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Abstract Parametric models have been the dominant paradigm for Bayesian inferential works.
This is mainly due to its simplicity and straightforward computations. However, given recent
computational advances, Semiparametric Bayesian models have become increasingly popular to fit
models under flexible distributional assumption. Dirichlet process mixture models form a particular
class of Bayesian semiparametric models by assuming a random mixing distribution, taken to be a
realization from a Dirichlet process. In this research, we show that even though hierarchical DP
models provide flexibility in model fit, they may not perform uniformly better in other aspects
as compared to the parametric models. If the DP model gives a better fit, then it should be used
regardless of any effect it might have on the power. However, if it results in a reduction in power,
then that is just the price of doing a good statistical analysis.
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1 Introduction

Parametric models have been the dominant paradigm for Bayesian inferential works. This is mainly
due to its simplicity and straightforward computations. However, due to recent computational advances,
semiparametric Bayesian models are also becoming increasingly popular. These models allow for a greater
flexibility in capturing the parameter uncertainty and provide robust alternatives to the conventional
parametric models. The Dirichlet process (DP) was first introduced by Ferguson [5] and is arguably the
most widely used prior in Bayesian nonparametrics. It is a distribution over probability distributions. A
constructive definition of DP is given in Section 2, which leads to the characterization of the DP as a
stick-breaking process. For more details, one may refer to Sethuraman and Tiwari [12] and Sethuraman
[11].

Dirichlet process mixture (DPM) has been extensively used in Bayesian nonparametrics. Linero and
Daniels [10] implemented DP to the MAR model. Ghosh et al. [6] proposed a semiparametric extension
of three arm non-inferiority model based on DPM prior. Zhao et al. [13] adopted DPM model to survival
data. Burr and Doss [2] introduced a DP based Bayesian semiparametric model for random effects
meta-analysis.

In this article, we compare the posterior variance of the mean of the random effects under parametric
and DP based semiparametric models. The posterior variance plays a crucial role in Bayesian inference.
Large posterior variance results in a wider credible interval which results in a less precise estimate. Also,
the posterior variance has huge impact on the power of a statistical test procedure and in Bayesian
sample size estimation. It can be shown that under squared error loss, the Bayes risk turns out to
be the posterior variance. We proved that, under the setup of linear models with random effects, the
semiparametric Bayesian models based on the DP prior result in a larger posterior variance as compared
to their parametric counterparts. We establish this result following the notion of Schur Concave function
and the theory of majorization. However, for hierarchical Bayesian models under non-conjugate priors, a
similar ordering in posterior variance is validated through an extensive simulation study.

The remainder of this paper is designed as follows. In Section 2, we present a brief description about
Dirichlet Process (DP) prior. In Section 3 we consider different parametric and semiparametric Bayesian
models based on DP prior and establish an ordering between the resulting posterior variances. Section 4
presents a simulation study to examine the performances of the selected models in estimating the mean
of the random effects. Section 5 illustrates one application of the meta analysis model using a real data
set involving adolescents treated with antidepressants. Some discussions are given in Section 6.
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2 Dirichlet Process Prior
In the Bayesian framework the parameters are assumed to be random quantities generated from a
probability model, known as prior distribution. Let’s consider a random effects model, where the random
effects θ1, θ2, . . . , θn

iid∼ G0. The parametric distribution G0 may depend on additional parameters. In
practice, G0 is assumed to be a Normal distribution. On the other hand, under nonparametric Bayesian
models, the random effects are assumed to follow an unknown probability distribution, characterized by
G, which can be modeled through a DP. For a DP prior we write,

θ1, θ2, . . . , θn
iid∼ G,

where G ∼ DP (κ, G0(·|ξ)). (1)
The parameters G0 and κ play crucial roles in the definition of DP. G0(·|ξ) denotes the baseline probability
measure, and κ behaves as a precision parameter. The baseline distribution G0(·|ξ) approximates the
true non-parametric shape of G, this can also be viewed as mean parameter of the DP. On the other
hand, the positive scalar κ reflects our prior belief about how similar the non-parametric distribution G
is to the baseline measure G0(·|ξ). Moreover, as κ→∞, G looks more like G0(·|ξ).

