to the unit employed, = …1, ,j p  the period, τ τ τΑ Β∈( ) { , }d ij  is the direct 
effect of the treatment applied, under design d, in the jth period on the ith unit, δ δ δ− Α Β∈( , 1) { , }d i j  is 

the residual effect of the treatment applied the (j-1)th period on the ith unit, π j  is the jth period effect 
and γ i  is the ith unit effect. The errors ije  are independent within each unit and among units and 
have 0 mean and constant variance.  
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1   Introduction-Existing Knowledge 

The experimental designs are used to estimate the parameters of interest in a stochastic model. A classic 
book on this subject is the book by W.G. Cochran and G.M. Cox (1957). 

The research of optimal designs actually started by the 1950. In 1958 Kiefer extended Wald's research 
on D-optimization of Latin square designs in a wider context which uses the Generalized Youden 
Designs (GYD). 

The concept of universally optimal designs was given by Kiefer (1975 a), who generalized the idea of a 
Balanced Block Design (BBD) and showed when the GYD is universally optimal. Also he worked on 
their construction (Kiefer, 1975 b) and generalized the results of the work of Agrawal (1966), Hartley 
and Smith (1948), Shrikhande (1951). 

A lot of paper followed, giving optimal design for the estimation of the parameters or optimal designs 
for the comparison of treatments with one or more controls. 

An overview of results in homogeneous and heterogeneous populations given by Hedayat, Jacroux and 
Majundar (1988), and some treatments compared with a control examined by Bechhofer and Tamhane 
(1981). There followed a lot of work in this area, such as those of Hedayat and Majumbar (1985), 
Jacroux (1987), Stufken (1987), etc. 

Optimal designs with dependent observations were examined by Martin and Eccleston (1993), Morgan 
and Uddin (2003), etc. 

Bibliography on finding and constructing universally optimal designs and optimal designs satisfying 
some criteria are quite extensive. Interesting is the case of two treatments with independent 
observations and with even number of units (Κounias and Chalikias 2008a, 2015; Chalikias and Kounias 
2012, 2017). In contrast, the bibliography on cases of three or more treatments is limited (Chalikias 
2017). This happens because when the number of treatments is ≥ 3v , the theoretical and 
computational aspects demand a different approach. 

In this paper the row designs with homogeneous populations under dependence will be investigated 
especially the Balance Block Designs and the row-column designs with two and three treatments and 
depended observations are mentioned. Moreover we will examine the comparisons of v  treatments with 
a standard treatment under dependence. 

Kiefer (1975 a) introduced a new method to generalize the existing results. An improved approach on 
the same subject is given in the book by F. Pukelsheim (1993). 

Many researchers worked with problems of optimal designs using the model with dependent 
observations, such as Chauhan (2000), Chauhan and Martin (2001), Kunert (1988), Martin and 
Eccleston (1993), Morgan and Uddin (1991), Uddin (1997), Uddin and Morgan (1991). 
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Optimal row-column designs when the treatments are two with positive dependence between the 
observations have been examined by Morgan and Uddin (2002). 

Pericleous and Kounias (2010) worked in finding universally optimal designs comparing v treatments 
with a standard (control) treatment. We examined cases where experimental units are homogeneous or 
heterogeneous with one characteristic. The concept of mazorization was applied and the universally 
optimal design was presented when the population is homogeneous. In heterogeneous populations 
Pericleous and Kounias first applied the concept of mazorization and then found A-, D- and MV-optimal 
designs. 

The definitions of information function and information matrix were given in (Pericleous and Kounias, 
2011), in the line followed by Pukelsheim (1993). The definitions of information function and 
information matrix are given. Homogeneous populations set in a row with dependent observations are 
examined and properties of the optimal designs are presented, two treatments are studied in more detail 
and the optimal designs are given. Non homogeneous populations by one characteristic set in p rows and 
q columns, with independent observations, are analyzed and examples of Balanced Treatments Block 
designs are given. 

