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Abstract The semi-parametric estimation under the proportional hazards (PH) model with a
linearly time-dependent covariates and with interval-censored data has not been investigated before.
The partial likelihood approach does not work and one has to use the generalized likelihood function
(GLF). There is a challenge in this problem. The GLF must be in the form of the baseline hazard
function, rather than the baseline survival function as in the PH model with time-independent
covariates, and a feasible way to specify the hazard function is a piece-wise constant function.
However, several naive ways do not yield a consistent estimator. We propose proper modifications
of the GLF. Simulation results suggest that our method works. The generalization to other types of
time-dependent covariates is also discussed.
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1 Introduction

We consider the semiparametric estimation problem under the proportional hazards (PH) model with a
special continuous time-dependent covariates and with interval-censored data. In this paper, we assume
that the survival time Y is continuous.

Interval-censored (IC) data are (Li, Ri), i = 1, ..., n, where the true survival time Yi ∈ (Li, Ri]. The
proportional hazards model (Cox (1972)) specifies that a covariate vector z has a proportional effect on
the hazard function of Y . This model provides powerful means for fitting failure time observations to a
distribution free model and for estimating the risk for failure associated with a covariate vector z.

For a continuous random variable Y , denote its cumulative distribution function (cdf) by FY , its
survival function by SY (t) = 1 − FY (t), its density function (df) by fY (t), and its hazard function by
hY (t) = fY (t)

SY (t) . We say that (z, Y ) follows a PH model or Cox’s regression model if the hazard of Y |z is

h(t|z) = ho(t)eβz, for t < τ , (1.1)

where βz = β′z, β′ is the transpose of the vector β, τ = sup{t : ho(t) > 0}, and ho is the hazard
function of Y |(z = 0). The PH model has been extended to time-dependent covariates, that is, h(t|z) =
eβz(t)ho(t), t < τ , where the covariate z(t) is also a function of the time t. In Cox and Oakes (1984
p.113), two examples of such extension are given. The PH models in those examples can be written as the
form h(t|u) = exp(uβg(t))ho(t), t < τ , where u is a time-independent covariate, and g(t) is a function
of the time t. Two particular examples presented there are g(t) = 1(t ≥ a) and g(t) = (t− a)1(t ≥ a),
respectively, where 1(A) is the indicator function of the event A. The first example is a special case
of the piecewise PH model (PWPH model) and the second one is called the PH model with linearly
time-dependent covariates (LDPH model). Therneau and Grambsch (2000) provide a computer program
for computing the partial likelihood estimator under the PH model with such zi(t) and with right-censored
data.

The TDCPH model has been commonly used for right-censored (RC) data (see, for instance, Zhou
(2001), Leffondre et al. (2003), Platt et al. (2004), Zhang and Huang (2006), Stephan and Michael (2007),
Masaaki and Masato (2009) and Leffondre et al. (2010)). The semi-parametric estimation with IC data
under the PWPH model is studied by Wong et al. (2018). However, the semi-parametric estimation with
IC data under the LDPH model has not been studied so far.
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In this paper we consider the LDPH model, that is,

zi(t) = ui ∗ (t− a)1(t ≥ a), where ui is a time-independent covariate vector (1.2)

and a is a real number. This covariate is very typical and shares the light on how to estimate under the
TDCPH model with IC data and with other types of covariates.

We shall assume that the hazard function ho is unknown. Under such semi-parametric set-up, the
typical estimation approach for right-censored data is the partial likelihood estimation. This approach
simplifies the estimation procedure by estimating β alone without estimating the baseline hazard function
ho in the same time. Moreover, the properties of the partial likelihood MLE are quite similar to those of
the generalized likelihood MLE. However, it is well known that this approach only works for right-censored
data, but does not work for IC data (see, for example, Wong and Yu (2012)). Since we are dealing with
IC data, we shall study the generalized likelihood estimation procedure in this paper.

For the covariate defined in (1.2), there are several theoretical issues to be settled. First, even if
the parameter β ∈ (−∞,∞), β may not be identifiable if the support set (of the observable random
vector) is discrete (to be defined in Section 2). This is quite different from the case of the PH model with
time-independent covariates, under which β is identifiable even if the support set contains only one point.
It is also quite different from the case of the PH model with the time-dependent covariate of the form
z(t) = u1(t ≥ a), under which β is identifiable if the support set contains at least two points in [a,∞).
The identifiability condition specifies the necessary condition under which a consistent estimator of β is
possible and also gives a guideline for the set-up of simulation studies.

Secondly, unlike the PH model with time-independent covariates, the generalized likelihood function
needs to be modified, as it must be in the form of hazard functions under the semi-parametric set-up
in (1.2). Otherwise, there is no consistent estimator of β. If the covariate uj in (1.2) takes on finitely
many values, there is a naive non-parametric estimator of β, called the generalized maximum likelihood
estimator (GMLE). However, it is not efficient. As explained in Section 3, several naive modifications on
the generalized likelihood function do not lead to consistent estimators. We propose a proper modification
of the generalized likelihood to get a semi-parametric MLE (SMLE) of β in this paper (see Remarks 2
and (3.3)). Our simulation studies suggest that the SMLE of β is consistent and is more efficient than the
GMLE.

We study the identifiability condition in Section 2. We study how to modify the generalized likelihood
function for deriving the SMLE in Section 3. We also introduce the algorithm for obtaining the GMLE if
the covariate takes on finitely many values. Simulation results for comparing the SMLE and the GMLE
are presented in Section 4. The generalization to other types of time-dependent covariates is discussed in
Section 5.

2 The Models and the Identifiability Condition

Under interval censoring without covariates, the observable random vector is (L,R), where L ≤ Y ≤ R.
The standard IC model that does not involve exact observations is the mixed case IC model (see Schick
and Yu (2000)). Its simplest special case is the Case 2 model (see Groeneboom and Wellner (1992)):

(1) The random vector (U, V ) and (Y, u) are independent,
(2) (L,R) = (−∞, U)1(Y ≤ U) + (U, V )1(Y ∈ (U, V ]) + (V,∞)1(Y > V ).

