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Abstract. The idea of “Mixed Allocation” in stratified sampling was introduced by [4]. The concept 
was further developed by several authors in different manner. In the present paper the authors 
worked out the “Compromise Mixed Allocation” for multivariate stratified sampling for more than 
one. Say “p” characteristics using Dynamic Programming Technique are defined on each population 
unit. It is assumed that the properties of the strata on which the grouping scheme of [4] is based are 
prevalent in the multivariate case also. Numerical examples are also presented to illustrate the 
computational details. 
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1   Introduction 

The literal meaning of the word “compromise” is “via media”, but it has a special meaning in stratified 
sampling literature where different types of allocation procedure like Equal, proportional, optimum and 
several other allocations are present. Usually any one type of allocation is selected according to the 
nature of the population, the use of single allocation procedure is not advisable to all strata due to 
practical implications. In such situations, one can divide the strata into k  different groups which are 
non-overlapping and exhaustive groups that are similar in nature internally. A particular type of 
allocation can then be applied to a particular group of strata depending on the nature of the group. [4] 
worked out the allocation using the above criterion and named it as “Mixed Allocation”. 

They formulated the problem of finding a mixed allocation as the following nonlinear programming 
problem (NLPP) 
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where L  strata are divided into k  groups, the thj  group consists of jL  strata. The sample allocations 
are given by 

; , 1,2,...,h j h jn h I j kα β= ∈ = (1.4) 

where jα ; 1,2,...,j k=  are the solution to NLPP (1.1) - (1.3), jI  is the set of integers representing the 
strata numbers in the thj  group and hβ  is fixed according to the particular allocation used. For example 
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if proportional allocation is to be used in the thq  group then h hWβ = ; qh I∈ . 
In multivariate stratified sampling where p ( 1> ) characteristics are to be measured on each selected 

unit of the sample, an allocation that minimizes the variance of one characteristic may result in 
significant losses of precision for other characteristics. For such situations [26] gave the idea of 
“Compromise Allocation” which minimizes the weighted sum of variances of all the p-characteristics for 
a fixed budget this type of allocation is based on a compromise criterion to have a combined objective 
instead of several objectives (minimizing the individual variances). After that different authors suggested 
different compromise criteria or explored further the already existing criteria. Among them are [26], [6], 
[16], [20], [10], [11], [7], [2], [3], [24], [8], [9], [23], [17], [18], [19], [14], [15], [5] and many others. [21] 
discussed five different compromise criteria to work out approximate optimum allocation in multivariate 
surveys and compared them using a simulation study. [22] gave three different compromise criteria and 
modified the random search method to develop an algorithm to obtain the compromise allocation for 
multivariate stratified populations. 

Before [4] no author used the term “Mixed Allocation” and thus no sampling literature is available on 
mixed allocation. However, [12] used a similar idea in univariate two-stage sampling design. In 
multivariate case instead of individual optimum allocations usually a compromise allocation is used. 

[4] worked out the mixed allocation for univariate stratified sampling. In this paper we extended the 
work of [4] for the multivariate case using Dynamic Programming Technique (DPT). Thus the present 
paper presents a combination of Compromise and Mixed allocations. The allocation thus obtained, may 
be termed as “Compromise Mixed Allocation”. 

Section 2 gives the formulation and solution of the problem. Section 3 highlights the situation in 
which the compromise mixed allocation may be used in practice. Section 4 illustrates a numerical 
example to justify the use of compromise mixed allocation. Section 5 summarizes the comparative 
performance of the proposed allocation with some other compromise allocations. Section 6 gives the 
concluding remark on the basis of the results obtained in Sections 4 and 5. 

A list of alphabetically arranged references is provided at the end of the paper. 

2   Formulation 

Using [26] criterion the problem of finding the mixed allocation given in (1.1) - (1.3) for multivariate 
case may be expressed as 
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where 0la >  is the weight assigned to the variance of the thl  characteristic, 2

lhS  is the stratum variance 
for the thl  characteristic, C  is the total budget, 0c  is the overhead cost, 0C is the available budget after 
deducting the overhead cost and h j hn α β= . Here-in-after hc  will denote the cost of measuring for all 

the p characteristics on a selected unit of thh  stratum, that is 
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Since the objective function is convex and the constraint is linear at the optimal point the constraint 

will be active [1]. The NLPP (2.4) - (2.6) may be solved by Dynamic Programming Technique. 
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Consider the rth stage sub problem of MPP (2.7) for the first r(<k) groups.  
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measurements of the selected units from the first r groups. With the above definition of Cr we have  
Cr = C0 for r=k  
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Expression (2.11) gives the required recurrence relation. 
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From ( ),f k C  the optimum value of kα  is obtained, from ( )1, ( )k kf k C g α− −  the optimum value of 