Row designs are examined (Pericleous and Kounias 2012) with three treatments, homogeneous 
population with dependent observations. The dependence follows a first order autoregression (AR(1)). A 
filtering procedure was presented to reduce the number of competing designs.  

In the case of optimal designs in 3k  fractional factorial for the estimating linear and quadratic 
contrasts, most of the works for constructing optimal designs for parameter estimation in fractional 
factorials are concentrated in factors at two levels. It is of interested estimating linear and quadratic 
contrasts, in fractional factorials, with each factor at three levels. The books by Dey and Mukerjee (1999) 
and Wu and Hamada (2000), cover the topic, with a lot references. If the number of runs is N=0mod9, 
the orthogonal arrays, OA(N; k; 3; 2), are Φ-optimal under different type of criteria, Kiefer(1958, 1960). 
If N=1mod9 the plan obtained by augmentation of a run to an OA(N -1; k; 3; 2) is D-optimal, Kolyva-
Machera (1989a), G-optimal, Kolyva-Machera(1989b), and optimal under Cheng's type 1 criteria, 
Mukerjee (1999). These efforts were concentrated in adding runs to an OA(N; k; 3; 2) so that the 
resulting design is optimal in some sense. 

Chatzopoulos et al. (2009), studied the optimality of designs obtained by adding p runs to an 
orthogonal array for experiments involving m factors each at s levels. The optimality criterion used was 
the Type 1 criterion due to Cheng (1978) which is an extension of Kiefer (1975) universal optimality 
criterion. Unlike what happens with orthogonal array plus one run designs, the behavior of designs 
obtained via augmentation of an orthogonal array by p runs depends on the particular runs added. Onea 
et al. (2009) investigated two techniques of constructing optimal weighing designs under different 
optimality criteria when the number of runs is 3N ≡  (mod 4). The first method was presented by 
Chatzopoulos, Kolyva – Machera and Chaterjee (2009), who studied Type I optimality criteria for sm 
factorial designs obtained by adding p particular runs to an orthogonal array of strength two. In the 
present work the orthogonal arrays OA(N − 3, m, 2, 2) are augmented by three runs. The second one is 
due to Ehlich (1964). In order to compare the two methods they constructed the corresponding 
information matrices, applied D–, E– and A– optimality criteria and explored their efficiency. Chatterjee 
et al. (2011) considered the issue of optimality of fractional factorial experiments involving m factors 
each at two levels. The optimality criteria used here are the type 1 criteria, which include the D- and A-
criteria. It is shown that if there exists an orthogonal array OA(N − ℓ; m; 2; 3), ℓ = 1, 2, then there 
exists an n-run type 1 optimal fractional factorial plan for a 2m experiment under a model that includes 
the mean, all main effects and all two-factor interactions with a factor in common. These plans are 
obtained by adding any one run to an OA(N – 1; m; 2; 3) for 3N ≡  (mod 8) and two specific runs to 
an OA(N – 2; m; 2; 3) for 2N ≡  (mod 8). 

In this project we will deal with factorial designs with factors, each at 3 levels, the primary interest is 
the estimation of linear and quadratic contrasts of factor's effects. Orthogonal designs, called orthogonal 
balanced arrays (OBA), are derived for any value of the number of experimental runs, in which the 
estimators of linear contrasts are uncorrelated with those of quadratic contrasts.  