The common IC model that involves exact observations is the double censorship model (see Turnbull
(1976)). In this section we assume that (Y,u) are from the PH model as in (1.1), with z = u·(t−a)1(t ≥ a),
Y is continuous and is subject to interval censoring, and, u is a non-trivial time-independent random
variable (vector). Interval-censored regression data are denoted by (Li, Ri,ui), where Li and Ri are the
endpoints of the interval Ii and Yi ∈ Ii. The generalized likelihood function with IC data (Li, Ri)’s is
given by

L∗ =
∏n
i=1 µS(·|·)(Ii), where µS(Ii) =

{
S(Li)− S(Ri) if Li < Ri

S(Li−)− S(Li) if Li = Ri.
(2.1)
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2.1 General Forms of the Survival Functions
Since the generalized likelihood (2.1) depends on the survival function S(t|z(t)), we shall discuss the
general form of S(t|z(t)).
Theorem 1. Assume that S(t|z(t)) satisfies the PH model and is absolutely continuous, and z(t) is a
time-dependent covariate. Then S(t|z(t)) = exp(−

∫ t
−∞ eβz(x)ho(x)dx).

Corollary 1. Under the assumptions in Theorem 1, if z(t) = (t− a)u1(t ≥ a), then

S(t|z(t)) =
{
So(t) if t ≤ a or u = 0
So(a) exp(−

∫ t
a
eβu(x−a)ho(x)dx) if t > a and u 6= 0.

In our proposed estimation method, we shall make use of the special hazard function as follows.

For t ≥ a, ho(t) =
{
hi if t ∈ [ai, bi), i ∈ {1, ..., k}
0 otherwise,

where a ≤ a1 < b1 ≤ a2 < b2 ≤ · · · ≤ ak < bk ≤ ak+1 =∞. Then

S(t|z(t)) =


So(t) if t ≤ a1 or u = 0
So(a) exp(− e

−auβ
uβ [

∑j−1
i=1 hi[euβbi − euβai ])

+hj [euβt − euβaj ]]) if t ∈ [aj , bj) and j ≤ k
So(a) exp(− e

−auβ
uβ

∑j
i=1 hi[euβbi − euβai ]) if t ∈ [bj , aj+1) and j ≤ k.

In particular, if bi ≈ ai for all possible i,

S(t|z(t)) ≈So(a) exp(−
j∑
i=1

hie
(bi−a)uβ(bi − ai))

=So(a) exp(−
j∑
i=1

hie
(bi−a)uβ [(bi − ai) + o(bi − ai)]) if u 6= 0, t = bj , bi ≈ ai, j ≤ k.

2.2 Identifiability Issue
We assume that the p× 1 covariate vector u takes at least p linearly independent values. In particular in
this section, without loss of generality (WLOG), we assume p = 1 and u ∈ {0, 1}. Hereafter, by abuse
of notations, we write S(t|u) = S(t|z(t)) and h(t|u) = ho(t) exp(β(t− a)u1(t ≥ a)). Since ho (or fo) can

differ on a set A satisfying
∫
A
dSo(t) = 0, we define fo(t) =

{
−S′o(t) if S′o(t) exists
0 otherwise

for identifiability

of fo and ho. Let SF be the support set of the random variable with the cdf F , in the sense that

x ∈ SF iff F (x+ ε)− F (x− ε) > 0, ∀ ε > 0.

It is worth mentioning that if the df fX of a random variable X exists, then the cdf FX and the hazard
function hX of X are equivalent in the sense that fX yields FX , FX yields hX and hX yields fX . However,
one of fX , SX and hX is given on a subset A of SFX , then it is not always true that the other two
functions are known on A. A counterexample can easily be found by setting A = {2} and X ∼ Exp(µ),
the exponential distribution with mean µ.
Lemma 1. The survival function S(t|u) is identifiable if t ∈ SFL ∪ SFR .
Proof. We say that the parameter θ is identifiable in the sense that the values of the df f(·; θ) uniquely
determines the parameter θ. Under the set-up in this section, the parameter is S(t|u), where u is given and
the df is the df of (L,R) for the given u, say g(l, r|u;S(·|·)). WLOG, we can assume the Case 2 model with
the two follow-up times U and V , such that (Y, u) ⊥ (U, V ). Then (SFL ∪ SFR) ∩ (−∞,∞) = SFU ∪ SFV .

g(l, r|u;S(·|·)) =


(1− S(r|u))fU (r) if l = −∞ and fU (r) > 0
(S(l|u)− S(r|u))fU,V (l, r) if fU,V (l, r) > 0 and −∞ < l < r <∞
S(l|u)fV (l) if fV (l) > 0 and r =∞
0 otherwise.
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If fU (t) > 0 then S(t|u) = 1 − g(−∞, t|u;S(·|·))/fU (t) is uniquely determined by g. If fV (t) > 0 then
S(t|u) = g(t,∞|u;S(·|·))/fV (t) is also uniquely determined by g. Moreover, if to ∈ SFV ∪ SFU , ∃ a
sequence of tj → to and fU (tj) > 0 or fV (tj) > 0, then S(to|u) is also uniquely determined by g, as the
S(t|u) is continuous and S(tj |u) is identifiable ∀ j. Thus given g(·, ·|u;S(·|·)), S(t|u) is identifiable at each
point t in SFU ∪ SFV .
Lemma 2. The parameter β is not identifiable if SFL ∪ SFR is finite.
Proof. It suffices to give a counterexample under the semi-parametric set-up. Consider the PH model
h(t|u) = exp((t − a)uβ1(t ≥ a))ho(t), where β = 1, ho(x) = 1(x ≥ 0) and u ∈ {0, 1}. WLOG, we
can assume Case 2 interval censoring, with the two follow-up times U and V , and (Y, u) ⊥ (U, V ).
Moreover, we can assume that the support set SFU ∪ SFV = {1, 2, 3, ..., n}, where a = 1. Then S(t|u) is
identifiable at t ∈ {1, ..., n}, where u ∈ {0, 1}. Thus by Corollary 1, So(a), So(a) exp(−