Alternatively according to Sethuraman [11] the DP can also be defined as follows:

G(·) =
∞∑
r=1

prδmr (·),

where

p1 = β1, pr = βr

r−1∏
j=1

(1− βj), r = 1, 2, · · · ,

βr
iid∼ Beta(1, α), r ≥ 1, (2)

and independent of (βr), mr
iid∼ G0(·|ξ).

This is known as the stick-breaking representation of DP. The term stick-breaking is used because
this construction of the weights can be visualized through sequential breaks of a stick of length one. We
can obtain a reasonable approximation to G by truncating the infinite sum at a large integer R. Ishwaran
and Zarepour [8] suggested that, we can take R to be n, when the number of random effects n is small.
Otherwise, R =

√
n. This finite dimensional form of Dirichlet Process, can be easily implemented to

OpenBUGS following the blocked Gibbs sampler approach.
Blackwell and MacQueen [1] proposed another interesting construction of the DP known as the Pólya

urn representation, which was later used by Escobar [3], and Escobar and West [4] to develop Markov
chain samplers. Following the Pólya urn representation, the full conditional of θi+1 is given by

θ1 ∼ G0,

θi+1|(θ1, . . . , θi) ∼
κ

κ+ i
G0(·|ξ) +

mi∑
j=1

n∗j,i
κ+ i

δθ∗
j

if i ≥ 1

where {n∗j,i} is the number of θis that are equal to the jth unique value θ∗j . Also, δθ∗
j
denotes the degenerate

measure at θ∗j . The Pólya urn representation reveals the inherent clustering property of DP. In particular,
for small values of κ, samples from DP, are likely to be composed of a small number of unique θ values,
which results in less clusters with relatively large sizes. On the other hand, for large κ values, the DP
results in mostly distinct θ values, which corresponds to a large number of comparatively smaller clusters.

3 Random Effects Models
In this section we consider both parametric and semiparametric Bayesian random effects model. The
semiparametric model is constructed by assigning a DP prior to the random effects parameter. Suppose
y1, y2, · · · , yn are independent realizations from Normal distributions with yi associated to mean µi. From
now on we specify Normal distributions in terms of its mean and precision parameter, unless otherwise
stated.
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3.1 Normal Location Model
Let’s consider the case of unequal precision, that is, yi follows a Normal distribution with mean µi
and precision τi. Under the parametric set up, the random effects parameter µi is assumed to follow
Normal(µ0, τµ). On the other hand, to construct the semiparametric Bayesian model based on DP prior
we follow the steps as described in Equation (1).

µi|G0, κ ∼ DP (G0, κ),
G0 = Normal (µ0, τµ). (3)

Finally, for both models, we assign a Normal prior on µ0. In particular, µ0 ∼ Normal (µ00, τ00). Also, for
simplicity, the precision τi is assumed to be fixed. The next theorem establishes the ordering between the
posterior variances of µ0 under both models.
Theorem 3.1. For independent normal random variates, the DP model results in larger posterior
variance of µ0 as compared to that of the parametric model, that is, VarDP (µ0|y) ≥ VarN (µ0|y), where,
yi|µi, τi

iid∼ Normal (µi, precision = τi), i = 1, 2, . . . , n.
Proof. We start with obtaining the posterior precision of µ0. Under the case of unequal precisions, the
posterior precision of µ0 based on the parametric model can be obtained as

precN (µ0|y) = τ00 + τµ

n∑
i=1

τi
τµ + τi

. (4)

To derive the posterior precision under the DP model we first consider a clustering Ck consists of k
clusters, where the kth cluster has size nk. It is quite evident that within a specific cluster the observations
share the same parameter value. However, these values are different across clusters. Given a clustering
Ck, the DP mixture model with baseline distribution Normal(µ0, τµ), can be viewed as a parametric
model with k groups. Suppose, yij denotes the jth observation in the ith group, then we can write

precDP (µ0|y, Ck) = τ00 + τµ

k∑
j=1

∑nj

l=1 τjl

τµ +
∑nj

l=1 τjl
. (5)

We first adopt the notion of Schur Concave Function to verify V arN (µ0|y) ≤ V arDP (µ0|y, Ck), conditional
on a clustering Ck. Let’s define,

g(x) = x

τµ + x
; g is concave for x > 0, and

z = (
n1∑
l=1

τl,

n2∑
l=1

τl, ...,

nk∑
l=1

τl).

where,
x = (τ1, τ2, ...., τn).

