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Abstract. In this paper the exponential life time model is used as a competing risk model. The causes of failures 
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1   Introduction 

Nowadays the analysis of time to event data is of great importance in the fields of medicine, engineering 
etc. For example, time to death of patients, and life of electrical components under test. Sometimes 
failure of an item or individual may be due to more than one cause. For example, Boag[1] studied the 
case of a breast cancer patient, where the cause of death was recorded as “cancer” or “other”; Peck[2] 
stated that failure of transistors may be due to electrical degradation of certain parts or by faulty 
bounding of the leads. When the items or individuals fail the failure time and an indicator number 
corresponding to the specific cause of failure were recorded. Here we assume the causes of failure are 
independent. 

Suppose that an item exhibits k  modes (causes) of failures. When the item begins operation, each 
failure mode simultaneously generates a random life that is independent of the other modes. Thus, in 
effect, k  life times are denoted by 1 2, , , , ,i kX X X X   which simultaneously begin, where life time 

iX  corresponds to the thi  cause of failure, 1,2, ,i k  ; and failure of the item occurs, as soon as any 
one of the  k  life times, say iX  is realized. Hence the life length of the unit, denoted by the random 
variable X  is nothing but 

   1 2 1min , , , , ,i kX X X X X X   

and its cumulative distribution function (cdf) of X , say  XF x  is given by 

   
1

1
i

k

X X
i

F x F x


     (1) 

Such a model is called competing risk failure model and  XF x  becomes its cdf. 
This model is different than the mixture model. In mixture model only one of the k  possible causes 

of failure generates a random life that causes part failures. 
In practice, the attributes like electrical thermal, climate and mechanical stresses applied to an item 

may be observed as causes of failures of an item.  
Mendenhall and Hader[3], Patel and Gajjar[4], Boardman and Kendell[5], Patel[6], have considered 

progressive type I grouped (interval) censoring for various types of mixture and compound (competing 
risk) life time models. 

2   Competing Risk Failure Model 
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Suppose that the device exhibits two modes of failures and each failure mode simultaneously generates a 
random life time 1X  and 2X  respectively i.e. iX  is the time of failure of the device due to cause I 
and the probability density function (pdf) of iX  is given by 

   1 ;   0;  1,2i

x

i if x e x i 




       (2) 

and the corresponding cdf is 

     1 ;  1,2i

x

i iF x P X x e i


       (3) 

Let T  be the time of failure of the device regardless of cause, then 1 2min( , ).T X X  So pdf of T  
will be  

   1 t

Th t e 




   (4) 

and its cdf will be 

  
1 2

1 1 11 ,     where  .
t

TH t e 

  


      (5) 

Hence the survival function of the model will be  

    1
t

Tf t H t e 


     

According to Boardman & Kendell[5] the competing risk failure model can be obtained as follow: 
Let  ig t  be the probability that an item fails by cause i  and it does not fail by the cause i’≠ i  

up to time t  with two independent causes only, then 
      1 , 1,2ii i i

g t f t F t i i         

Hence the pdf of T  can be obtained as 
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 
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   

    
   

 

  (6) 

where c  is a normalizing constant, here it will be 1. We call the failure model in (6) as the exponential 
competing risk failure model. 

3   Interval Censoring 

Interval censored data arise when observations are known to lie only in some interval between time 
points a  and  b . Here experimental units are not monitored continuously. Such data may arise in a 
variety of circumstances but are commonly encountered in medical studies, where patients are only 
monitored at regular interval, e.g. weekly or quarterly check-up. In engineering such kind of censoring is 
known as group censoring. The generalization of such censoring scheme are progressive Type-I interval 
censoring or progressive Type-II interval censoring schemes. Several authors have considered such 
generalized censoring schemes in life testing experiments. Some of them are Patel & Patel[7], Shah & 
Patel[8], Patel and Gajjar[9], Arora, Bhimani and Patel[10]. Several authors have used such interval 
censoring scheme in clinical, medical, biomedical engineering studies like Odell et al[11], Samuelson and 
Kongerud[12], Rao[13], Aggarwala[14], etc. Recently Gajjar &Patel[15], Gadhvi and Bhimani[16], Patel 
& Patel[17], have considered Progressive Type-I group censoring for discrete (geometric) life time model. 
Patel and Gajjar[4] have considered maximum likelihood estimation for compound exponential life time 
model based on progressively Type-I grouped censored sample. They have assumed different parameter 
at each stage of censoring.  
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Here we consider the estimation for exponential competing risk failure model under progressive Type-
I interval censoring keeping the same parameter (unchanged) at each stage of censoring. MLE and 
Confidence interval estimation is considered. Bootstrap methods are also used to derive the confidence 
intervals. Non-parametric method for estimating survival function is also considered. A real life example 
is used to exemplify the theory.  