∫ j
1 ho(x)dx) and

So(a) exp(−
∫ j

1 e
β(x−1)ho(x)dx) are identifiable, where j = 1, ..., n. Consequently,∫ j+1
j

ho(x)dx = c2j−1 and
∫ j+1
j

eβ(x−1)ho(x)dx = c2j , j ∈ {1, ..., n− 1}, (2.2)

where c2j−1 = 1 and c2j = e(j−1)β eβ−1
β = ej−1(e − 1) are given, but ho and β are parameters, though

their true values are ho(x) = 1(x ≥ 0) and β = 1.
It is obvious that (1(x ≥ 0), 1) is a solution to (ho, β). We shall show that there is another solution to

(ho, β) (where β > 1) to (2.2). That is, for j ∈ {1, ..., n− 1}, we shall define another function ho, say h2(·)
on (j, j + 1] such that∫ j+1

j
h2(x)dx = c2j−1 = 1 and

∫ j+1
j

eβ(x−1)h2(x)dx = c2j = ej−1(e− 1). (2.3)

For each γ > 1, setting ho = h2 = γc2j−11(x ∈ (j, j + 1/γ]), where x ∈ (j, j + 1], then (2.3) yields

eβ(j−1) e
β/γ − 1
β/γ

= c2j/c2j−1 = ej−1(e− 1), γ > 1, (2.4)

which specifies a different solution for β, that is, β 6= 1,
In particular, for j = 1, (2.4) becomes eβ/γ−1

β/γ = e− 1, γ > 1. Its solution is β = γ. The range of the
solution β to (2.3) for γ ≥ 1 and j = 1 is B1 = [1,∞). For j ∈ {2, ..., n− 1}, letting γ →∞, (2.4) yields
eβ(j−1) = ej−1(e− 1), or

β = j−1+ln(e−1)
j−1 > 1, j ∈ {2, ..., n− 1}.

Since for each j ∈ {2, ..., n − 1}, the solution β to (2.4) is continuous in γ ∈ [1,∞), the range of the
solution β to (2.3) for γ ≥ 1 is Bj = [1, 1 + ln(e−1)

j−1 ). It is easy to show that the range Bj is decreasing in
j. Here, notice that for each j, we only need to modify ho or h2 in the interval (j, j + 1].

Since n is finite, ∩n−1
j=1Bj = [1, 1 + ln(e−1)

n−2 ) and (1, 1 + ln(e−1)
n−2 ) 6= ∅, ∃ βo ∈ (1, 1 + ln(e−1)

n−2 ) such that
β = βo is a solution to eβ(j−2) eβ/γj−1

β/γj
= ej−1(e− 1) for some γj , where γj depends on j ∈ {1, 2, ..., n− 1}.

This is the second solution of β to (2.2).
Theorem 2. An identifiability condition for β under the mixed case IC model is that SFL ∪ SFR
contains infinitely many points {tj}j≥1 with a limiting point, say to = limj→∞ tj in (a,∞), provided that
S′o(to) 6= 0.
Proof. If tj ∈ SFL ∪ SFR , S(tj |u) is identifiable for u = 0 or 1. Since So and S(t|1) are continuous,
and tj → to, So(to) and S(to|1) are also identifiable, and it leads to that (S′o(to), S′(to|1)) is identifiable,
as S′o(to) = limtj→to

So(tj)−So(to)
tj−to , etc.. They further lead to that (ho(to), h(to|1)) is identifiable, as

h(to|1) = −S
′(to|1)
S(to|1) etc.. Consequently β can be identified by h(to|1) = e(to−a)βho(to), as a is known.

In the proof of Lemma 2, since (So(t), S(t|1)) are only identifiable at finitely many points and one
cannot derive (S′o(t), S′(t|1)) and (ho(t), h(t|1)) through these finitely many points. Moreover, in view of
the proof of Theorem 2, if (So(t), S(t|1)) are only identifiable at all positive integers, or S′o(to) = 0 for the
to defined in Theorem 2, then β is likely non-identifiable. Moreover, the interval (a,∞) in Theorem 2
cannot be replaced by [a,∞).
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Lemma 3. The function So(a) is not identifiable if a /∈ SFL ∪ SFR , even if β is known and SFL ∪ SFR
contains a nonempty open interval in [a,∞).
Proof. It suffices to give a counterexample. Consider a Case 1 IC model with the censoring variable
C ∼ U(2, 3) and h(t|u) = eu(t−1)β1(t≥1)ho(t), u ∈ {0, 1}. Then β is identifiable by Theorem 2. Let β = 1.
If ho = 1(t > 0), then So(a) = e−1, So(2) = e−2, and S(2|1) = e−1e−(e−1). Let

h∗0(x) =


h1 if x ∈ (0, 1]
h2 if x ∈ (1, 1.5]
h3 if x ∈ (1.5, 2]
arbitrary otherwise.

