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Abstract For square contingency tables, Iki, Tahata and Tomizawa (2011) considered the measure
to represent the degree of departure from the marginal homogeneity model. Using the first-order
term in the Taylor series expansion, the estimated measure with the cell probabilities replaced by
the corresponding sample proportions is an approximately unbiased estimator when the sample size
is large. The present paper proposes the improved approximate unbiased estimator of the measure
which is obtained by using the second-order term in the Taylor series expansion. Also, it shows that
the improved estimator approaches to the true measure faster than the original estimator as the
sample size becomes larger by the simulation studies.
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1 Introduction

Consider an R×R square contingency table with the same row and column ordinal classifications. Let
pij denote the probability that an observation will fall in the ith row and jth column of the table
(i = 1, . . . , R; j = 1, . . . , R), and let X and Y denote the row and column variables, respectively. The
marginal homogeneity model is defined by

pi· = p·i (i = 1, . . . , R),

where pi· =
∑R
t=1 pit and p·i =

∑R
s=1 psi; see Stuart (1955). This indicates that the row marginal

distribution is identical to the column marginal distribution. This model is also expressed as

FXi = FYi (i = 1, . . . , R− 1),

where FXi =
∑i
k=1 pk· and FYi =

∑i
k=1 p·k. Using the marginal logit, this model can be expressed as

LXi = LYi (i = 1, . . . , R− 1),

where

LXi = log
(

FXi
1− FXi

)
, LYi = log

(
FYi

1− FYi

)
.

This states that the log odds that X is i or below instead of i+ 1 or above is equal to the log odds that
Y is i or below instead of i+ 1 or above for i = 1, . . . , R− 1. Further, the marginal homogeneity model is
expressed as

H1(i) = H2(i) (i = 1, . . . , R− 1),
where

H1(i) =
i∑

s=1

R∑
t=i+1

ps·p·t = FXi (1− FYi ),

H2(i) =
R∑

s=i+1

i∑
t=1

ps·p·t = (1− FXi )FYi .
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This indicates that the probability that the row variable X selected at random from the row marginal
distribution is in category i or below and the column variable Y selected independently at random from
the column marginal distribution is in category i+ 1 or above is equal to the probability that such X is
in category i+ 1 or above and such Y is in category i or below.

Since the marginal homogeneity model indicates that {H1(i)} are equal to corresponding {H2(i)},
when the marginal homogeneity model does not hold, we are interested in a measure for seeing how far
the probabilities {H1(i)} and {H2(i)} are distant from marginal homogeneity. Iki et al. (2011) considered
the measure Φ(λ) to represent the degree of departure from marginal homogeneity for the ordinal data,
which is expressed by using the power-divergence (Read and Cressie, 1988, p. 15) or the Patil and Taillie’s
(1982) diversity index, and as a function of {H1(i)} and {H2(i)}. Assuming that {H1(i) +H2(i) > 0}, let

∆ =
R−1∑
m=1

(
H1(m) +H2(m)

)
,

and let

H∗
1(i) =

H1(i)

∆
, H∗

2(i) =
H2(i)

∆
, Q∗

i = 1
2(H∗

1(i) +H∗
2(i)),

Hc
1(i) =

H1(i)

H1(i) +H2(i)
, Hc

2(i) =
H2(i)

H1(i) +H2(i)
(i = 1, . . . , R− 1).

For λ > −1, the measure of departure from the marginal homogeneity model considered by Iki et al.
(2011), is defined by

Φ(λ) = 1
2λ − 1

R−1∑
i=1

[
H∗

1(i)

{(
H∗

1(i)

Q∗
i

)λ
− 1
}

+H∗
2(i)

{(
H∗

2(i)

Q∗
i

)λ
− 1
}]

= 1− 2λ

2λ − 1

R−1∑
i=1

(H∗
1(i) +H∗

2(i))
[
1− (Hc

1(i))λ+1 − (Hc
2(i))λ+1

]
,

and the value at λ = 0 is taken to be the limit as λ→ 0. The measure Φ(λ) must lie between 0 and 1,
and it would be useful for comparing the degrees of departure from marginal homogeneity toward the
maximum departure in several tables.

