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Abstract For square contingency tables, many decompositions of the symmetry model were given.
If the symmetry model does not hold, the decomposition of symmetry is useful to analyze the cause
that the symmetry model fits poorly. The present paper shows the decomposition of the symmetry
model using odds-symmetry, and the test statistic for the symmetry model is equal to the sum of
those for decomposed models. This paper also gives the decomposition of the conditional symmetry
model using odds-symmetry. By comparing the existing decompositions of the symmetry model, we
show that the proposed decompositions are useful.
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1 Introduction

Consider an R×R square contingency table with the same row and column classifications. Let pij denote
the probability that an observation will fall in the ith row and jth column of the table (i = 1, . . . , R; j =
1, . . . , R). The symmetry (S) model is defined by

pij = pji (i 6= j),

(Bowker, 1948; Bishop, Fienberg and Holland, 1975, p. 282). The S model indicates that the probability
that an observation will fall in the (i, j) cell, i 6= j, is equal to the probability that the observation falls in
the symmetric (j, i) cell.

The marginal homogeneity (MH) model is defined by

pi· = p·i (i = 1, . . . , R),

where pi· =
∑R

t=1 pit and p·i =
∑R

s=1 psi (Stuart, 1955). The MH model indicates that the row marginal
distribution is identical to the column marginal distribution.

The quasi-symmetry (QS) model is defined by

pij = αj

αi
pji (i < j),

(Caussinus, 1965). The QS model with {αi = αj} is identical to the S model. Denote the odds ratio for
rows i and j (i < j), and columns s and t (s < t) by θ(i<j;s<t), where θ(i<j;s<t) = (pispjt)/(pjspit). The
QS model is expressed as

θ(i<j;s<t) = θ(s<t;i<j) (i < j; s < t).

Thus the QS model has characterization in terms of symmetry of odds ratio.
For square contingency tables with ordered categories, McCullagh (1978) considered the conditional

symmetry (CS) model, defined by
pij = δpji (i < j).

This model with δ = 1 is identical to the S model.
Tomizawa (1985) considered two kinds of odds-symmetry (OS) models as follows:

HROS : pij/pi,j+1 = pji/pj+1,i (i < j);
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HCOS : pi−1,j/pij = pj,i−1/pji (i < j).

The ROS model indicates that the odds whose column value is j instead of j + 1 in row i with respect to
the upper-right triangle of the table are equal to the symmetric odds whose row value is j instead of j + 1
in column i with respect to the lower-left triangle of the same table. The COS model also has similar
properties. The ROS and COS models can also be expressed as

HROS : pij = γipji (i < j);

HCOS : pij = sjpji (i < j).

The ROS and COS models with {γi = δ} and {sj = δ} are identical to the CS model, respectively. Also
the ROS and COS models with {γi = 1} and {sj = 1} are identical to the S model, respectively.

The global symmetry (GS) model is defined by∑∑
i<j

pij =
∑∑

i>j

pij ,

(Read, 1977).
For square contingency tables with nominal categories, Caussinus (1965) gave the theorem that the S

model holds if and only if both the QS and MH models hold. Also, Tomizawa and Tahata (2007) showed
that for large sample, a test statistic for the S model is approximately equal to the sum of those for the
QS and MH models.

For square contingency tables with ordered categories, Read (1977) showed the decomposition of the
S model using the CS and GS models, and the likelihood ratio chi-square test statistic for the S model is
equal to the sum of those for decomposed models. Other many decompositions of the symmetry model
were given (see, for example, Tahata and Tomizawa (2014), Kateri, Gottard, and Tarantola (2017)). So,
we are interested in considering decompositions of the S model using OS models. We are also interested
in considering decompositions of the CS model using OS models.

The purpose of this paper is (1) to give decompositions of the S model using OS models, (2) to show
partitioning for goodness-of-fit test of the S model, and (3) to give decompositions of the CS model using
OS models.