The equation represents a hyperplane in R3 passing through (1, 1, 1). Thus there are many solutions near
(1, 1, 1) satisfying (h1, h2, h3) ≥ 0 and h1 6= 1. Thus the solution to So(a) = e−h1 is not unique.
Remark 1. It is interesting to notice the following facts in the univariate covariate case.
1. If the covariate is time-independent then β is identifiable even if SFL ∪ SFR contains only one point t
at which S(t) ∈ (0, 1). In fact, if to ∈ SFL ∪ SFR then S(to|u) = (So(to))e

βu is identifiable for u ∈ {0, 1}
and thus S(to|0) = So(to) is identifiable. Since β = ln lnS(to|1)

lnSo(to) and both So(to) and S(to|1) are known, it
follows that β is identifiable.
2. If the covariate is z = u1(t ≥ a), then β and So(a) are identifiable even if (SFL ∪ SFR) ∩ [a,∞)
contains only two points t’s at which S(t) ∈ (0, 1). In fact, let a ≤ b < c, where b, c ∈ SFL ∪ SFR
and 1 > So(a) ≥ So(b) ≥ So(c) > 0, then (So(b), So(c), S(b|1), S(c|1)) is identifiable. Moreover,
S(t|1) = (So(a))1−eβ (So(t))e

β if t > a. Since S(b|1)
S(c|1) = (So(b)

So(c) )eβ , β is identifiable. Since S(b|1) =
(So(a))1−eβ (So(b))e

β , So(a) is also identifiable.
3. However, if z = (t−a)u1(t ≥ a), then neither β nor So(a) is identifiable even if the set (SFL∪SFR)∩[a,∞)
contains countably many points in (a,∞) (see the comment after Theorem 2). Moreover, So(a) is not
identifiable even if β is known and SFL ∪ SFR contains a non-empty open interval in [a,∞).

These facts imply that if the random vector (L,R) only takes on finitely many values, there exist
consistent estimators of β under the PH model with time-independent covariates but not under the
situation considered in this paper. Also, in simulation studies, one can let the censoring vector have a
finite discrete distribution under the PH model with time-independent covariates, but should not try the
censoring vector which takes on finitely many values if the covariate is given by (1.2).

3 Semi-parametric Estimation

We shall propose our estimation method in this section.

3.1 Preliminary

For the PH model with time-independent covariates, the generalized likelihood function with IC data is
given by L∗ =

∏n
i=1 µS(·|·)(Ii) as in (2.1). For the time-dependent covariates z(t) = u · (t− a)1(t ≥ a),

such a definition would lead to L∗ = 0 in view of Theorem 1, as µS(·|·)(Ii) = 0 if Li = Ri. The first
modification to L∗ is

Lo =
n∏
i=1

µS(·|·)(I∗i ), where µS(I∗i ) = S(L∗i )− S(Ri), L∗i =
{
Li if Li < Ri

Li − εn if Li = Ri
(3.1)

and εn = 1
n ∧min{|x− y| : x 6= y, x, y ∈ {a, L1, ..., Ln, R1, ..., Rn}}. Remark 2. Hereafter, by abuse of

notations, we write Li = L∗i , i = 1, ..., n. Moreover, Ii’s are the modified observed intervals, instead of
the original ones, that is, Ii = (L∗i , Ri].

An interval A is called an innermost interval (II) if it is an intersection of the observed intervals
Ii’s and if A ∩ Ii = A or ∅ for each Ii. Notice that each exact observation [Yk, Yk] (= [Lk, Rk]) is an II,
however, under our modification, it is changed to an interval (Yk − εn, Yk]. It is well known (see Wong
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and Yu (2017)) that under the PH model with time-independent covariates in order to maximize Lo, it
suffices to put the weights of So to the IIs. Moreover, the weight to each II is uniquely determined, but
not the distribution of the weight within the II. Let A1, ..., Am be all the II’s induced by Ii’s and let
(vj , wj) be the pair of endpoints of Aj , where w0 = −∞ < w1 < w2 < · · · < wm ≤ ∞. For each i, let
ξi = 1(Ri < wm) and define li and ri by wri ≤ Ri < wri+1 and wli ≤ Li < wli+1. Then the likelihood
function in (2.1) becomes

Lo(β, So) =
∏

Ri≤a or ui=0
(So(wli)− So(wri)) (3.2)

·
∏

Li<a<Ri,ui 6=0
{So(wli)− ξiSo(a) exp(−

∑
wj∈[a,Ri]

∫ wj

vj

eβ(x−a)ho(x)dx)} ·
∏

Li>a,ui 6=0
So(a)

· [exp(−
∑

wj∈(a,Li]

∫ wj

vj

eβ(x−a)ho(x)dx)− ξi exp(−
∑

wj∈(a,Ri]

∫ wj

vj

eβ(x−a)ho(x)dx)].

However, there is still a problem in this definition, as ho is a function of x and needs to be properly
defined on [vj , wj ] for all j < m (note that So(wm) = 0). The counterexample constructed in the proof of
Lemma 2 can actually be modified to show that the definition of ho on the IIs can change the value of
the “SMLE" of β. There are two naive approaches:

A1. Let ho be constant at each A1, ..., Am−1.

A2. Let ho be two-piecewise-constant at each A1, ..., Am−1.

We shall explain in §3.3 that the previous two naive approaches do not lead to a consistent SMLE. We
propose the third approach as follows, in addition to the modification mentioned in Remark 2 about Li’s
and Ii’s.

A3. First, let ho(x) = 0 if x /∈ ∪k(vk, wk], where (v1, w1], ..., (vm, wm] are all the II’s. Moreover, notice
that each (vk, wk] will be contained by several modified observed intervals Ii’s (see Remark 2) with J
(≥ 1) distinct values of ui’s, where J depends on k. There are two types of (vk, wk): (1) wk − vk ≈ 0, or
wk ≤ a, or wk − a ≈ 0 and a ∈ (vk, wk]; (2) otherwise. For k < m, define

ho(x) =
{

constant on (vk, wk] if (vk, wk) belongs to type (1)
J-piece-wise constant on (vk, wk] if (vk, wk) belongs to type (2)

(in particular, if (vk, wk)

belongs to type (2), then

ho(x) =
J∑
j=1

hkj1(x ∈ (vkj , wkj ]) for x ∈ (vk, wk], where vk = vk1, wk1 = vk2, (3.3)

wk2 = vk3, ..., wkJ = wk and wkj − vkj =
{
wk−vk
J if a ∈ (vk, wk], j ∈ {1, ..., J}

wk−vk
J−1 if a /∈ (vk, wk], j ∈ {2, ..., J}

). If k = m, simply

define So(wm) = 0 (ho can be arbitrary on (vm, wm], provided that ho ≥ 0 and
∫ wm
vm

ho(x)dx =∞).