Another issue of interesting in experimental designs is saturated designs. An experimental design is 
said to be saturated if all degrees of freedom are consumed by the estimation of parameters, leaving no 
degrees of freedom for error variance estimation. Saturated resolution III factorial designs are commonly 
used in screening experiments, to determine which of many factors affects the measure of pertinent 
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quality characteristics. The purpose of this paper is to give saturated resolution III designs, minimizing 
the generalized variance of the main effects and the general mean, that is, D-optimal designs. In recent 
years, there has been a considerable interest in optimal saturated main effect designs. Mukerjee et al. 
(1986) and Kraft (1990) showed that in the two-factor case all such designs are equivalent with respect 
to D-optimality. Later Mukerjee and Sinha (1990) considered optimality results on almost saturated 
main effect designs in the two-factor case. The result was also obtained by Pesotan and Raktoe (1988) 
in the special case of 2mfactorials, who also worked on a subclass of 3mfactorials. The first attempt to 
extend the two factor results to three factors was done by Chatterjee and Mukerjee (1993). Later 
Chatterjee and Narasimhan (2002) using techniques from Graph Theory and Combinatorics, claimed 
about the upper bound of the determinant of the saturated 3xm2xm3 factorials. Chatzopoulos and 
Machera (2002) considered the class of m1×m2×m3, ≥1 2m , ≥2 1m m , ≥3 2m m  factorial plans with 
the minimum number of observations. Their interest was to find conditions in order to maximize the 
determinant of the information matrix and compare their findings with other researchers’ findings. 
Chatzopoulos and Kolyva-Machera (2005), considered the problem of finding an algorithm in order to 
construct D-optimal saturated factorial designs with three factors. The interest was to estimate the 
general mean and main effects while all higher order interactions are negligible, that is Resolution III 
plans. In order to reduce the steps of the algorithm, they diminish the number of the cases and have to 
search by studying the design matrix. The algorithm they suggested, leads in finding the upper bound of 
the determinant of the design and moreover in constructing the D-optimal design. They apply an 
algorithm in order to find the D-optimal saturated 4× 4× m3, ≥3 6m  design and compare their results 
with those are mentioned in bibliography. Moreover they verify the findings for the 4 × 4 × 4 and 4 × 4 
× 5 D-optimal saturated designs and expand their results by applying the algorithm for the saturated 4 
× 5 × 5 and 4 × 5 × 6 designs. Moreover, Chatzopoulos and Kolyva-Macher (2006) extended the 
results concerning D-optimal saturated main effect designs for 2×m2×m3 to 3×m2×m3 factorials, when 
≤ ≥23 6m  and ≥3 2m m . Recently Karagiannis and Moyssiadis (2005, 2008) extended the above cases 

and studied the D-optimal 3×m2×m2 and 3×m2×(m2+1) saturated designs. 
Although the issue has been studied by many researchers it is not exhausted. This area of research is 

far from complete because of the difficulty of the calculations for designs that are not symmetrical. 
Optimal designs are found only in certain cases. 

2   Majorization 

The information of interest is contained in the variance matrix, σ −= 2 1V Q , or equivalently in the 
information matrix Q . There are several optimality criteria in bibliography. The most frequently used 
optimality criteria are: 

G–optimality: If θ= = =1( ) '( ) , ( ) ( ( ),..., ( ))', 1,...,i i i i p iE y f f f f i nx x x x  is the linear model, then 

the variance response surface in points =, 1,...,i i nx , is �θ σ= 2var( '( ) ) '( ) ( )i i if x f x f xV  and for G-
optimality: min max '( ) ( )i id i

f fx V x . 

G-optimality criterion is "a prediction criterion". This criterion latterly is called global or G–
optimality. The aim of G-optimality is a response estimation criterion and can be defined as minimizing 
the maximum variance of any predicted value over the experimental space. 

D-optimality: max det( )dd
Q . 

D–optimality is a quite popular criterion maximizing the determinant of the information matrix, in 
essence D-optimality chooses that design as the “best” for which the volume (expected volume) of the 
joint confidence ellipsoid of the parameters of interest is minimized. 

A-optimality: − −1 1min(trace )  max(trace )d dd d
orV Q . 

A-optimality is defined as minimizing the average variance of the parameter estimates, that is, 
minimizing the average variance of the best linear unbiased estimator (BLUE) of the parameters of 
interest. 

E-optimality: ��λ λmin max ( ) or max min ( )i id i
id

V Q . 
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E–optimality is defined as maximizing the minimum eigenvalue of the information matrix or 
equivalently, minimizing the maximum eigenvalue of the inverse of the information matrix. The aim of 
E-optimality is to minimize the maximum variance of all possible normalized linear combinations of 
parameter estimates.  