The setup of m-stage progressive Type-I censoring scheme is described as follows: 
Let n  units are put on life test at time zero and observations on each of these units is continued 

until the unit fails or is censored. Units are observed at pre-set times 1 2 ,, ,..., mT T T  where m  is a fixed 
integer. Thus the time axis is partitioned into mutually exclusive intervals 1( , ], 1,2,...,i i iI T T i m   
and 0 0,T   where mT  is the time when experimentation is scheduled to terminate. 

Let jix  denote the number of units falling in iI  due to cause  j ; 1,2j   and ir  be the set of live 
units removed at time ; 1,2, ,iT i m   and mr  is equal to all the remaining units at time mT . The 
values 1 2, , , mr r r  may be pre-specified as positive integers or percentages 1 2, , , mp p p , with 100mp   
of the remaining live units. 

Then based on the observed data  11 12 1 21 22 2, , , , , , , ,m mx x x x x x   the joint likelihood function will be 
proportional to the following expression: 

            1 2

1 2 1 1 1 2 2 1
1 1 1

, 1i i i
m m mx x r

i i i i i
i i i

L G T G T G T G T H T   
  

                  (7) 

with 

 
1

1 2
1 1 1

m m m

m i i i
i i i

r n x x r

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        (8) 

Based on  1g t , defined in (6), we define 

      1 1 1
0 0 1 1

1d 1
T T t T

G T P X T g t t e dt e 
 

             (9) 

and 

      2 2 2
0 0 2 2

1d 1
T T t T

G T P X T g t t e dt e 
 

             (10) 

Using (9) and (10) in (7), the likelihood function becomes 
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  
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        
           

           

    
  

 

  


  (11) 

where 

 1 2 1 1
1 1

, ,
m m

i i i i i i i i i ix x x S T T y T x T r          (12) 

To obtain maximum likelihood estimate of 1  and 2  , we would like to maximize: 

 1 2

1 1

1 1 2 2
1 1 1 11 2 1 2

1 1 1 1log log log log log 1
iSm m m m

i i i iL x x x y x e   
   

 
   
 

                             
      (13) 

Thus, the equations to be solved for the maximum likelihood estimate of 1  and 2  are 

 
1 2

1 2

1 1

1
1 1

2 2 1 1
1 12 1 1

1
1 2

log 1 0
1 1
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i

m m
S

i i m
i i

Si

x x x S eL y

e

 

 
   


 

 
   
 

 
   
 

 
        

           

 
   (14) 
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and 
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 
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 

 
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 

 
        

           

 
   (15) 

From (14) and (15), we get 
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i
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


  (16) 

Again from (14) we can write, 
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 
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 
            

  

 


  (17) 

Substituting 2  from (16) in (17) we get the right hand side (17) as a function of parameter 1  only. 
Thus, using (16) & (17) we can write: 
 1 1 1 a function ( o) f       (18) 

Solving the equation (18), by any method of iteration we get MLE of 1  say 1̂ , and substituting it 
in equation (16), we will get MLE of 2  say 2̂ . 

The MLE of survival function at time 0t  is given by 

   1 2

1 1
ˆ ˆ

0

t

S t e  

 
  
 
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
  (19) 

4   Standard Error of the Estimators 

The asymptotic variances and covariance of the MLE of the parameters 1  and 2  can be obtained 
from the elements of the inverse of the Fisher information matrix (I) given by: 
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 
 
 
 

  

The exact mathematical expressions for the above expectations are difficult to obtain, therefore, we 
calculate observed asymptotic variance-covariance for the MLE by dropping the expectation ‘E’. 
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where 
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Hence the asymptotic variance of survival function can be obtained from the equation 
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5   Simulation Algorithm 

A study of properties of maximum likelihood estimators based on progressively Type-I interval censored 
samples involves simulation. A short algorithm for simulating a random sample of size n put on a life 
test at time 0 is given below. Here we use the following properties of the progressive interval censoring 
   11 1 1,X B n G T  and   21 2 1,X B n G T   

where  1 1G T  and  2 1G T  are defined in (9) and (10) respectively and for   2,3, ,i m   