Remark 3. By abuse of notations, we let (aj , bj ] be the interval in which ho is constant, as specified in
(3.3). Then

ho(x) =
∑
j

hj1(x ∈ (aj , bj ]), where (aj , bj ] may not be an II. (3.4)
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In view of (3.4), Lo in (3.2) becomes

Lo(β, So) =
∏

Ri≤a, or ui=0

{
exp(−

∑
bj≤Li

hj [bj − aj ])[1− exp(−
∑

bj∈(Li,Ri]

hj [bj − aj ])]ξi
}

·
∏

Li≥a,ui 6=0

{
So(a) exp(−e

−auiβ
uiβ

∑
bj∈(a,Li]

hj [euiβbj − euiβaj ])

· [1− exp(−e
−auiβ
uiβ

∑
bj∈(Li,Ri]

hj [euiβbj − euiβaj ])]
}

·
∏

Li<a<Ri,ui 6=0

{
exp(−

∑
bj≤Li

hj [bj − aj ]ξi)

· [1− exp(−
∑

bj∈(Li,a]

hj(bj − aj)−
e−auiβ
uiβ

∑
bj∈(Li,Ri]

hj [euiβbj − euiβaj ])]ξi
}
.

3.2 Definition of the Modified Likelihood Function

As explained later in (3.11), it is more convenient to replace ho(x)eβuix by a piecewise constant function,
and to modify Lo as

L =
∏

Ri≤a, or ui=0

{
exp(−

∑
bj≤Li

hj [bj − aj ])[1− exp(−
∑

bj∈(Li,Ri]

hj [bj − aj ])]ξi
}

·
∏

Li≥a,ui 6=0

{
exp(−

∑
bj≤a

(bj − aj)hj −
∑

bj∈(a,Li]

hje
(bj−a)uiβ(bj − aj))

· [1− exp(−
∑

bj∈(Li,Ri]

hje
uiβ(bj−a)(bj − aj))]ξi

} ∏
Li<a<Ri,ui 6=0

{
exp(−

∑
bj≤Li

hj [bj − aj ])

[1− exp(−
∑

bj∈(Li,a]

hj [bj − aj ]−
∑

bj∈(a,Ri]

hje
(bj−a)uiβ [bj − aj ])]ξi

}
,

lnL =
∑

Ri≤a, or ui=0
{(−

∑
bj≤Li

hj [bj − aj ]) + ξiln[1− Ui]}

+
∑

Li≥a,ui 6=0
{−

∑
bj≤a

hj(bj − aj)−
∑

bj∈(a,Li]

hje
(bj−a)uiβ(bj − aj) + ξiln[1−Wi]}

+
∑

Li<a<Ri,ui 6=0
{−

∑
bj≤Li

hj [bj − aj ] + ξiln[1− Vi]]},

where Ui = exp(−
∑

bj∈(Li,Ri]

hj [bj − aj ]), Wi = exp(−
∑

bj∈(Li,Ri]

hje
uiβ(bj−a)(bj − aj)),

and Vi = exp(−
∑

bj∈(Li,a]

hj [bj − aj ]−
∑

bj∈(a,Ri]

hje
(bj−a)uiβ [bj − aj ]).

The SMLE maximizes lnL over all hj ’s and β. It is well known that the Newton Raphson method does
not work (see Wong and Yu (2012) or Appendix II). We suggest to use the steepest decent method. Thus
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we derive the derivatives as follows.
∂lnL
∂β

=
∑

Li≥a,ui 6=0
{−

∑
bj∈(a,Li]

Hij + ξiWi

[1−Wi]
∑

bj∈(Li,Ri]

Hij}+
∑

Li<a<Ri,ui 6=0

ξiVi
1− Vi

∑
bj∈(a,Ri]

Hij

(Hij = hje
(bj−a)uiβ(bj − aj)(bj − a)ui)

=−
∑

Li≥a,ui 6=0
{
∑

bj∈(a,Li]

Hij + ξi(1−
1

1−Wi
)

∑
bj∈(Li,Ri]

Hij}

−
∑

Li<a<Ri,ui 6=0
ξi(1−

1
1− Vi

)
∑

bj∈(a,Ri]

Hij ,

∂lnL
∂hk

= −(bk − ak) ·
{ ∑
Ri≤a, or ui=0

{1(bk ≤ Li)− 1(bk ∈ (Li, Ri])
ξiUi

1− Ui
}

+
∑

Li≥a,ui 6=0
{1(bk ≤ a) + 1(bk ∈ (a, Li])e(bk−a)ukβ − ξi1(bk ∈ (Li, Ri])eukβ(bk−a) Wi

1−Wi
}

+
∑

Li<a<Ri,ui 6=0
{1(bk ≤ Li)− ξi[1(bk ∈ (Li, a]) + 1(bk ∈ (a,Ri])e(bk−a)ukβ ] Vi1− Vi

}
}

= −(bk − ak) ·
{ ∑
Ri≤a, or ui=0

{1(bk ≤ Li) + ξi1(bk ∈ (Li, Ri])(1−
1

1− Ui
)}

+
∑

Li≥a,ui 6=0
{1(bk ≤ a) + e(bk−a)ukβ

[
1(bk ∈ (a, Li]) + ξi1(bk ∈ (Li, Ri])(1−

1
1−Wi

)
]
}

+
∑

Li<a<Ri,ui 6=0
{1(bk ≤ Li) + ξi[1(bk ∈ (Li, a]) + 1(bk ∈ (a,Ri])e(bk−a)ukβ ](1− 1

1− Vi
})
}
.