Using the first-order term in the Taylor series expansion, the estimated measure with the cell
probabilities replaced by the corresponding sample proportions is an approximately unbiased estimator
when the sample size is large. Using the second-order term, Tahata et al. (2014) proposed the refined
estimators of measures for marginal homogeneity proposed by Tomizawa and Makii (2001) and Tomizawa
et al. (2003). So we are now interested in proposing the improved approximate unbiased estimator of Φ(λ).

The purpose of the present paper is to propose the improved approximate unbiased estimator of Φ(λ).
Section 2 gives such a estimator. Section 3 shows that the proposed estimator works well in many cases
by the simulation studies.

2 Improved Approximate Unbiased Estimator

Assume that the observed frequencies {nij} have a multinomial distribution. Let p be the R2 × 1
probabilities vector

p = (p11, p12, . . . , p1R, p21, p22, . . . , p2R, . . . , pR1, pR2, . . . , pRR)t,

whereĄgtĄhmeans transpose. Also let {p̂ij} be the sample proportion, where p̂ij = nij/n with n =∑∑
nij and let p̂ be the R2 × 1 vector in the similar way. We assume that g has a nonzero differential

at p, i.e., that g has the following expansion as p̂→ p:

g(p̂) = g(p) +
[
∂g(p)
∂pt

]
(p̂− p) + o(‖p̂− p‖),
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where [∂g(p)/∂pt] denotes [∂g(p̂)/∂p̂t] evaluated at p̂ = p. For the details, see e.g., Agresti (2013, p. 589)
and Bishop et al. (1975, p. 486). For large n, we can see from above equation that g(p̂) is an approximate
unbiased estimator of g(p) because mean of p̂ equals p. Similarly, the sample version of Φ(λ), i.e., Φ̂(λ)

is given by Φ(λ) with {pij} replaced by {p̂ij}, is an asymptotically unbiased estimator of Φ(λ) when the
sample size n is large.

Assuming that g has a second differential at p, g(p̂) has the following expansion as p̂→ p:

g(p̂) = g(p) +
[
∂g(p)
∂pt

]
(p̂− p) + 1

2(p̂− p)t
[
∂2g(p)
∂p∂pt

]
(p̂− p) + o(‖p̂− p‖2),

where [∂2g(p)/∂p∂pt] denotes [∂2g(p̂)/∂p̂∂p̂t] evaluated at p̂ = p. Therefore when the sample size n is
large, the mean of g(p̂), i.e., E(g(p̂)), is approximately equal to

g(p) + 1
2ntr

([
∂2g(p)
∂p∂pt

]
(D(p)− ppt)

)
,

where D(p) denotes the R2 ×R2 diagonal matrix with the ith element of p as the ith diagonal element,
because Var(p̂) = 1

n (D(p)− ppt). Thus the mean of

g(p̂)− 1
2ntr

([
∂2g(p)
∂p∂pt

]
(D(p)− ppt)

)
is approximately equal to g(p), and it would approach g(p) faster than g(p̂) as the sample size n becomes
larger. However, since the second term is unknown, the improved estimator of g(p) is given as follows:

g(p̂)− 1
2ntr

([
∂2g(p̂)
∂p∂pt

]
(D(p̂)− p̂p̂t)

)
,

where [∂2g(p̂)/∂p∂pt] is given by [∂2g(p)/∂p∂pt] with {pij} replaced by {p̂ij} and D(p̂) denotes D(p)
with {pij} replaced by {p̂ij}.