1kα −  is obtained and so on until 1α  is determined. 
After obtaining ; 1,2,...,j j kα =  the values of hn  are obtained by using (1.4). 
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3   Criterion for Using Compromise Mixed Allocation 

The relative loss of efficiency (R. L. E.) by using different allocations in different groups of strata 
instead of optimum allocation is 
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where 1 2( , ,..., )Ln n n n=  is the vector of compromise mixed allocation. 
( )L n  given by (3.1) will be the sum of the losses of the efficiencies incurred due to various allocations 

in different groups of strata. If any particular allocation results in a significant loss of efficiency, it may 
be replaced by any other more efficient allocation. 

4   A Numerical Illustration 

[4] gave a numerical illustration using artificial data. We added another characteristics to that data with 
the corresponding values of hs  as, 1hs  and 2hs . Thus we have the following situation. 

In stratification with seven strata and two characteristics the values of hN , 1hs , 2hs  and hc  are given 
in Table 1. It is assumed that the total available budget of the survey 4500C =  units, which includes 
an overhead cost 0 500c =  units. This gives the total available amount for measurements  

0 0 4500 500 4000C C c= − = − =  units. 

Table 1. Data for seven strata and two characteristics 

h  hN  1hs  2hs  hc  hW  

1 472 5.237 7.815 6 0.1888 
2 559 5.821 7.949 8 0.2236 
3 425 5.238 7.725 7 0.1700 
4 218 25.528 30.125 12 0.0872 
5 233 22.232 32.231 11 0.0932 
6 328 15.129 18.455 10 0.1312 
7 265 40.125 45.358 15 0.1060 

The strata are so numbered that: 
(i) Strata 1, 2 and 3 constitute group 1G  in which equal allocation is to be used, that is 

{ }11; 1,2,3h h Iβ = ∈ =  
(ii) Strata 4 and 5 constitute group 2G  in which proportional allocation is to be used, that is 

{ }2; 4,5h hW h Iβ = ∈ =  
(iii) Strata 6 and 7 constitute group 3G  in which optimum allocation is to be used, that is 

{ }3; 6,7h h hA c h Iβ = ∈ =  
Thus { }1 1,2,3I = , { }2 4,5I =  and { }3 6,7I = . 

It can be seen that ; 1,2,3jI j =  are mutually exclusive and exhaustive. 
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It is also assumed that both the characteristics are equally important that is 1 2 0.5a a= = . 

Table 2. Values of hA , h hA β and h hc β  

h  hN  1hs  2hs  hc  hW  hA  hβ  h hA β  h hc β  

1 472 5.237 7.815 6 0.1888 1.5773 1 1.5773 6 
2 559 5.821 7.949 8 0.2236 2.4266 1 2.4266 8 
3 425 5.238 7.725 7 0.1700 1.2588 1 1.2588 7 

1h I∈  5.2627 21 

4 218 25.528 30.125 12 0.0872 5.92793 0.0872 67.981 1.046 
5 233 22.232 32.231 11 0.0932 6.65843 0.0932 71.442 1.026 

2h I∈  139.423 2.072 

6 328 15.129 18.455 10 0.1312 4.901 0.7001 7.0008 7.00 
7 265 40.125 45.358 15 0.1060 20.600 1.1720 17.5796 17.58 

3h I∈  24.5804 24.58 
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Putting 3 0 4000C C= =  we get 

3 30.0192 76.8Cα = =  
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Thus 2 3 324.58 2112.256C C α= − =  
and  2 20.2982 629.8747Cα = =  
Finally 1 2 22.072 807.1556C C α= − =  

and 1
1 38.4360

21
C

α = =  

Using (1.4) the values of hn  are obtained as 

 

1 1 1

2 1 2

3 1 3

4 2 4

5 2 5

6 3 6

7 3 7

38.4360 1.00 38
38.4360 1.00 38
38.4360 1.00 38
629.8747 0.0872 54.9251 55
629.8747 0.0932 58.7043 59
76.8 0.7001 53.7677 54
76.8 1.172 90.0096 90

n
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Table 3. Computation of jα  

Group No. 
j  

(A) (B) (C) (D) 
( )4000
( )j

C
D

α =
∑

 

j

h h
h I

A β
∈
∑  

j

h h
h I

c β
∈
∑  ( ) ( )A B  ( )( )A B  

1 5.2627 21 0.5006 10.5127 38.4424 
2 139.4226 2.0716 8.2038 16.9949 629.9918 
3 24.5804 24.5810 1.0000 24.5807 76.7927 

 
The computations are shown in Tables 2 and 3. 

