
Exact F-tests for the Mean of A Class of
Elliptically Contoured Distributions

Jiajuan Liang

College of Business, University of New Haven, West Haven, Connecticut, U.S.A.
Email: jliang@newhaven.edu

Abstract A class of F -tests are developed based on an i.i.d. sample from a subfamily of elliptically
contoured distributions. The theory of spherical matrix distributions is employed for constructing
the tests. The results from a Monte Carlo study on the empirical performance of the tests show
that the tests can control type I error rates very well and have fairly good power performance even
for very high dimension with a small sample size. An analysis on a real dataset in financial models
illustrates possible applications of the proposed tests.
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1 Introduction

Testing the mean of a population plays an important role in parametric statistical hypotheses. Traditional
tests for the population mean are basically based on the normal assumption. For example, the classical
Student’s t-test is the popular test for the univariate normal population mean. The Hotelling T 2-test is
the commonly-used statistic for testing the multivariate normal population mean. Both of these two tests
assume the sample data from the normal population. Since the last few decades, researchers have found
different ways to generalize the multivariate normal distribution to a much wider family of multivariate
distributions that contain the normal distribution as a special case. Among these generalized distributions,
the family of elliptically contoured distributions (simply called ECD) is one of the most thorough-studied
distributional families that possess many similar properties to those of the multivariate normal distribution,
see, for example, [1], [2], [3], [4], [5] and [7]. With more and more theoretical properties discovered, ECD
has been applied to statistical modeling and high-dimensional data analysis in real-life problems, see [8]
for some recent applications.

Following the notations in [5], we use ECDp(µ,Σ) to denote the family of elliptically contoured
distributions with the mean vector µ (p× 1) and covariance matrix Σ (p× p). Testing the mean µ in
ECDp(µ,Σ) can be reduced to testing the hypothesis

H0 : µ = 0, versus H1 : µ 6= 0. (1)

The challenge for constructing statistics for testing this hypothesis is that a distribution in ECDp(µ,Σ)
may have a probability density function. If it has a density function, it is still unknown the exact
mathematical expression of the function. Therefore, the traditional likelihood ratio approach is no longer
applicable. Fang and Zhang [5] developed an approach to testing hypothesis (1) by assuming that
the sample observation matrix has a left spherical matrix distribution, which is not based on an i.i.d.
(independently identically distributed) sample. It remains an open problem to test hypothesis (1) with an
i.i.d. sample.

In this paper, we try to tackle the problem of testing hypothesis (1) with an i.i.d. sample from a
subfamily ECDp(µ,Σ) with Σ = σ2Ip, where σ > 0 is unknown and Ip stands for the p× p identity
matrix. That is, we consider an i.i.d. sample is available from ECDp(µ, σ2Ip). The theoretical development
for the tests is presented in Section 2 as follows. Section 3 provides a Monte Carlo study on the empirical
performance of the tests. Section 4 gives an example for illustrating possible applications of the tests in
financial portfolio analysis. Some concluding remarks are summarized in the last section.
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2 Theoretical Construction of the Tests

The construction of the tests is related to some simple knowledge in spherical matrix distributions [5].
A p × n random matrix X is said to have a left spherical matrix distribution (denote by LSMD for
simplicity) for any p×p constant orthogonal matrix Γ , ΓX andX have the same probability distribution.
As illustrated in [5], if X has an LSMD and t(X) is a statistic defined by X and t(X) is affine invariant
satisfying t(AX) = t(X) for any p × p nonsingular constant matrix A, then t(X) and t(Y ) have the
same distribution with Y having a matrix normal distribution Np×n(0, Ip⊗In), where “⊗" stands for the
Kronecker product. This property provides the fact that the probability distribution of an affine invariant
statistic t(X) remains unchanged in the family consisting of all LSMDs. Note that Np×n(0, Ip ⊗ In) is
an LSMD. This implies that the distribution of t(X) can be obtained by considering X has a matrix
normal distribution Np×n(0, Ip ⊗ In). Then we have the following theorem.
Theorem 1. Let {x1, . . . ,xn} be an i.i.d. sample from ECDp(µ, σ2Ip) and X = (x1, . . . ,xn) (p× n).
Assume that the probability P (X = 0) = 0. Define the eigenvalue-eigenvectors of X ′X as

1
p

(X ′X) = λidi, (2)

associated with some positive eigenvalues λ1 > . . . > λr > 0 for some r ≤ min(n, p) − 1 (i = 1, . . . , r).
For q = 1, . . . , r, define the matrices