MV-optimality: =min max( ), ( )ii ijd i
v vV . 

MV–optimality is defined as minimizing the maximum variance of the parameters of interest.  
Instead of dealing with specific optimality criteria is preferable to work with universal optimality, an 

idea introduced by Kiefer (1975), and Φ-optimality and if such designs do not exist, then go to the 
specific criteria mentioned above. 

Universal and Φ-optimality are defined below: 
Definition 1: If ∈ ( )C nnd k  the function ϕ( )C  is called information function if ϕ → �( ) ,C  and 

the following conditions are satisfied: 
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So the information functions are concave and increasing. Here nnd(k) is for non negative definite 
×k k matrix, perm(k) is for permutation ×k k  matrix. 
Definition 2: A design *d  with information matrix *

dC  is universally optimal, in the class F of 
designs, if it maximizes ϕ ∈( ),d d FC , for all information functions φ . 

Definition 3: A design *d  with information matrix *
dC  is Φ-optimal, in the class F of designs, if 

( ) ( )ϕ λ ϕ µ
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 for all continuous, decreasing convex functions φ, where λ λ λ= 1( ,..., )v  are the 

latent roots of *
dC  and µ µ µ= 1( ,..., )v  are the latent roots of ∀ ∈dC d F . 

This is equivalent to: λ µ≺ , that is, the vector λ is majorized by the vector μ (Marshall and Olkin 
p.10). If a design is universally optimal it is also Φ-optimal and if a design is Φ-optimal, it is A-, D-, E-
optimal. Also a design may be optimal for a criterion but not optimal for the other criteria. Note that 
MV-optimality is not covered by Φ-optimality, since it cannot be expressed as a function of the latent 
roots of the information matrix. 

The idea is to use the concept of majorization in order to establish Φ optimality. 

3   Fields of Applications 

They will be present in three fields of application of the concept of majorization, one for each different 
case of experimental designs. 

1) The first idea is for Repeated measurements of p periods, two treatments, 2p  sequences (we use 
the symbolism = 0,1,..., ,is i m  where = − 2 1pm ). 

For the estimation of the parameters we have: 
If n is the total number of experimental units and = 0,1,...,iu i m  is the number of experimental 

units that the sequence is of treatments is applied, then + + + =0 1 ... mu u u n . The model is: 

 τ π δ γ−= + + + +( , ) ( , 1)ij d i j j d i j i ijY e   (1) 

where, = …1, , ,i n  refers to the unit employed, = …1, ,j p  the period, τ τ τΑ Β∈( ) { , }d ij  is the direct 
effect of the treatment applied, under design d, in the jth period on the ith unit, δ δ δ− Α Β∈( , 1) { , }d i j  is 

the residual effect of the treatment applied the (j-1)th period on the ith unit, π j  is the jth period effect 
and γ i  is the ith unit effect. The errors ije  are independent within each unit and among units and 
have 0 mean and constant variance.  
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The model (1) in vector form is written: 
 τ τ τ τ δ δ δ δ π π π π γ γ γ γΑ Α Β Β Α Α Β Β= + + + + + + + + +� �1 1 1 1p p n n eY  

where τ τ δ δ π π γ γΑ Β Α Β 1 1, , , , , ,..., , ,..., ,p n eY  are pn vectors, and τ τΑ Β( )  has 1 when treatment A(B) is 
applied and 0 elsewhere, that is τ τΑ Β+ = 1pn , δ δΑ Β( )  has 0 in the first period, 1 when treatment A(B) 
was applied in the previous period and 0 elsewhere, π i  has 1 in the ith period and 0 elsewhere, thus 
δ δ πΑ Β+ + =1 1pn , π π+ =�1 1p pn . Also γ =, 1,...,i i n  has 1 when the ith unit is employed and 0 
e1sewhere, that is, γ γ+ + =�1 1 .n pn  

For the estimation of the parameters of interest not all the other parameters are used (Kounias and 
Chalikias 2008b). By using the idea of majorization in least squares method, Chalikias and Kounias 
(2012) have given necessary conditions for Φ-optimality for estimating treatment and residual effects 
and improved conditions given by Cheng and Wu (1980). This work can be extended to three and more 
treatments. 