To estimate the covariance matrix of β̂, we need to compute

∂2lnL
∂β2 = −

∑
Li<a<Ri,ui 6=0

ξi{
∑

bj∈(a,Ri]

H ′ij −
∑
bj∈(a,Ri] H

′
ij

1− Vi
+
Vi(
∑
bj∈(a,Ri] Hij)2

(1− Vi)2 }

−
∑

i: Li≥a,ui 6=0
{
∑

bj∈(a,Li]

H ′ij + ξi[
∑

bj∈(Li,Ri]

H ′ij −
∑
bj∈(Li,Ri] H

′
ij

1−Wi
+
Wi(

∑
bj∈(Li,Ri] Hij)2

(1−Wi)2 ]}

( where H ′ij = hje
(bj−a)uiβ(bj − aj)((bj − a)ui)2).

∂2lnL
∂h2

k

= −(bk − ak)2{ ∑
Ri≤a or ui=0

ξi1(bk ∈ (Li, Ri])
Ui

(1− Ui)2

+
∑

Li≥a,ui 6=0
ξi1(bk ∈ (Li, Ri])

e2(bk−a)ukβWi

(1−Wi)2

+
∑

Li<a<Ri,ui 6=0
ξi[1(bk ∈ (Li, a]) + 1(bk ∈ (a,Ri])e2(bk−a)ukβ ] Vi

(1− Vi)2

}
.

Remark 4. As explained later in Example 3.1, the semi-parametric approach specified in (3.3) essentially
estimates µF (II) by the GMLE with given β if the length of the II is not so small. There are cases that
the length of an II may not tend to 0 such as an II containing [0, 20] in a mammogram data set, as the
age for the first mammogram is likely to be larger than 20 years. It is a practical issue how to interpret
an II being small.
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3.3 Justification of Lo and L

We shall also explain why the third modifications of the likelihood works through Example 3.1, as well as
why the others do not work.
Example 3.1. Consider a continuous nonnegative random variable Y that satisfies the model h(t|u) =
ho(t)etuβ1(t≥0), where u ∼ bin(m, 0.5), the binomial distribution with m trials and the probability of
success p = 0.5, ho is continuous at c = 0.69 and ho(c) 6= 0. Let Y be subject to a Case 2 IC model, where
the censoring vector (U, V ) ≡ (c, c+ cn), cn = 4n−1/2 and n is the sample size. Then the observations are
of the forms (0, c, u), (c, c+ cn, u), or (c+ cn,∞, u), u ∈ {0, 1, ...,m}. The observed intervals are either
(0, c], (c, c + cn], or (c + cn,∞), and they are all IIs. J defined in A3 satisfies j = m + 1 if n is large
enough. One may think that β is not identifiable as the support set is finite, in view of Lemma 2. Notice
that (U, V ) is really (Un, Vn) and one can treat the support set being A = ∪n(SFUn ∪ SFVn ), which is not
finite and has a limiting point c > a = 0. For a fixed n, S(t|u) is identifiable at c and c+ cn. We shall
first let m = 1, i.e., u ∼ bin(1, 0.5). Then

ln(S(t|u)) = −
∫ t

0 ho(x)eβuxdx, u ∈ {0, 1}, ln(S(c|u)/S(c+ cn|u)) =
∫ c+cn
c

ho(x)eβuxdx, u ∈ {0, 1},

lim
n→∞

1
cn

ln(S(c|u)/S(c+ cn|u)) = ho(c)eβuc, u ∈ {0, 1}, and 1
c lnho(c)e1βc

ho(c)e0βc = β. (3.5)

Thus β is identifiable. Therefore, it is possible to construct consistent estimators of β. We shall discuss
four estimators as follows.
a. A GMLE approach. If n is large enough, there are three innermost intervals (0, c], (c, c+ cn] and
(c+cn,∞). Let n1u, n2u and n3u be the numbers of the three types of intervals with u = 0 or 1. Recall that
the generalized likelihood function is Lo = (1−S(c|0))n10(1−S(c|1))n11(S(c|0)−S(c+ cn|0))n20(S(c|1)−
S(c+ cn|1))n21(S(c+ cn|0))n30(S(c+ cn|1))n31 and the GMLE of S(·|u), say Ŝ(·|u), is given by

Ŝ(c|u) = n2u + n3u

n·u
and Ŝ(c+ cn|u) = n3u

n·u
, u ∈ {0, 1}, where u·u =

3∑
j=1

nju. (3.6)

Replacing S(·|u) in the last two equations in (3.5) by Ŝ(·|u) yields an estimator of β:

β̂ = 1
c

ln ln(Ŝ(c|1)/Ŝ(c+ cn|1))
ln(Ŝ(c|0)/Ŝ(c+ cn|0))

= 1
c

ln
n21

n·1−n21
n20

n·0−n20

. (3.7)

Since it makes use of the GMLE Ŝ(·|u), we can say that β̂ is a GMLE of β. Simulation results in §4
suggest that the GMLE β̂ is consistent (see Table 1).
b. An estimator due to the first naive approach. Let ho be constant in each of first two IIs, say it
equals h1 and h2, respectively (i.e., ho(x) = h11(x ∈ (0, c]) + h21(x ∈ (c, c+ cn]) if x ∈ (0, c+ cn] and
arbitrary otherwise). Then Lo in (3.1) satisfies Lo ≈ L1, where

L1 =(1− exp(−ch1))n10 [exp(−ch1)(1− exp(−cnh2))]n20(exp(−(ch1 + cnh2)))n30

× (1− exp(−h1
ecβ − 1
β

))n11 [exp(−h1
ecβ − 1
β

)(1− exp(−h2cne
cβ))]n21 (as cn ≈ 0)

× (exp(−h1
ecβ − 1
β

− h2cne
cβ))n31 .