D = (d1, . . . ,dq), Z = XD, H = Z ′
(

1
p

1p1p
′
)
Z, G = Z ′

(
Ip −

1
p

1p1p
′
)
Z, (3)

where 1p stands for the p× 1 vector of ones. Construct the series of statistics

Fq = p− q
q

trace(HG−1) = p− q
pq

1p
′Z ′G−1Z1p, (4)

for q = 1, . . . , r. Then, under the null hypothesis in (1), Fq has an exact F -distribution F (q, p− q) with
degrees of freedom (q, p− q).
Proof. Note that under the null hypothesis in (1), each observation xi (i = 1, . . . , n) in the i.i.d. sample
{x1, . . . ,xn} has an ECD(0, σ2Ip), which reduces to a spherically symmetric distribution [5]. This results
in the fact that Γxi and xi have the same probability distribution for any p×p constant orthogonal matrix
Γ for i = 1, . . . , n. Because {x1, . . . ,xn} is an i.i.d. sample, this gives the fact that X = (x1, . . . ,xn) and
ΓX = (Γx1, . . . ,Γxn) have the same distribution. This implies that under the null hypothesis (1), the
random matrix X has an LSMD. The construction of the statistics Fq in (4) is following the same way to
construct an F-statistic based on an i.i.d. multivariate normal sample given by [9]. Following the same
thought as in Theorem 2 of [9], we can easily arrive at the conclusion that Fq has an exact F -distribution
F (q, p− q) with degrees of freedom (q, p− q). This completes the proof.

The statistics Fq (q = 1, . . . , r) can be applied to test hypothesis (1). If the population distribution
ECDp(µ, σ2Ip) has a probability density function, it can be proved that the number of positive eigenvalues
r = min(n, p) − 1. For any given significance level 0 < α < 1, one should reject the null hypothesis
in (1) if Fq > F (q, p − q; 1 − α), where F (q, p − q; 1 − α) stands for the 100(1 − α)-percentile of the
F -distribution F (q, p− q) for any choice of q = 1, . . . , r. We will carry out a Monte Carlo study on the
empirical performance of different choices of q in the next section.

3 A Monte Carlo Study

3.1 Empirical Type I Error Rates

The following subfamilies of ECDp(µ, Ip) (σ = 1) (Chapter 3 in [4]) are chosen for simulating the
empirical type I error rates by using MATLAB code, where the Ci (i = 1, 2, 3, 4) are suitable normalizing
constants.
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(1) The multivariate t-distribution has a density function of the form

ft(‖x− µ‖) = C1

(
1 + ‖x− µ‖

2

m

)− p+m
2

, m > 0,

where “‖ · ‖" stands for the Euclidean norm of a vector, let m = 5;
(2) the Kotz type distribution Kotz(N,m, s) with parameters N = 2, m = 1 and s = 0.5 has a density

function of the form

fk(‖x− µ‖) = C2‖x− µ‖2(N−1) exp{−r‖x− µ‖2s},

where N , r and s are parameters. Let N = 2, r = 1 and s = 0.5.
(3) The Pearson type II distribution with the density function of the form

fP 2(‖x− µ‖) = C3
(
1− ‖x− µ‖2)−m

,

where m > −1 is a parameter. Let m = 3/2.
(4) The multivariate distribution has a density function of the form

fCauchy(‖x− µ‖) = C4
(
1 + ‖x− µ‖2)− p+1

2 .

An i.i.d. sample from each of these distributions can be easily generated by MATLAB code (available
from the authors upon request). We summarize the empirical type I error rates (µ = 0), which are the
percentages of rejection under 2,000 replications of simulation, where the four statistics of Fq defined
by (4) are chosen to see the impact of the choice of q. The number q is actually the number of principal
component (PC) directions defined by (2).

(1) Statistic F1 ∼ F (1, p− 1) with q = 1, only one PC direction is chosen;
(2) Statistic F[p/3] ∼ F ([p/3], p− [p/3]), where [·] stands for the integer part of a real number;
(3) Statistic F[p/2] ∼ F ([p/2], p− [p/2]);
(4) Statistic Fr ∼ F (r, p− r) with r = min(n, p)− 1 being the maximum possible number of PC directions.