Then by definition x ≺ z, or we can say z majorizes x, which implies,
∑
g(xi) ≥

∑
g(zi). For more

details, see Hardy et al. [7]. Now, ∑
g(τi) =

n∑
i=1

τi
τµ + τi

,

and ∑
g(τ?i ) =

k∑
j=1

∑nj

l=1 τjl

τµ +
∑nj

l=1 τjl
,

where τ?i =
∑ni

l=1 τl. Then, from Equations (4) and (5), conditional on the clustering Ck, we get
V arN (µ0|y) ≤ V arDP (µ0|y, Ck). Now,

V arDP (µ0|y) = E[V arDP (µ0|y, Ck)] + V ar[EDP (µ0|y, Ck)],
≥ E[V arN (µ0|y)] + V ar[EDP (µ0|y, Ck)],
≥ V arN (µ0|y).
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We conclude this section with the following Corollary, which is a special case of Theorem 3.1 assuming
equal precision for yi.

Corollary 3.1.1. Under the case of equal precision, the posterior variance of µ0 for the Dirichlet process
(DP) model is always larger than that of the parametric model, that is, VarDP (µ0|y) ≥ VarN (µ0|y).

3.2 Longitudinal Model

Let us consider yi be a vector of n observations related to the ith subject, and E[Y i|bi] = Xbi, where X
is an n× p matrix of covariates. We assume the rows of X to be same for each subject. For example, we
can consider a clinical trial in which the observations on each subject are recorded at the baseline, 4th
week, 8th week and 12th week. Hence in this case, each row of X is a vector of length four. This model
can be written as

yi|bi ∼ Normal (Xbi, T ),

where T is the precision matrix. Next, we can assign a normal prior on the coefficient vector bi and call it
as the parametric model. That is, bi|β0 ∼ Normal (β0, Tb). On the contrary, the semiparametric model
based on DP prior can be constructed as follows,

bi|G0, κ ∼ DP (G0, κ),
G0 = Normal (β0, Tb),

where under both models, the hyper parameter β0 is distributed according to Normal(β00, T00).

Theorem 3.2. The posterior variance of β0 under the Dirichlet process model is always larger than that
of the parametric model, that is, VarDP (β0|y) ≥ VarN (β0|y), where, yi|bi ∼ Normal (Xbi, T ).

Proof. The posterior precisions of β0 under the parametric model with normal priors can be derived as:

precN (β0|y) = T00 + nX ′(T−1 +XT−1
b X ′)−1X,

Similarly, for a given clustering Ck, the semiparametric model based on DP prior results in the following
posterior precision

precDP (β0|y, Ck) = T00 +
k∑
j=1

X ′( 1
nj
T−1 +XT−1

b X ′)−1X.

Applying results from Matrix Algebra and after some easy but tedious calculations, we can show that
precN (β0|y) ≤ precDP (β0|y, Ck) conditional on a clustering Ck. The rest of the proof follows on similar
lines to that of Theorem 3.1.

3.3 Meta Analysis Model for Binary Response Data

Consider K randomized trials each with two arms. Let yij denote the number of binary events and nij
represent the number of patients enrolled in the jth arm of the ith trial, where j ∈ {0, 1} represents the
control and treatment arms respectively. Then event counts yij assumes

yij ∼ Binomial(nij , pij); j = 0, 1 and i = 1, 2, · · · ,K.

We can define a pair of study specific random effects as, µi = logit(πi1) − logit(πi0) and νi = 0.5 ∗
(logit(πi1) + logit(πi0)). Under the parametric model the random effect µi ∼ Normal(µ0, τµ). Whereas,
in case of semiparametric model µi is assumed to follow an unknown distribution G, which we later model
through DP prior. The hierarchical representation of the semiparametric model can be obtained following
Equation (3). Finally for both models νi ∼ Normal(ν0, τν). We complete the model specification by
assigning appropriate prior distributions. We like to observe whether a similar ordering between posterior
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Figure 1. Posterior variance of µ0, obtained from both models, for each of the 100 simulated datasets, generated
under µ0 = 0 (extreme left), µ0 = 2.5 (middle), and µ0 = −1.2 (extreme right).

variances still exists under this setup. However, we are unable to find a closed form expression for the
posterior variance of µ0. Hence, we try to illustrate this through simulations. For the illustration purpose,
we consider µ0 = −1.2, 0, and 2.5. Also, the study sizes nij are chosen to be 100 for both arms. For a
given µ0, we simulate 100 data sets, each consisting of 20 studies with binary count on both arms. Here,
µi and µ0 represent the study specific log-odds ratio and overall log-odds ratio.