 

     
    

     
 

1
1

1 2 3,..., 1 1 2 1 1 2 1
1

1
1

1
1

1 2
1 1

/ , , , , ,..., ~ ;
1

; ;    1,2
1

i
j i j i

ji ji ji ji j i i s s s i
s

j i j i
s

i
j i j i

s s s
s j i

G T G T
X X X X X R R R B n X X R

G T G T

G T G T
B n X X R j

G T




     








 

 
 
   
 

  
 

 
     
  






  

 
Here  ,B n p  denotes the binomial distribution with parameters n  and p ; 0 1.p   

On the basis of the algorithm given in Aggarwala[14] for simulating a sample under progressive 
Type-I interval censoring scheme, Gadhvi and Bhimani[16] have modified the simulation scheme for 
competing risk failure model. The main steps of the algorithm are given below: 
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Algorithm 1. 
1: Set 1 20, 0, 0, 0sum sum sumi X X R     
2: Next i 
3: If 1,i m   exit the algorithm. 
4: Generate 11X  and 21X  as binomial random variables with parameters 

  1 1,n G T  and   2 1,n G T  respectively. 

5: Generate 1iX  and 2iX  as binomial variables with parameter 

   
 

1 1 1
1 2

1 1

,
1

i i
sum sum sum

i

G T G T
n X X R

G T




 
   
  

 and 

   
 

2 2 1
1 2

2 1

,
1

i i
sum sum sum

i

G T G T
n X X R

G T




 
   
  

 respectively 

6: Calculate  1 2Floorobs
i i sum sum sumR p n X X R       or 

 1 2min ,i sum sum sum iR n X X R X     
7: Set 1 1 1 2 2 2, , obs

sum sum i sum sum i sum sum iX X X X X X R R R       

 
This algorithm generates m  binomial random variables. Here either the values 1 2 1,?,?,? mp p p   or 

proposed values of 1 2,?,?,? mR R R  are fixed in advance by the experimenter. Here 1mp  and 
1

1 2
1 1 1

m m m

m i i iR n X X R


      . 

6   Confidence Interval Estimation 

A.  Asymptotic Confidence Interval 

Using the asymptotic normality property of maximum likelihood estimator, confidence interval for MLE 
can be obtained for parameters 1  , 2  and for survival function  0S t  as follows: 

 1 100%   asymptotic confidence interval for î  becomes 

  
2

ˆ ˆ , 1,2i iZ V i     

and for  0S t : 

     0 0
2

ˆ ˆS t Z V S t   

where  îV   and   0
ˆV S t  can be obtained from equations (20) & (24) and 

2
Z  is  2

th
  

percentile of standard normal distribution. 
 

B.  Bootstrap Confidence Interval 

B-I: Percentile Bootstrap Method 
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Algorithm 2. 
1: From the original data X  compute the ML estimates of the 

parameters say 1̂  and 2̂  from (18) and (16). 
2: Use 1̂  and 2̂  to generate a bootstrap sample *X  with the same 

values of iT , ir  and m , 1,2, ,i m   using the algorithm given in 
section 5. 

3: As discussed in step 1, based on *X  compute the bootstrap sample 
estimator of 1 , 2  and  0S t , say *

1̂ , *
2̂  and  *

0Ŝ t . 
4: Repeat steps 2 and 3, S times representing S bootstrap MLE’s of  

(
21 0, ,S( )t  ) based on S different bootstrap samples. 

5: Arrange all *
1̂ , *

2̂  and  *
0Ŝ t  in an ascending order to obtain 

bootstrap sample  1 2, ,..., , 1,2,3S
l l l l               where * *

1 1 2 2
ˆ ˆ,      

and  *
3 0Ŝ t  . 

6: Let    lG Z P Z   be the cumulative distribution function of l . 
Define  1

lboot G Z   for given Z . The approximate bootstrap 

 1 100%  confidence interval of l  is given by 

   , 12 2lboot lboot
     

. 

B-II.  Bootstrap-t Method 
 

Algorithm 3. 
1: From the original data x  compute the MLE of the parameters say, 

1 2
ˆ ˆ,   and  0Ŝ t . 