Table 1. Empirical type I error rates for the multivariate t-distribution

The multivariate t-distribution
α = 0.01 α = 0.05 α = 0.10

p = 10 p = 20 p = 30 p = 10 p = 20 p = 30 p = 10 p = 20 p = 30
F1 0.0070 0.0075 0.0105 0.0460 0.0485 0.0510 0.1025 0.0985 0.1000
F[p/3] 0.0095 0.0065 0.0080 0.0520 0.0560 0.0390 0.0940 0.1080 0.0835
F[p/2] 0.0080 0.0080 0.0080 0.0530 0.0545 0.0470 0.0980 0.0995 0.1010
Fr 0.0100 0.0060 0.0095 0.0475 0.0395 0.0510 0.0955 0.1000 0.0970

The Kotz-type distribution
F1 0.0120 0.0115 0.0095 0.0540 0.0565 0.0500 0.1060 0.1080 0.0985
F[p/3] 0.0075 0.0080 0.0120 0.0420 0.0470 0.0510 0.1050 0.1055 0.0990
F[p/2] 0.0115 0.0075 0.0090 0.0550 0.0515 0.0515 0.0970 0.0990 0.1020
Fr 0.0090 0.0095 0.0110 0.0530 0.0415 0.0490 0.0950 0.0830 0.1035

The Pearson type II distribution
F1 0.0060 0.0085 0.0070 0.0455 0.0445 0.0475 0.0845 0.0955 0.1030
F[p/3] 0.0080 0.0075 0.0110 0.0460 0.0470 0.0465 0.0970 0.0975 0.0975
F[p/2] 0.0100 0.0125 0.0100 0.0570 0.0535 0.0485 0.1055 0.1110 0.1010
Fr 0.0115 0.0120 0.0140 0.0460 0.0420 0.0490 0.0880 0.0795 0.0995

The Cauchy-type distribution
F1 0.0080 0.0120 0.0065 0.0510 0.0430 0.0505 0.0975 0.0935 0.0980
F[p/3] 0.0100 0.0155 0.0090 0.0580 0.0600 0.0465 0.1090 0.1120 0.0955
F[p/2] 0.0105 0.0120 0.0105 0.0560 0.0640 0.0520 0.1080 0.1015 0.0970
Fr 0.0100 0.0090 0.0135 0.0480 0.0545 0.0450 0.0980 0.1045 0.0990
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Table 1 summarizes the empirical type I error rates for the four chosen statistics and the four chosen
subfamilies ECDp(0, Ip) . The results show that the statistics can control the type I error very well, even
for the dimension as high as p = 30 and the sample size as small as n = 20 (n < p).

3.2 Empirical Power

The empirical power is computed by percentage of rejection under 2,000 replications of simulation by
using the same four subfamilies of ECD as in Table 1 above. Without loss of generosity, the mean vector
µ is chosen as µ = c1p and let the constant c increase from c = 0 to c=1 with an increment of 0.05,
which means that taking the step length of 0.05, let c increase from 0 to 1 so that there are 21 c-values: 0,
0.05, 0.1, ..., 1 in computing the percentage of rejections by each statistic as used in Table 1. The power is
computed by taking the significance level α = 0.05. In order to compare the impact of the choice of q on
the power performance, we plot the power values versus the c-values: 0, 0.05, 0.1, ..., 1 for each statistic
in Figure 1 below.

The following two empirical conclusions can be summarized.

(1) The power performance of the two statistics F[q/3] and F[q/2] seems to be the best in most cases.
One could expect to have better power performance when choosing the number of PC-directions
between [p/3] and [p/2] to construct the exact F -test. Choosing the maximum possible number of
PC-directions simply results in loss of power as indicated by the line “*-" in most cases;

(2) Under the same sample size n, an increase of the dimension p leads to an increase of the power. This
is because the construction of the F -tests in Theorem 1 reverses the traditional n× p observation
matrix into a p× n observation matrix. As a result, the dimension p acts as the sample size in the
construction of the F -tests. Therefore, these F -tests are especially applicable to the case of high
dimension with a small sample size in real problems.