Let β̌ be the value of β that maximizes L1 just defined. Simulation results in Table 1 of Section 4 suggest
that the estimator β̌ is not consistent. Thus this approach does not work. In fact the limiting points of β̌
should maximize the almost sure limit

lim
n→∞

lnL1(h1, h2)
n

= p10ln(1− exp(−ch1)) + p30ln exp(−(ch1)) (note cn → 0)

+ p11ln(1− exp(−h1
ecβ − 1
β

)) + p31ln(exp(−h1
ecβ − 1
β

)),
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where piu’s are defined in an obvious way, e.g., p1u = P (Y ≤ c|u). Thus the (almost sure) limiting points
of the estimator of (h1, h2, β) should satisfy

p30 = exp(−
∫ c

0
ho(x)dx) = exp(−ch1),

p31 = exp(−
∫ c

0
ho(x)eβxdx) = exp(−h1

ecβ − 1
β

),

etc.. If β̌ is consistent, then for each (ho(·), β), there exists h1 satisfying the two equations related
to p30 and p31. Let β = 1 and ho(x) = 1(x /∈ (c/2, c)), then p30 yields h1 = 0.5 and p31 yields
exp(−(ec/2 − 1)) = exp(−0.5(ec − 1)), a contradiction, as c = 0.69. Thus the first naive approach does
not lead to a consistent estimator of β.

Moreover, if u ∼ bin(m, 0.5) with m ≥ 2 in Example 3.1, then the second naive approach does not lead
to a consistent estimator of β neither. The argument is similar to the last paragraph. Here J = m+ 1 > 2,
where J is defined in A3, the example motivates Eq. (3.3).
c. A consistent estimator due to the second naive approach when u ∼ bin(1, 0.5). Define

ho(x) =



h1 if x ∈ (0, c/2]
h2 if x ∈ (c/2, c]
h3 if x ∈ (c, c+ cn/2]
h4 if x ∈ (c+ cn/2, c+ cn])
arbitrary if x > c+ cn.

There are 5 parameters in this approach and it can be

shown that the solution to (β, h1, h2, h3, h4) that maximizes Lo is not unique. In fact let Ŝ(·|u) be the
GMLE given in (3.6) (which is uniquely defined only at 0, c and c+ cn), then ∀ β ∈ (−∞,∞), there is a
unique solution of (h1, h2, h3, h4) to the system of four linear equations in (3.8) and (3.9):

−ln(Ŝ(c|u)) = h1

∫ c/2

0
eβuxdx+ h2

∫ c

c/2
eβuxdx, u ∈ {0, 1}, (3.8)

ln(Ŝ(c|u)/Ŝ(c+ cn|u)) = h3

∫ c+cn/2

c

eβuxdx+ h4

∫ c+cn

c+cn/2
eβuxdx, u ∈ {0, 1}, (3.9)

though the solutions to hi’s may not be nonnegative. However, for each β in a neighbourhood of the GMLE
β̂ defined in part a, there exists a positive solution to (h1, ..., h4) to the four equations (corresponding
to u ∈ {0, 1}) in (3.8) and (3.9) and thus, there exist many proper solutions to (β, h1, ..., h4). Each of
such (β, h1, h2, h3, h4) maximizes Lo. Consequently, this approach is not ideal, though it can lead to a
consistent estimator of β.
d. An SMLE approach. In view of (3.9), if cn ≈ 0, we have

ln(Ŝ(c|u)/Ŝ(c+ cn|u)) ≈ eβuc(h3

∫ c+cn/2

c

dx+ h4

∫ c+cn

c+cn/2
dx), u ∈ {0, 1}, (3.10)

h3 + h4 and β can be uniquely determined by the two equations in (3.10). Thus the parameters are really
h1, h2, h3 + h4 and β and the degree of freedom in the second naive approach reduces to 4. If we revise
(3.8) as follows,

−ln(Ŝ(c|u)) = h1

∫ c/2

0
eβuc/2dx+ h2

∫ c

c/2
eβucdx, u ∈ {0, 1},

which uniquely determines h1 and h2, the four parameters, S(c+ cn|u) and S(c+ cn|u) for u ∈ {0, 1}, can
be reparametrized equivalently as β and ho which is piecewise constant on (0, c/2], (c/2, c] and (c, c+ cn]
with values h1, h2 and h3, respectively (notice that the new parameter is (β, h1, h2, h3), with 4 degrees of
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freedom again). Recall the generalized likelihood

Lo =(1− exp(−
∫ c

0
eβxho(x)dx))n11 [exp(−

∫ c

0
eβxho(x)dx)(1− exp(−

∫ c+cn

c

eβxho(x)dx))]n21

× (exp(−
∫ c+cn

0
eβxho(x)dx))n31(1− exp(−0.5(ch1 + ch2)))n10

× (exp(−0.5(ch1 + ch2))(1− exp(−(cnh3))))n20(exp(−(0.5ch1 + 0.5ch2 + cnh3)))n30 .

Replacing eβuxho(x) by a piecewise constant, say
h1e

βuc2/1(x ∈ (0, c/2] + h2e
βuc1(x ∈ (c/2, c] + h3e

βuc+cn/21(x ∈ (c, c+ cn],
Lo becomes

L =(1− exp(−
∫ c/2

0
eβc/2h1dx−

∫ c

c/2
eβch2dx))n11 (3.11)

× [exp(−
∫ c/2

0
eβc/2h1dx−

∫ c

c/2
eβch2dx)(1− exp(−

∫ c+cn

c

eβch3dx)︸ ︷︷ ︸
≈h3eβccn

)]n21

× (exp(−
∫ c+cn

0
eβch3dx))n31(1− exp(−0.5(ch1 + ch2)))n10

× (exp(−0.5(ch1 + ch2))(1− exp(−(cnh3))︸ ︷︷ ︸
≈h3cn

))n20(exp(−(0.5ch1 + 0.5ch2 + cnh3)))n30 .