2: Use 1 2
ˆ ˆ and    to generate bootstrap sample *X  with the same values 

of iT , ir  and m , 1,2, ,i m   using the algorithm given in B-I. 
3: Based on *X  compute the bootstrap sample estimates of 1 , 2  and 

 0S t , say *
1̂ , *

2̂  and  *
0Ŝ t . 

4: Compute the following statistics: 

 
 

 
 

    
  

** *
0 01 1 2 2* * *

1 2 3
* * *
1 2 0

ˆ ˆˆ ˆ ˆ ˆ
, , .

ˆ ˆ ˆ

n S t S tn n
T T T

V V V S t

   

 

 
    

5: Repeat steps 3 and 4 S (boot)times. 
6: From the values of *, 1,2,3iT i   obtained in step 4, determine the 

upper and lower bounds of the  100 1 %  confidence interval of the 
parameters and survival function as follows: 
Let    * , 1,2,3iH x P T x i    be the cdf of *

iT . For a given x  

define     1 1
ˆ ˆ, 12 2Boot t Boot t

     . Similarly we can define other 

parameters. 
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7   Non-Parametric Estimation of Survival Function 

Kaplan Meier estimate of survival function  0S t  can be obtained according to Miller et al[18]. Its 
estimate and the estimate of the variance can be obtained as follow: 

  
 

  0

0
ˆ

1

i

iY t

n iS t
n i





 
    
   (25) 

and 

       

     0

2
0 0

ˆ ˆˆ
1

i

i

y t
AsyV S t S t

n i n i






  

   (26) 

Using the results (7.1) & (7.2), the  1 100%   asymptotic confidence interval for  0Ŝ t  can be 
obtained  

     0 0
2

ˆ ˆˆS t Z AsyV S t   (27) 

8   Application 

 The data about the failure time of radio transceivers considered by Mendenhall and Hader[3] is given 
below . Failures are classified as one of the two types: those confirmed on arrival at the maintenance 
centre (Type-I) and those unconfirmed (Type-II). The data consist of a failure time (in hours) and type 
for each failure until when observations cease after 600 hours. We have modified the data considering 
the withdrawals at the end of each failure time interval. 
 

Number 
i 

Time interval 
(Ti-1,Ti) 

Type  – I Failures: 
x1i 

Type – II Failures: 
x2i 

Withdrawals 
Ri 

1 0-50 26 15 3 
2 50-100 27 14 2 
3 100-150 28 20 0 
4 150-200 35 13 0 
5 200-250 17 11 0 
6 250-300 20 8 1 
7 300-350 10 7 1 
8 350-400 11 5 1 
9 400-450 11 3 0 
10 450-500 7 4 0 
11 500-550 6 1 0 
12 550-600 9 2 51 

 
As per our notations we have Si = Ti – Ti-1 = 50, m =12, Tm = 600, T0 = 0, n = 369, rm= 51. 
Solving the equations (16) to (17) of section 3 we find MLEs of θ1 and θ2 as 

  
1 2468.568470     and       941.686148     (28) 

From (3.13) we get MLE for survival function at time t0 = 150 as 
  0

ˆ 150 0.619147S t    

Using (20) the asymptotic variance –covariance matrix of the MLEs for parameter 1  and 2  is 
given by 

    
    

1 1 2

1 2 2

,

,

V Cov

Cov V

  

  

 
 
 
 
 

= 
228.490456 64.098690
64.098690 1854.391245

 
 
 
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Hence the asymptotic standard errors of the MLEs of the parameters will be 
  

1 2( ) 15.115901   and   ( ) 43.062643SE SE    

Hence from (24) we get   0 150 0.008179ˆSE S t   . 
To apply bootstrap confidence interval estimation for the parameters we have made 1000 simulations 

based on the MLEs of 1  and 2  given in (28) with the other values fixed as follows: 
Si = Ti – Ti-1 = 50, m =12, Tm = 600, T0 = 0, n = 369 of the given real life data. 
The summary statistics for our simulation are given in the following table: 

 

Table 1.  Summary statistics for simulation 

 min 0.025 0.25 0.50 0.75 0.975 max 

1  453.881921 534.49941 600.519587 635.009587 666.823853 738.014578 815.657104 


2  1103.24111 1196.47891 1380.32981 1490.57503 1605.86791 1888.97570 2276.43244 

 0Ŝ t  0.640287 0.674061 0.701207 0.714147 0.723910 0.744047 0.763701 

1T  -19.556925 70.818664 123.872344 146.354047 163.912440 195.743508 216.159550 


2T  58.444155 83.146751 118.733825 134.023486 146.362393 166.596258 177.334380 

 0
ˆTS t  50.028425 136.05393 213.647116 252.157978 283.773046 349.591892 427.982516 

 
Based on the simulation results the confidence interval based on MLE and the bootstrap confidence 

intervals for parameters and the survival function are computed using the methods described in Section 
6, which are given in the following table.  