We now propose the improved estimator of the true measure Φ(λ) as follows:

Φ̂(λ)∗ = Φ̂(λ) − 1
2ntr

([
∂2Φ̂(λ)

∂p̂∂p̂t

]
(D(p̂)− p̂p̂t)

)
,

where [∂2Φ̂(λ)/∂p̂∂p̂t] is given by [∂2Φ(λ)/∂p∂pt] with {pij} replaced by {p̂ij}. Then, since tr[∂2Φ(λ)/∂p∂pt]ppt =
0, we note that

tr

([
∂2Φ(λ)

∂p∂pt

]
(D(p)− ppt)

)
=

R∑
k=1

R∑
l=1

∂2Φ(λ)

∂p2
kl

pkl,

where

∂2Φ(λ)

∂p2
kl

= 1− Φ(λ)

∆

(
K2(kl) −

2
∆

(
K1(kl)

)2
)

+ 1
∆2

{
2K1(kl)L

(λ)
1(kl) −∆L

(λ)
2(kl)

}
,

K1(kl) =
R−1∑
m=1

(
W

(m)
1(kl) +W

(m)
2(kl)

)
,

K2(kl) =
R−1∑
m=1

(
W

(m)
3(kl) +W

(m)
4(kl)

)
,
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for λ 6= 0,

L
(λ)
1(kl) = 2λ

2λ − 1

R−1∑
i=1

[
W

(i)
1(kl)

{
1−

(
Hc

1(i)

)λ
− λHc

2(i)

((
Hc

1(i)

)λ
−
(
Hc

2(i)

)λ)}
+W

(i)
2(kl)

{
1−

(
Hc

2(i)

)λ
− λHc

1(i)

((
Hc

2(i)

)λ
−
(
Hc

1(i)

)λ)}]
,

L
(λ)
2(kl) = 2λ

2λ − 1

R−1∑
i=1

[
W

(i)
3(kl)

{
1−

(
Hc

1(i)

)λ
− λHc

2(i)

((
Hc

1(i)

)λ
−
(
Hc

2(i)

)λ)}
+W

(i)
4(kl)

{
1−

(
Hc

2(i)

)λ
− λHc

1(i)

((
Hc

2(i)

)λ
−
(
Hc

1(i)

)λ)}
− λ(1 + λ)
H1(i) +H2(i)

((
Hc

1(i)

)λ−1
+
(
Hc

2(i)

)λ−1
)(

W
(i)
1(kl)H

c
2(i) −W

(i)
2(kl)H

c
1(i)

)2
]
,

and for λ = 0,

L
(0)
1(kl) = 1

log 2

R−1∑
i=1

(
−W (i)

1(kl) logHc
1(i) −W

(i)
2(kl) logHc

2(i)

)
,

L
(0)
2(kl) = 1

log 2

R−1∑
i=1

{
−W (i)

3(kl) logHc
1(i) −W

(i)
4(kl) logHc

2(i)

− 1
H1(i)

W
(i)
1(kl)

(
W

(i)
1(kl)H

c
2(i) −W

(i)
2(kl)H

c
1(i)

)
− 1
H2(i)

W
(i)
2(kl)

(
W

(i)
2(kl)H

c
1(i) −W

(i)
1(kl)H

c
2(i)

)}
,

with

W
(m)
1(kl) =

m∑
a=1

R∑
b=m+1

(
I(a=k)p·b + pa·I(b=l)

)
,

W
(m)
2(kl) =

R∑
a=m+1

m∑
b=1

(
I(a=k)p·b + pa·I(b=l)

)
,

W
(m)
3(kl) =

m∑
a=1

R∑
b=m+1

(
I(a=k)I(b=l) + I(a=k)I(b=l)

)
,

W
(m)
4(kl) =

R∑
a=m+1

m∑
b=1

(
I(a=k)I(b=l) + I(a=k)I(b=l)

)
,

and where I(·) is the indicator function, I(·) = 1 if true, 0 if not. Therefore, the improved estimator Φ̂(λ)∗

is also expressed as follows:

Φ̂(λ)∗ = Φ̂(λ) − 1
2n

R∑
k=1

R∑
l=1

∂2Φ̂(λ)

∂p̂2
kl

p̂kl.