With the values of ; 1,2,3j jα =  given in last column of Table 3, the mixed allocation is obtained as: 
For 1j =  1( ) 2( ) 3( ) 1m m mn n n α= = = =  38.4424 
For 2j =  4( ) 2 4 2 4 629.9918 0.0872 54.9353mn Wα β α= = = × =  
  5( ) 2 5 2 5 629.9918 0.0932 58.7152mn Wα β α= = = × =  

For 3j =  6( ) 3 6 3 6 6( ) 76.7927 0.7001 53.7626mn A cα β α= = = × =  

  7( ) 3 7 3 7 7( ) 76.7927 1.1720 90.0010mn A cα β α= = = × =  
The estimated variance under mixed allocation given by (2.12) is mixedv  = 0.6783  

Table 4 gives the sample sizes when overall optimum allocation is used. These values are required to 
work out R. L. E. 

Table 4. Sample sizes under over all optimum allocation  

h  hW  hA  hc  h hA c  h hA c  ( )h optn  

1 0.1888 1.5773 6 0.5127 3.0763 39.4205 
2 0.2236 2.4266 8 0.5507 4.4060 42.3422 
3 0.1700 1.2588 7 0.4241 2.9684 32.6082 
4 0.0872 5.9279 12 0.7028 8.4341 54.0369 
5 0.0932 6.6584 11 0.7780 8.5582 59.8189 
6 0.1312 4.9013 10 0.7001 7.0009 53.8293 
7 0.1060 20.6032 15 1.1720 17.5798 90.1128 
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The estimated variance under optimum allocation is given by  
2
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5   The Performance of Compromise Mixed Allocation as Compared to 
Some Other Allocation 

In this Section a comparative study of the proposed compromise mixed allocation has been made with 
three other well known compromise allocations viz. Cochran’s Average Allocation [13], Chatterjee’s 
Compromise Allocation [10] and Compromise Allocation for “Minimizing Trace” [25]. However, these 
compromise allocations assume that the values of hW  and 2

hS  are known for all strata. 

The Cochran’s Average Compromise Allocation (ACA) 

The individual optimum allocations *
lhn  are given by 
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The average compromise allocation ( )h ACAn  is given by  
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Chatterjee’s Compromise Allocation (CCA) 

Chatterjee’s compromise allocation ( )h CCAn , obtained by minimizing the sum of the relative increases in 
the variances of the estimates is given as 
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Sukhatme’s Compromise Allocation (SCA) 

This compromise allocation ( )h SCAn , obtained by minimizing the trace of the variance-covariance matrix 
is given by 

2
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These compromise allocations, for the data used in Section 4, are worked out and listed in Table 5. 
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Table 5. Various rounded off compromise allocations and the corresponding variances 

h  Allocations 1n  2n  3n  4n  5n  6n  7n  1v  2v  Trace= 1 2v v+  Cost incurred 

1 Cochran’s 39 42 32 54 59 54 91 0.52647 0.82826 1.35473 3996 
2 Chatterjee’s 39 42 32 54 59 54 91 0.52647 0.82826 1.35473 3996 
3 Minimizing Trace 39 42 33 54 60 54 90 0.52671 0.82689 1.35360 3999 
4 Proposed 38 38 38 55 59 54 90 0.52800 0.82963 1.35763 3997 

 
Table 5 gives the rounded off values of the Cochran’s, Chatterjee’s, Sukhatme’s and the Proposed 
compromise allocations, the variances 1v  and 2v  of the estimates of the two characteristics under study, 
the Trace ( 1 2v v+ ) and the total cost incurred. It can be seen that the proposed allocation is almost as 
precise as the other allocations (in terms of the ‘Trace’) that assume the knowledge of the true values of 

hW  and 2
hS  for all strata. Whereas the proposed allocation may be used in this conditions is given in 

this manuscript.  

6   Conclusion 

Since the estimated relative loss in efficiency of the compromise mixed allocation as compared to the 
overall optimum allocation is 

(R. L. E.)mixed = 0.6783 0.6766100% 100% 0.2513%
0.6766

mixed opt

opt

v v
v
− −

× = × =  

which is very small, the proposed compromise mixed allocation may be used without any significant loss 
in the efficiency. In addition to the above fact the compromise mixed allocation also works well in 
comparison with other compromise allocations discussed in Section 5. 
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