 

Table2.  Estimates and confidence intervals for the parameters based on MLE and Boot strap 

Method Parameter Estimate Confidence Interval Length of the Interval 

MLE 
1  634.857929 (591.910652, 677.805205) 85.894553 

2  1502.724540 (1345.933796, 1659.515285) 313.581489 

S( 0t  = 150) 0.712668 (0.698474, 0.726863) 0.028389 

Percentile Bootstrap 
1  634.857929 (534.499419, 738.014578) 203.515159 

2  1502.724540 (1196.478918, 1888.975706) 692.496788 

S( 0t  = 150) 0.712668 (0.674061, 0.744047) 0.069986 

Bootstrap - t 
1  634.857929 (524.295848, 622.599502) 98.303654 

2  1502.724540 (1128.080524, 1315.153596) 187.073072 

S( 0t  = 150) 0.712668 (0.677079, 0.768004) 0.090925 

 
The following tables give estimate of the survival (Reliability) function ( 0( )S t ) of an item at time t0. 

Its asymptotic variance and asymptotic 95% confidence interval of 0( )S t  based on MLE and 
nonparametric estimation are calculated as discussed in sections 6 and 7. 
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Table 3. Estimate of survival (Reliability) function ( 0( )S t ), with its asymptotic variance and asymptotic 
confidence interval calculated using MLE  

t0 0(̂ )S t  AsyV( 0(̂ )S t ) 95% Confidence interval for 0(̂ )S t  
Lower limit         Upper limit 

Length of CI 

50 0.852311 1.408663E-05 0.844954 0.859667 0.014713 
100 0.726433 4.093199E-05 0.713894 0.738973 0.025079 
150 0.619147 6.690232E-05 0.603115 0.635178 0.032063 
200 0.527705 8.640014E-05 0.509486 0.545924 0.036438 
250 0.449769 9.806867E-05 0.430359 0.469179 0.03882 
300 0.383343 0.000103 0.363491 0.403195 0.039704 
350 0.326727  0.000101 0.306987 0.346467 0.03948 
400 0.278473 9.624045E-05 0.259245 0.297701 0.038456 
450 0.237345 8.848273E-05 0.218909 0.255782 0.036873 
500 0.202292   7.935409E05 0.184832 0.219752 0.034920 
550 0.172416 6.975100E-05 0.156046 0.188785 0.032739 
600 0.146952 6.030084E-05 0.131732 0.162171 0.030439 

Table 4. Estimate of survival (Reliability) function ( 0( )S t ), with its asymptotic variance and asymptotic                     
confidence interval calculated using nonparametric estimation 

t0 0(̂ )S t  AsyV( 0(̂ )S t ) 95% Confidence interval for 0(̂ )S t  
Lower limit         Upper limit 

Length of CI 

50 0.888889 0.000268 0.856823 0.920955 0.064132 
100 0.776752 0.000268 0.744665 0.808839 0.064174 
150 0.644539 0.000302 0.610467 0.678611 0.068143 
200 0.512326 0.000289 0.478979 0.545673 0.066694 
250 0.435202 0.000180 0.408872 0.461531 0.052659 
300 0.358077 0.000175 0.332165 0.38399 0.051825 
350 0.310889 0.000114 0.289987 0.33179 0.041803 
400 0.266076 0.000107 0.245762 0.28639 0.040628 
450 0.226448 9.54653E-05 0.207297 0.245598 0.038301 
500 0.195311 7.60164E-05 0.178222 0.2124 0.034177 
550 0.175497 5.03960E-05 0.161583 0.189411 0.027828 
600 0.14436 7.24981E-05 0.127672 0.161049 0.033377 

 
Here we see that up to 450 hours asymptotic variance of the estimate of survival function and length 

of confidence interval based on MLE are smaller than that based on non-parametric estimation. 
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