Figure 1 gives the estimated posterior variance of µ0 under both parametric and DP based semipara-
metric models. For every µ0 values specified in the data generation, the DP model results in much larger
posterior variance as compared to that of the parametric model. Such ordering in posterior variances of
µ0 is reflected in every simulated data.

4 Simulation

In this section we describe a simulation study designed to compare the performances of parametric and DP
based semiparametric Bayesian models. The data were generated according to the normal location model
defined in Section 3.1. We consider µ0 to be the parameter of interest, which can also be considered as the
overall mean parameter. These models are then compared with respect to the posterior standard deviation
of µ0, average length of it’s credible intervals and the resulting power associated to the alternative
H1 : µ0 > 0.

We now describe the configuration of the simulation study in greater detail. The samples were generated
based on a normal location model with mean µ0 and standard deviation 2. The sample sizes were chosen
to be n = 20, 40, 60 and 80. For the power comparison, we set µ0 = ξ, with ξ ranging from 0.2 to 0.8.
For every ξ and sample size combination, we generated 1000 simulated samples. The Bayesian models
were constructed by assigning a flat normal prior on µ0 and flat gamma priors on both the precision
parameters, τ and τµ. These models are then implemented through OpenBUGS. The power under each
model can be calculated as follows,

1. Calculate the posterior probability

P (H1|y) = 1
M

M∑
m=1

[I(µ0 > 0)],

where M is the number of MCMC iteration after burn-in.
2. If P (H1|y) greater than a pre-defined threshold p∗, increase the COUNTS by 1; otherwise 0.
3. Finally the power can be obtained through the proportion COUNTS/B, where B denotes the number

of simulated data.

The threshold p∗ was considered to be 0.95. The results are depicted in Table 1. Both models performed
an equally good job in estimating the overall mean µ0. They both result in very little bias. However, in
case of DP model, the estimate is less precise, as it presents a comparatively larger posterior variance than
that of the parametric model. Such ordering between posterior variances holds for every ξ and sample
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Table 1. Posterior summaries of simulated data based on parametric and DP based semiparametric Bayesian
models.

ξ n
Parametric Model Semi parametric Model

Bias (SD) ALCI Power Bias (SD) ALCI Power

0.2

20 -0.234 (0.47) 1.85 0.09 -0.233 (1.12) 4.64 0.003
40 -0.180 (0.32) 1.26 0.18 -0.184 (0.93) 3.85 0.01
60 -0.138 (0.27) 1.06 0.25 -0.147 (0.84) 3.43 0.05
80 -0.177 (0.22) 0.88 0.27 -0.190 (0.80) 3.30 0.09

0.4

20 -0.042 (0.47) 1.85 0.18 -0.063 (0.97) 3.79 0.01
40 0.014 (0.32) 1.27 0.36 -0.002 (0.62) 2.61 0.03
60 0.013 (0.26) 1.02 0.43 -0.009 (0.49) 1.99 0.09
80 0.023 (0.22) 0.88 0.56 0.019 (0.43) 1.74 0.12

0.6

20 0.027 (0.46) 1.84 0.41 0.021 (0.93) 3.81 0.02
40 -0.030 (0.32) 1.27 0.54 -0.051 (0.64) 2.60 0.09
60 0.009 (0.26) 1.02 0.75 -0.003 (0.49) 1.99 0.22
80 0.006 (0.23) 0.89 0.84 -0.016 (0.44) 1.76 0.30