3 Simulation Studies

By the simulation studies, we calculate the values of estimated measures Φ̂(λ) and Φ̂(λ)∗ from the observed
frequencies of sample size n = 30, 40, 50, 100, 500 and 1000, which are obtained from the true probability
distribution (see Tables 1a to 6a). We shall compare the mean of the values of Φ̂(λ) and Φ̂(λ)∗ obtained by
1000 times simulations, for each sample size. The results of simulations are given in Tables 1c to 6c.
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Tables 1a, 3a and 5a have a characteristic that the sum of the probabilities of main-diagonal cells
is very small (pii = 0.020 for i = 1, 2, 3, 4) and Tables 2a, 4a and 6a have a characteristic that the sum
of the probabilities of main-diagonal cells is large (pii = 0.100 for i = 1, 2, 3, 4). Also the true values of
measures for Tables 1a and 2a are small, while those for Tables 3a and 4a are medium, and those for
Tables 5a and 6a are large, respectively.

We can see that the improved estimator Φ̂(λ)∗ approaches the true value Φ(λ) faster than the original
estimator Φ̂(λ) when λ ≥ 1 from Tables 1c to 6c. Especially, we can see great improvement when sample
size is small.

Table 1. (a) The artificial probabilities {pij}, (b) the value of Φ(λ) and (c) the mean of the values of estimated
measures obtained by generating 1000 times simulations, with each sample size n, for Table 1a.

(a)
(1) (2) (3) (4)

(1) 0.020 0.101 0.085 0.038
(2) 0.066 0.020 0.123 0.140
(3) 0.042 0.063 0.020 0.110
(4) 0.040 0.051 0.061 0.020

(b)
λ Φ(λ)

1.0 0.1118
3.0 0.0978

(c)
λ n Φ̂(λ) Φ̂(λ)∗

1.0 30 0.1940 0.1286
40 0.1660 0.1144
50 0.1581 0.1162
100 0.1330 0.1112
500 0.1146 0.1101
1000 0.1138 0.1115

3.0 30 0.1677 0.1028
40 0.1533 0.1041
50 0.1415 0.1013
100 0.1185 0.0978
500 0.1001 0.0959
1000 0.1005 0.0984

Table 2. (a) The artificial probabilities {pij}, (b) the value of Φ(λ) and (c) the mean of the values of estimated
measures obtained by generating 1000 times simulations, with each sample size n, for Table 2a.

(a)
(1) (2) (3) (4)

(1) 0.100 0.052 0.068 0.110
(2) 0.044 0.100 0.054 0.058
(3) 0.038 0.042 0.100 0.052
(4) 0.020 0.020 0.042 0.100

(b)
λ Φ(λ)

1.0 0.1129
3.0 0.0986

(c)
λ n Φ̂(λ) Φ̂(λ)∗

1.0 30 0.1614 0.1153
40 0.1492 0.1140
50 0.1431 0.1149
100 0.1318 0.1175
500 0.1154 0.1125
1000 0.1141 0.1127

3.0 30 0.1504 0.1062
40 0.1302 0.0960
50 0.1234 0.0961
100 0.1118 0.0979
500 0.1016 0.0988
1000 0.1014 0.1000

4 Concluding Remarks

The present paper has proposed the improved approximate unbiased estimator Φ̂(λ)∗ of the true measure
Φ(λ) proposed by Iki et al. (2011), however, Tahata et al. (2014) proposed the refined estimators of
measures proposed by Tomizawa and Makii (2001) and Tomizawa et al. (2003).
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Table 3. (a) The artificial probabilities {pij}, (b) the value of Φ(λ) and (c) the mean of the values of estimated
measures obtained by generating 1000 times simulations, with each sample size n, for Table 3a.

(a)
(1) (2) (3) (4)

(1) 0.020 0.096 0.100 0.068
(2) 0.041 0.020 0.163 0.170
(3) 0.027 0.023 0.020 0.160
(4) 0.040 0.011 0.021 0.020

(b)
λ Φ(λ)

1.0 0.4391
3.0 0.4066

(c)
λ n Φ̂(λ) Φ̂(λ)∗

1.0 30 0.4669 0.4371
40 0.4501 0.4272
50 0.4556 0.4381
100 0.4515 0.4431
500 0.4410 0.4393
1000 0.4398 0.4390

3.0 30 0.4375 0.4035
40 0.4319 0.4065
50 0.4250 0.4044
100 0.4193 0.4092
500 0.4091 0.4070
1000 0.4049 0.4039

Table 4. (a) The artificial probabilities {pij}, (b) the value of Φ(λ) and (c) the mean of the values of estimated
measures obtained by generating 1000 times simulations, with each sample size n, for Table 4a.