It can be verified that for (β, h1, h2, h3), there is a different vector (β, h1, h
∗
2, h
∗
3) such that Lo(β, h1, h2, h3) =

L(β, h1, h
∗
2, h
∗
3). Thus, one can take L as the semi-parametric likelihood and the SMLE of β (and h3) can

be solved through the GMLE Ŝ(·|·), which leads to β̃ = 1
c ln

n21
n·1−n21
n20

n·0−n20
, which is the same as the GMLE of β

in (3.7). Notice that replacing eβuxho(x) by a different piecewise constant such as
h1e

βu01(x ∈ (0, c/2] + h2e
βuc/21(x ∈ (c/2, c] + h3e

βuc1(x ∈ (c, c+ cn] or
h1e

βuc1(x ∈ (0, c/2] + h2e
βuc1(x ∈ (c/2, c] + h3e

βuc1(x ∈ (c, c+ cn],
the limit of the SMLE will be the same. Notice that J = 2 (see (3.3)) here, as u ∼ bin(1, 0.5). This case
also motivates Eq. (3.3) and L in §3.2. This concludes Example 3.1.
Remark 5. The discussion in Example 3.1 suggests that if u ∈ {0, 1}, then one can get a GMLE of β
based on L∗ in (2.1) as follows.
1. First obtain the GMLE of So and S(·|1), based on the samples with ui = 0 and ui = 1, respectively, by
the self-consistent algorithm (see Turnbull (1976)).
2. Let β̂ = 1

m

∑m
j=1

1
bkj−a

ln ln(S(bkj |1)/S(akj |1))
ln(S(bkj |0)/S(akj |0)) , where (akj , bkj ], j = 1, ..., m, are all the II’s that satisfy

bkj − bkj−1 ≈ 0, akj > a, and S(bkj |u) > S(akj |u) for u ∈ {0, 1}.
If the covariate u takes on finitely many values, the approach is applicable after minor modifications. The
drawback of this approach is that it does not work if there are very few ties in the covariate ui’s.
Remark 6. If τ < ∞ and supSFL < ∞, then bm < ∞, where bm is the largest among the right-end
points of the innermost intervals. If one defines ho to be piecewise constant on the II’s, then such ho does
not lead to a proper survival function. However it is seen from Example 3.1 that there is no need to define
ho on the interval (am, bm] in the likelihood function L, as long as So(bm) = 0. In the latter case, the
likelihood will remain the same for any reasonable definition of ho on [am, bm].

4 Simulation Studies

The next table presents the simulation results for the naive estimator β̌ and the SMLE β̂ under the
assumption in Example 3.1. The simulation results suggest that β̂ is consistent, but not β̌.

We carried out simulation studies under the mixed case IC model. The mixed case IC model is
implemented by (Li, Ri) = (Wi−1,Wi) if Y ∈ (Wi−1,Wi], where W0 = 0, Wi = iV , i ≥ 1, V is from
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Table 1. Simulation Results for the naive estimator β̌ and the SMLE β̂

sample size β β̌ sdβ̂ β̂ sdβ̂

2000 0.5 0.284 0.086 0.564 0.299
20000 0.5 0.266 0.031 0.519 0.162
2000000 0.5 0.259 0.009 0.493 0.086

U(0, 0.4). In addition if there is a fixed II (b, c], then Li = a if a ≤ Li ≤ b and Ri = b if a ≤ Ri ≤ b. We
carried out simulation under the following setups.

(1) SFL ∪ SFR is dense in (c, τ). u ∼ U [0, 1), in addition to u ∼ bin(1, 0.5).
(2) A population II is (b, c], where a < b < c.
(3) A population II is (b, c], where b < a < c.
We generated data with 5000 replications each for sample sizes n = 100, 200 and 400. The cut point is

0.5 and λ = 0.2. Table 2 displays the results. Our simulation study suggests that the SMLE β̂ is consistent
and the convergence rate is n 1

2 .

Table 2. Simulation Results for the SMLE

sample size β ho a u (a, b) β̂ SDβ̂

100 0.5 1 0.2 bin(1, 0.5) (0.3,0.8) 0.512 0.238
200 0.5 1 0.2 bin(1, 0.5) (0.3,0.8) 0.516 0.183
400 0.5 1 0.2 bin(1, 0.5) (0.3,0.8) 0.489 0.111

100 0.5 1 0.2 U(0, 1) (0.3,0.8) 0.542 0.423
200 0.5 1 0.2 U(0, 1) (0.3,0.8) 0.491 0.298
400 0.5 1 0.2 U(0, 1) (0.3,0.8) 0.469 0.196

100 1 exp(λt) 0.5 U(0, 1) (0.4,0.6) 1.243 0.897
200 1 exp(λt) 0.5 U(0, 1) (0.4,0.6) 1.132 0.612
400 1 exp(λt) 0.5 U(0, 1) (0.4,0.6) 1.072 0.386

100 1 exp(λt) 0.5 bin(1, 0.5) (0.4,0.6) 1.072 0.532
200 1 exp(λt) 0.5 bin(1, 0.5) (0.4,0.6) 1.074 0.296
400 1 exp(λt) 0.5 bin(1, 0.5) (0.4,0.6) 1.025 0.204

100 1 exp(λt) 0.5 bin(1, 0.5) (0.6,0.8) 1.057 0.534
200 1 exp(λt) 0.5 bin(1, 0.5) (0.6,0.8) 1.040 0.302
400 1 exp(λt) 0.5 bin(1, 0.5) (0.6,0.8) 1.016 0.221

100 2 exp(λt) 0.5 U(0, 1) (0.6,0.8) 2.178 0.651
200 2 exp(λt) 0.5 U(0, 1) (0.6,0.8) 2.114 0.523
400 2 exp(λt) 0.5 U(0, 1) (0.6,0.8) 2.058 0.359
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5 Concluding Remark

Even though we only consider case that the covariate is of the form z(t) = (t− a)u1(t ≥ a), the result
can be generalized to the case of other time-dependent covariates, such as the form z(t) = ug(t), where u
is a covariate and g(t) is a function. For instance, the two modification are trivially applicable to the case
that g(t) = 1(t ≥ a), though (3.3) is not necessary. However, if g(t) = (t− a)2 then the modification in
(3.3) is necessary and works.
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