2 Decompositions of Symmetry Using Odds-Symmetry

In order to show decompositions using OS models, we shall introduce models below.
Tomizawa (1984) considered two kinds of marginal symmetry (MS) models as follows:

HRMS : p+
i· = p−

·i (i = 1, . . . , R− 1);

HCMS : p+
·i = p−

i· (i = 2, . . . , R),

where

p+
i· =

R∑
k=i+1

pik, p−
·i =

R∑
k=i+1

pki, p+
·i =

i−1∑
k=1

pki and p−
i· =

i−1∑
k=1

pik.

Also, Tomizawa (1984) considered two kinds of marginal asymmetry (MAS) models as follows:

HRMAS : p+
i· = τ1p

−
·i (i = 1, . . . , R− 1);

HCMAS : p+
·i = τ2p

−
i· (i = 2, . . . , R).

Let X and Y denote the row and column variables, respectively. Under the RMAS model, τ1 > 1 is
equivalent to Pr(X < Y ) > Pr(X > Y ) and τ1 < 1 is equivalent to Pr(X < Y ) < Pr(X > Y ) . Moreover
note that a special case of RMAS obtained by putting τ1 = 1 is the RMS model. The CMAS model also
has similar properties. We obtain decompositions of the S model using OS models as follows.
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Theorem 1: The S model holds if and only if both the ROS and RMS models hold.

Proof: If the S model holds, then both the ROS and RMS models hold. Assuming that the ROS
and RMS models hold, then we shall show that the S model holds. From the both ROS and RMS models
hold, we get

γi

R∑
k=i+1

pki =
R∑

k=i+1
pki (i = 1, . . . , R− 1).

If {γi > 1} in the ROS model, we see

γi

R∑
k=i+1

pki >
R∑

k=i+1
pki (i = 1, . . . , R− 1).

If {γi < 1} in the ROS model, we see

γi

R∑
k=i+1

pki <
R∑

k=i+1
pki (i = 1, . . . , R− 1).

Therefore, we obtain {γi = 1}. Namely, the S model holds. The proof is completed.

Theorem 2: The S model holds if and only if both the COS and CMS models hold.

The proof of Theorem 2 is omitted because it is obtained in a similar way to the proof of theorem
1. Next, we obtain the following theorems.

Theorem 3: The CS model holds if and only if both the ROS and RMAS models hold.

Theorem 4: The CS model holds if and only if both the COS and CMAS models hold.

Theorem 5: The RMS model holds if and only if both the RMAS and GS models hold.

Theorem 6: The CMS model holds if and only if both the CMAS and GS models hold.

The proofs of Theorems 3 to 6 are omitted because they are obtained in a similar way to the proof of
theorem 1. From Theorems 1, 2, 5, 6, we obtain the following corollaries.

Corollary 1: The S model holds if and only if all the ROS, RMAS and GS models hold.

Corollary 2: The S model holds if and only if all the COS, CMAS and GS models hold.

3 Partitioning Test Statistic

Assume that a multinomial distribution applies to the R×R table. Let nij denote the observed frequency
in the ith row and jth column of the R×R table (i = 1, . . . , R; j = 1, . . . , R), with n =

∑∑
nij .

The maximum likelihood estimates (MLEs) of expected frequencies {mij} under the S, CS, ROS,
COS, RMS, CMS, RMAS, CMAS, GS models are expressed as the closed-forms as follows:
(a) The MLEs of {mij} under the S model is

m̂ij =
{ nij + nji

2 for i 6= j,

nij for i = j.
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(b) The MLEs of {mij} under the CS model is

m̂ij =


nu

nu + nl
(nij + nji) for i < j,

nl

nu + nl
(nij + nji) for i > j,

nij for i = j,

where
nu =

∑∑
i<j

nij and nl =
∑∑

i>j

nij .

(c) The MLEs of {mij} under the ROS model is

m̂ij =



n+
i·

n+
i· + n−

·i
(nij + nji) for i < j,

n−
·j

n+
j· + n−

·j
(nij + nji) for i > j,

nij for i = j,

where

n+
i· =

R∑
k=i+1

nik and n−
·i =

R∑
k=i+1

nki.