(a)
(1) (2) (3) (4)

(1) 0.100 0.052 0.128 0.135
(2) 0.014 0.100 0.079 0.088
(3) 0.008 0.012 0.100 0.062
(4) 0.005 0.005 0.012 0.100

(b)
λ Φ(λ)

1.0 0.4430
3.0 0.4079

(c)
λ n Φ̂(λ) Φ̂(λ)∗

1.0 30 0.4670 0.4465
40 0.4571 0.4416
50 0.4562 0.4439
100 0.4490 0.4428
500 0.4442 0.4429
1000 0.4438 0.4432

3.0 30 0.4386 0.4141
40 0.4186 0.3997
50 0.4194 0.4041
100 0.4122 0.4045
500 0.4102 0.4086
1000 0.4089 0.4081

Table 5. (a) The artificial probabilities {pij}, (b) the value of Φ(λ) and (c) the mean of the values of estimated
measures obtained by generating 1000 times simulations, with each sample size n, for Table 5a.

(a)
(1) (2) (3) (4)

(1) 0.020 0.181 0.105 0.202
(2) 0.006 0.020 0.133 0.110
(3) 0.002 0.013 0.020 0.143
(4) 0.003 0.011 0.011 0.020

(b)
λ Φ(λ)

1.0 0.7797
3.0 0.7564

(c)
λ n Φ̂(λ) Φ̂(λ)∗

1.0 30 0.7830 0.7787
40 0.7814 0.7786
50 0.7814 0.7792
100 0.7817 0.7808
500 0.7799 0.7798
1000 0.7803 0.7802

3.0 30 0.7693 0.7623
40 0.7590 0.7538
50 0.7580 0.7539
100 0.7573 0.7554
500 0.7562 0.7559
1000 0.7563 0.7561
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Table 6. (a) The artificial probabilities {pij}, (b) the value of Φ(λ) and (c) the mean of the values of estimated
measures obtained by generating 1000 times simulations, with each sample size n, for Table 6a.

(a)
(1) (2) (3) (4)

(1) 0.100 0.002 0.008 0.559
(2) 0.004 0.100 0.004 0.006
(3) 0.008 0.002 0.100 0.002
(4) 0.001 0.002 0.002 0.100

(b)
λ Φ(λ)

1.0 0.7662
3.0 0.7407

(c)
λ n Φ̂(λ) Φ̂(λ)∗

1.0 30 0.7647 0.7638
40 0.7664 0.7660
50 0.7675 0.7673
100 0.7664 0.7664
500 0.7663 0.7766
1000 0.7663 0.7663

3.0 30 0.7473 0.7445
40 0.7405 0.7383
50 0.7417 0.7401
100 0.7402 0.7395
500 0.7411 0.7410
1000 0.7399 0.7399

From the simulation studies, we conclude that the improved estimator Φ̂(λ)∗ tends to approach to the
true value Φ(λ) faster than the estimator Φ̂(λ) as the sample size n becomes larger, when λ ≥ 1.

When λ < 1, we can calculate the improved estimator Φ̂(λ)∗ for only the case of H1(i) > 0 and
H2(i) > 0 for i = 1, . . . , R− 1, i.e., p1· > 0, pR· > 0, p·1 > 0 and p·R > 0. On the other hand, the original
estimator Φ̂(λ) can be calculated for the case of H1(i) + H2(i) > 0 for i = 1, . . . , R − 1. In other words,
the calculable conditions are different between the improved estimator and the original estimator. Thus,
it seems difficult to evaluate whether the improved estimator tends to approach the true value faster
than the original estimator by simulation study when λ < 1. Therefore, we recommend that the proposed
estimator should be used for the case of λ ≥ 1. Then this estimator works very well.
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