2) Another idea is at the Optimal Designs with three treatments in row-column and in factorial 
designs 

The experimental units are arranged in row, there are v treatments and to every unit one of the v 
treatments is applied. The population is homogeneous with dependent observations. The model in vector 
form is µ µ σ= + + + =� 2

1 1 , ( ')v vy x x e E ee v , where the ×1n  vector = 1( ,..., )'j j njx x x  has = 1ijx  
when the jth treatment is applied to the ith unit and 0 elsewhere. The errors follow a first order 
autoregressive AR(1) scheme: −− = = <1 , 1,2,..., , | | 1i i ie ae w i n a , and iw  are uncorrelated random 
variables with σ= =2 2( ) 0, ( ) .i iE w E w  So we have σ −= −2 | | 2cov( , ) / (1 )i j

i je e a a  and the inverse of the 
×n n  covariance matrix has the form: 
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where,  
= 1,...,in i v  is the number of times treatment iT  is applied to the n units 1, 2,…,n. 
=� 1,...,in i v  is the number of times treatment iT  appears in the n-2 inside units 2,3,…,n-1. 
= 1,...,iin i v  is the number of times the pair i iTT  appears in the positions 12,23,…, (n-1)n. 
≠ =, 1,...,ijn i j i j v  is the number of times the pair i jTT  appears in the positions 12,23,…, (n-1)n. 

Then applying the averaging rule (Kiefer, 1975) and using the concept of majorization can be found 
some general rules for the case where the value of a is negative and the case where the value of a is 
positive. It seems that when a is negative it is easier to handle. 

It is proved that: (i) When < <0 1a  in the universally optimal design at most one treatment has a 
run with length > 0iin . (ii) If − < <1 0a  in the optimal design every pair of distinct treatments 
appear at most once. 

In the case of two treatments S,T and n even: (i) If < <0 1a  the universally optimal design is 
STST…ST (ii) If − < <1 0a the universally optimal design is SS..STT…T with S and T in equal numbers. 
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For n odd and two treatments the results are not so simple (i) < <0 1a  the competing designs for 
optimality are SSTSTS…TST and STST…STS. (ii) − < <1 0a  the competing designs for optimality are 
SS…STT…T and SS…STT…TS where the numbers of the two treatments differ by 1. 

The case of three treatments is more complicated and applying majorization optimal designs under 
dependence can be found. Also the study can be extended to non homogeneous populations by one or 
two characteristics, when the number of treatments is three. 

3) Another problem is to find optimal designs for 3k  fractional factorial designs for estimating linear 
and quadratic contrasts. 

The problem of finding optimal designs under different types of criteria preoccupied many researchers 
in the last decades. Most of them dealt with 2m  fractional factorial designs and some cases of general 
asymmetrical × × ×…1 2 km m m  factorials. 

Using majorization, as applied to optimal designs Pukelsheim (1993 p.139-142, 352-358) another 
approach can be used and optimal designs, for estimating linear and quadratic contrasts, for any value 
of N. For this the concept of Balanced Arrays B(N,k) and Orthogonal Balanced Arrays OBA(N,k), is 
introduced, that is, ×N k  arrays with three symbols 0, 1, 2, where N is the number of runs and k is the 
number of factors involved. The parameters of the OBA(N,k) will be specified and optimal designs will 
be given for all values N. 

Moreover, a demanding problem is to find the maximum number k of factors that we can 
accommodate. An upper bound for the maximum number of factors is (N-1)/2. This bound is not 
attained in most of the cases. 

4   Conclusions 

The concept of majorization can be a useful tool for designing experiment. Majorization concept can be 
used to prove Φ-optimality and usually is the only way to do that. As we have seen there are many 
fields in which majorization can be used and the usage of the method in more fields of experimental 
design is of interest. 
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