(d) The MLEs of {mij} under the COS model is

m̂ij =



n+
·j

n+
·j + n−

j·
(nij + nji) for i < j,

n−
i·

n+
·i + n−

i·
(nij + nji) for i > j,

nij for i = j,

where

n+
·i =

i−1∑
k=1

nki and n−
i· =

i−1∑
k=1

nik.

(e) The MLEs of {mij} under the RMS model is

m̂ij =



nij(n+
i· + n−

·i )
2n+

i·
for i < j,

nij(n+
j· + n−

·j)
2n−

·j
for i > j,

nij for i = j.

(f) The MLEs of {mij} under the CMS model is

m̂ij =



nij(n+
·j + n−

j·)
2n+

·j
for i < j,

nij(n+
·i + n−

i· )
2n−

i·
for i > j,

nij for i = j.
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(g) The MLEs of {mij} under the RMAS model is

m̂ij =



nunij(n+
i· + n−

·i )
(nu + nl)n+

i·
for i < j,

nlnij(n+
j· + n−

·j)
(nu + nl)n−

·j
for i > j,

nij for i = j.

(h) The MLEs of {mij} under the CMAS model is

m̂ij =



nunij(n+
·j + n−

j·)
(nu + nl)n+

·j
for i < j,

nlnij(n+
·i + n−

i· )
(nu + nl)n−

i·
for i > j,

nij for i = j.

(i) The MLEs of {mij} under the GS model is

m̂ij =


(nu + nl)nij

2nu
for i < j,

(nu + nl)nij

2nl
for i > j,

nij for i = j.

Each model can be tested for goodness-of-fit by, e.g., the likelihood ratio chi-square statistic (denote
by G2) with the corresponding degrees of freedom (df). The test statistic G2 of model M is given by

G2(M) = 2
R∑

i=1

R∑
j=1

nij log
(
nij

m̂ij

)
.

On partitioning test statistic for models in Theorem 1 to 6, we obtain the following theorems.

Theorem 7: The following equation holds:

G2(S) = G2(ROS) +G2(RMS).

Proof: We see that (nij/m̂ij) under the S model is equal to the product of (nij/m̂ij) under the ROS
model and that under the RMS model. Therefore, the proof is completed.

Theorem 8: The following equation holds:

G2(S) = G2(COS) +G2(CMS).

Theorem 9: The following equation holds:

G2(CS) = G2(ROS) +G2(RMAS).

Theorem 10: The following equation holds:

G2(CS) = G2(COS) +G2(CMAS).
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Theorem 11: The following equation holds:

G2(RMS) = G2(RMAS) +G2(GS).

Theorem 12: The following equation holds:

G2(CMS) = G2(CMAS) +G2(GS).

The proofs of Theorems 8 to 12 are omitted because they are obtained in a similar way to the proof of
theorem 7. From Theorems 7, 8, 11, 12, we obtain the following corollaries.

Corollary 3: The following equation holds:

G2(S) = G2(ROS) +G2(RMAS) +G2(GS).

Corollary 4: The following equation holds:

G2(S) = G2(COS) +G2(CMAS) +G2(GS).

4 An Example

Consider the data in Table 1, taken from Tominaga (1979, p. 132).

Table 1. The data describe the cross-classification of father’s and son’s occupational status categories in Japan
which was examined in 1975 from Tominaga (1979, p. 132). (The parenthesized values are maximum likelihood
estimates of expected frequencies under the COS model.)

Father’s Son’s status
status (1) (2) (3) (4) Total
(1) 127 101 54 12 294

(127.00) (101.00) (62.02) (7.40)
(2) 86 207 125 13 431

(86.00) (207.00) (116.98) (13.40)
(3) 78 124 310 24 536

(69.98) (132.02) (310.00) (28.20)
(4) 109 206 437 325 1077

(113.60) (205.60) (432.80) (325.00)
Total 400 638 926 374 2338

Note: Status is (1) Upper non-manual, (2) Non-manual,
(3) Manual and (4) Agriculture.

Table 2 gives the values of likelihood ratio test statistic G2 for testing goodness-of-fit each model.
From Table 2, we see that the S model fits these data poorly. So, we are interested in the cause that the
S model fits poorly.