0.8

20 0.0006 (0.48) 1.88 0.43 -0.069 (0.96) 3.90 0.02
40 -0.013 (0.32) 1.25 0.79 -0.042 (0.64) 2.59 0.23
60 0.038 (0.26) 1.02 0.96 0.022 (0.49) 1.99 0.58
80 0.002 (0.23) 0.89 0.96 -0.009 (0.43) 1.75 0.68

size combination. In particular, the posterior variances, reduce with increasing sample sizes while keeping
the ordering intact. We also observe that, the average length of 95% credible interval (ALCI) based
on DP model is much higher than the one obtained for parametric model. A wide confidence interval
indicates that we are less sure about the estimation of the unknown parameter and perhaps a larger
sample is needed to increase our confidence. For the power comparison we let ξ vary from 0.2 to 0.8 by
the increments of 0.2 with varying sample sizes. For ξ = 0.2 both models result in smaller even for the
case of n = 80. To detect small effect sizes with large power, we need to increase the sample size. In
particular under the parametric model, when ξ = 0.4 the maximum power one can achieve is 0.56 with
n = 80. However, it increased with both ξ and n and for ξ = 0.8, even with a sample of size n = 40, an
80% power can be achieved. But in case of the semiparametric model, the powers are consistently low
with a maximum power of 0.68 with ξ = 0.8 and n = 80.

5 Illustrative Example

In this section, we use a data set consisting of 24 randomized controlled trials involving 4487 children
and adolescents treated with antidepressants. This example is taken from Kaizar et al. [9]. We analyze
this data using both parametric and semi-parametric models, as defined in Section 3.3. These models are
implemented through OpenBUGS and R2OpenBUGS package of R. The results listed in Tables 2 and 3
are obtained based on 20,000 Markov chain iterations after a burn-in of 10,000.

Table 2. The posterior summaries for the overall log-odds ratio µ0 obtained under both parametric and semi-
parametric models

Model Posterior Posterior 95% Credible
mean variance interval

Parametric 0.8184 0.0874 ( 0.2409 , 1.389 )
Semi Parametric 0.8159 0.2787 ( -0.1915 , 1.892 )
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Table 3. Posterior summaries of µ0 and the estimated number of distinct cluster obtained from the DP model

value of α avg. # of Posterior Posterior 95% Credible
distinct clusters mean variance Interval

9 11 0.8276 0.1260 ( 0.1106 , 1.528 )
4 8 0.8052 0.1575 ( 0.03279 , 1.569 )
2 5 0.816 0.5856 ( -0.7368 , 2.202 )
1 3 0.7195 0.9850 ( -1.5700 , 2.574 )

Table 2, lists the posterior mean, variance and 95% credible interval of µ0 under both parametric and
semiparametric models. The resulting posterior means are quite similar under both models. However,
DP based model results in larger posterior variance as well as wider credible interval as compared to the
other. Moreover, according to parametric model, we may conclude that the suicidal ideation is more likely
to occur in the treatment group as the credible interval falls on the right side of origin. But, we hesitate
to make such comments for the second model, as the resulting 95% credible interval includes the origin.

Also, we fix α at 1, 2, 4, and 9 and fit the semiparametric model for each α. α, denotes the
hyperparameter of Beta distribution, in Equation (2), which indirectly determines the number of distinct
clusters generated through a DP. According to Table 3, as α decreases the DP model results in less number
of distinct clusters, and as a result the 95% credible intervals become wider. However, the posterior
estimates of µ0 do not change that much. There is a logical explanation for this behavior. The parametric
model with normally distributed random effects can be viewed as clustering where each study represents
a unique cluster. Now, as the number of estimated clusters increase, we can roughly say that the DP
model gradually approaches to a full parametric model, which explains the smaller posterior variance and
shorter credible interval for large α.

6 Concluding Remarks

Dirichlet process mixture based semiparametric models have been widely cited as a robust and flexible
alternative in Bayesian applications. However, it is a well known fact, that such models account for larger
uncertainty. We have studied the posterior variance of mean of the random effects distribution assuming
different models and proved that DP based semiparametric model always accounts for a higher posterior
variability. However, the simulation study suggests that both models bring about very little bias for every
choice of ξ and n. But, due to the larger posterior variability, the DP model generates a wider credible
interval as compared to its parametric counterparts. That is, we get less precise estimates. This can have
serious consequence in Bayesian inference. For example, as we have seen in Table 2, in case of DP model,
the 95% credible interval includes the origin, which leads to an inconclusive result. Also, the DP model
results in less power. Finally, this behavior of the DP-based semiparametric model can be described as an
honest behavior. If the DP model is a better description of reality, then it should be used regardless of
any effect it might have on the power. However, if it results in a reduction in power, then that is just the
price of doing a good statistical analysis.
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