4 An Illustrative Example

The value-weighted New York Stock Exchange return data are available from the Center for Research in
Security Prices (CRSP) at the University of Chicago. We choose a partial data set (available from the
authors upon request) that contains the market monthly returns between the year of 1966 and 1975 (120
months) from a portfolio with 32 stocks. First, we run the CAPM (capital asset pricing model, see [6]
and [10]) to get the monthly risk-adjusted returns. These risk-adjusted returns constitute a sample with a
sample size n = 120 and dimension p = 32. Second, we run a 2-factor analysis model to get another set of
monthly risk-adjusted returns. These risk-adjusted returns also constitute a sample with a sample size
n = 120 and dimension p = 32. Now we have two populations and two sets of samples:

(1) Population #1: risk-adjusted returns computed by CAPM, we have sample #1 with n = 120 and
p = 32;

(2) Population #2: risk-adjusted returns computed by a 2-factor model, we have sample #2 with n = 120
and p = 32.

In the theory of CAPM, an investment portfolio is said to be efficient if it satisfies two conditions: 1)
it reaches the smallest possible variance given its expected return; and 2) it reaches the largest possible
expected return given its variance. The verification of these two conditions is finally reduced to testing the
null hypothesis that the intercept parameter in the CAPM is equal to zero (vector) versus the alternative
hypothesis that the intercept parameter in the CAPM is not equal zero. In the CAPM, the observations
are the risk-adjusted returns. The purpose of constructing populations #1 and #2 is to double check the
efficiency of the portfolio consisting of 32 stocks. Assuming population #1 has an ECD(µ1, σ

2
1Ip) and

population #2 has an ECD(µ2, σ
2
2Ip), we set up the hypotheses:

H0 : µ1 = 0, versus H1 : µ1 6= 0, (5)

and
H0 : µ2 = 0, versus H1 : µ2 6= 0. (6)
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Figure 1. Power comparison between different choices of q: 1) the “-o" line is for F1 (q = 1); 2) the dashed line
“− −" is for F[q/3] (q = [q/3]); 3) the real line “-" is for F[q/2] (q = [q/2]); and 4) the “*-" line is for Fr (r=the
maximum possible of the number of positive eigenvalues for each case).

The Fq-statistics for all possible q-values are chosen for the Fq-tests. The p-values of the tests are
summarized in Table 2. Most of the p-values are greater than 0.10, implying most of Fq-tests are
insignificant. Therefore, we should not reject the two null hypotheses in (5) and (6). That is, the portfolio
consisting of 32 stocks can be considered efficient during the 10 years 1966-1975.
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Table 2. p-values from the Fq-tests for all possible q in the real-data example.

Fq q = 1 q = 2 q = 3 q = 4 q = 5 q = 6 q = 7 q = 8
Population #1 0.0000 0.0000 0.0001 0.0003 0.0002 0.0005 0.0012 0.0028
Population #2 0.0857 0.2227 0.1734 0.0769 0.1399 0.2264 0.2831 0.3485

Fq q = 9 q = 10 q = 11 q = 12 q = 13 q = 14 q = 15 q = 16
Population #1 0.0045 0.0095 0.0172 0.0306 0.0473 0.0750 0.1052 0.1579
Population #2 0.4388 0.5451 0.6103 0.6985 0.7599 0.7902 0.8564 0.8580

Fq q = 17 q = 18 q = 19 q = 20 q = 21 q = 22 q = 23 q = 24
Population #1 0.2195 0.2965 0.3741 0.4774 0.5749 0.6753 0.7680 0.8224
Population #2 0.9061 0.8242 0.8389 0.8942 0.8877 0.8916 0.8922 0.9009

Fq q = 25 q = 26 q = 27 q = 28 q = 29 q = 30 q = 31
Population #1 0.8877 0.9344 0.9542 0.9782 0.9913 0.9942 0.9985
Population #2 0.9256 0.9234 0.7271 0.3340 0.4259 0.5439 0.7703

5 Concluding Remarks

The exact F -tests in this paper provides a way to test the mean of some subfamilies of ECD under
i.i.d. samples without assuming existance of the probability density function for the population. This is
substantially different from many existing approaches to constructing parametric tests. The construction
of the F -tests in Theorem 1 considers the population dimension p as the sample size. This makes the
F -tests particularly suitable for the case of high dimension with a small sample size. The Monte Carlo
study supports this assertion. The real-data example illustrates possible applications of the F -tests in
high-dimensional data analysis where the normal assumption may not be appropriate and the number
of observations may be very limited due to high cost or difficulty in obtaining data. The exact F -tests
are applicable for all population distributions in ECDp(µ, σ2Ip). This includes the normal distribution
Np(µ, σ2Ip) as a special case. Therefore, the exact F -tests in this paper could find more applications in
some areas like medical research where it is common to have data of high dimension with a small sample
size and the normal assumption may be violated.
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