First, we consider the decomposition of the S model using the models which indicate the structure
of symmetry (namely, Caussinus’s (1965) decomposition, Theorem 2 and 3). From Table 2, the QS and
MH models fit these data poorly. Thus, from Caussinus’s decomposition, it is impossible to specify either
the decomposed two models (QS and MH models) about the cause model that the S model fits poorly.
However, using Theorem 2, we can see that the poor fit of the S model is caused by the influence of lack
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Table 2. Likelihood ratio chi-square values G2 for models applied to the data in Table 1.

Applied models df G2

S 6 750.56∗

CS 5 362.60∗

QS 3 8.30∗

MH 3 742.76∗

ROS 3 193.14∗

RMS 3 557.43∗

RMAS 2 169.46∗

COS 3 6.30
CMS 3 744.26∗

CMAS 2 356.29∗

GS 1 387.97∗

∗ means significant at the 0.05 level.

of the CMS model rather than the COS model. Thus, it is seen that in these data there is not a structure
of symmetry of cell probabilities {pij} but there is a structure of symmetry of odds {pi−1,j/pij}.

Next, we consider the decomposition of the S model using the models which indicate the structure of
asymmetry (namely, Read’s (1978) decomposition). From Read’s decomposition, we cannot see the cause
that the S model fits poorly. Because the CS and GS models fit these data poorly. So, we are interested
in considering the cause that the CS model fits poorly using Theorems 3 and 4. From Theorem 4, we can
see that the poor fit of the CS model is caused by the influence of lack of the CMAS model rather than
the COS model. Therefore, from Corollary 2, we can see that the poor fit of the S model is caused by the
influence of lack of the CMAS and GS models rather than the COS model.

5 Concluding Remarks

We point out from Theorem 7 that the likelihood ratio statistic for testing goodness-of-fit of the S model
assuming that the ROS model holds true is G2(S)−G2(ROS) and this is equal to the likelihood ratio
statistic for testing goodness-of-fit of the RMS model, i.e., G2(RMS). Namely, G2(RMS) can be used
for testing goodness-of-fit of the RMS model and also for testing goodness of fit the S model assuming
that the ROS model holds true. Theorems 8 to 12 also have similar properties.

Generally suppose that model M3 holds if and only if both models M1 and M2 hold, where the number
of df for M3 equals the sum of numbers of df for M1 and M2. Darroch and Silvey (1963) described that
(1) when the asymptotic equivalence

G2(M3) ' G2(M1) +G2(M2) (5.1)

holds, if both M1 and M2 are accepted (at the α significance level) with high probability, then M3 would
be accepted; however, (2) when (5.1) does not hold, it is quite possible for an incompatible situation to
arise where both M1 and M2 are accepted with high probability but M3 is rejected with high probability
(in fact, Darroch and Silvey (1963) showed such an interesting example). For Theorems 7 to 12, such an
incompatible situation would not arise.

Tomizawa (1984) gave decompositions of the S model using QS and RMS (or CMS). For the analysis
of data, decompositions of the S model given by this paper may be preferable to Tomizawa’s (1984)
decompositions, because the goodness-of-fit test statistic for the S model is not equal (or asymptotically
equivalent) to the sum test statistics for decomposed models by Tomizawa’s (1984). In fact, for the
artificial data in Table 3, we see from Table 4 that the S model is rejected though both QS and RMS
models are accepted.
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Table 3. Artificial data.

(1) (2) (3) (4) Total
(1) 300 99 53 56 508
(2) 90 300 67 78 535
(3) 73 93 300 30 496
(4) 54 38 20 300 412

Total 517 530 440 464 1951

Table 4. Likelihood ratio chi-square values G2 for models applied to the data in Table 3.

Applied models df G2

S 6 23.99∗

QS 3 7.18
MH 3 16.75∗

ROS 3 21.08∗

RMS 3 2.91
COS 3 6.28
CMS 3 17.72∗

∗ means significant at the 0.05 level.
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