
Nanostructured Hydroxyapatite Coating on Bioalloy Substrates: 
Current Status and Future Directions 

Gladius Lewis 

Department of Mechanical Engineering, The University of Memphis, Memphis, TN 38152, USA 
Email: glewis@memphis.edu 

Abstract. Several shortcomings of the alloys that are used to fabricate a number of current-
generation biomedical implants, such as Ti-6Al-4V alloy for the femoral stem of a total hip 
replacement and AZ3 Mg alloy for the scaffold of a fully bioabsorbable coronary artery stent, are 
well-known. Examples of these shortcomings are limited bioactivity/osseointegration (in the case of 
Ti-based alloys) and high corrosion rate (in the case of Mg-based alloys). It is now recognized that a 
nanostructured hydroxyapatite (nanoHA) coating on the substrate of a bioalloy can increase 
bioactivity and reduce corrosion of the substrate. A large number of nanoHA deposition methods and 
a variety of characterization techniques/methods have been used to obtain an assortment of 
properties of the coating, the coated specimens, and the coating-substrate interface. Examples of 
these deposition methods are electrophoretic deposition and radiofrequency magnetron sputtering and 
some of the most frequently used characterization techniques/methods are x-ray diffraction, Fourier 
transform infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, 
atomic force microscopy, immersion tests in a biosimulating solution at 37 oC, and culturing in cells 
extracted from humans. Among the properties obtained are the morphology, thickness, size of the 
nanoHA; degree of crystallinity of the coating; and the adhesive strength and corrosion rate in an 
aqueous biosimulating solution at 37oC. The present work is a comprehensive review of the very large 
body of literature in this field, with the focal topics being essential steps in a deposition method, 
discussion of the influence of deposition method variables on myriad coating properties (for a given 
deposition method), and identification of the shortcomings of the literature, and, hence, outlines of 
ten suggested directions for future research. 

Keywords: Nanostructured hydroxyapatite (nanoHA); nanoHA coating; nanoHA coating deposition 
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1   Introduction 

Desirable properties for a coating on the surface of any biomedical implant include biocompatibility, 
nontoxicity, high resorption rate, high homogeneity, low porosity, adequate mechanical strength (in 
particular, high adhesive strength), and ease of deposition on a variety of implant shapes in a conformal 
manner [1]. In addition, for coatings on orthopaedic implants, such as the femoral stem of a total hip 
joint replacement (THJR), the coating should be osteoconductive, be osteoinductive, facilitate 
osseointegration, have excellent facilitation of bone-forming-cell functions (high osteoblast density), 
promote bone cell adhesion and proliferation, and promote bone mineralization [2-5]. Additionally, the 
coating should display excellent resistance to biofilm formation, which is adhesion of microorganisms, 
such as Staphylococcus aureus, that are known to be associated with infection of total joint 
replacements (TJRs) [6]. In a number of TRJs, prosthetic joint infection, via biofilm formation, is 
known to be involved in the cascade of events that culminates in their loosening, necessitating their 
revision [6]. Revision of a TJR is both very painful to the patient and expensive to a healthcare system 
[7]. For example, in the United States, about 25% of total knee replacements (TKJRs) are revised and 
the total direct cost of a total THJR is ∼$70,000 [8]. In TJRs, the ineffectiveness of antibiotic therapy 
(in the form of a prophylaxis or anchoring the replacement in an antibiotic-loaded acrylic bone cement 
bed) against biofilm formation is well-known [6]. For a coating on the scaffold of a bioabsorbable 
metallic coronary artery stent, there are at least two additional desirable coating properties. First, the 
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coating should promote endothelial adhesion and proliferation, facilitate reduction of adhesion of 
platelets, and mitigate against in-segment restenosis (ISR) and in-stent thrombosis (IST) [9]. Second, 
the coating should provide appropriate corrosion resistance; that is, the corrosion rate should not be too 
low (or else, it takes too long for the stent to be absorbed in vivo) or too high because this translates to 
fast resorption in vivo, which is undesirable because it can, among other things, result in vascular elastic 
recoil and large lumen loss, which, it has been postulated, are influential factors in the development of 
ISR and IST [10]. 

Nanostructured hydroxyapatite (hereafter, “NanoHA”), that is, HA that has a fully crystalline phase 
at the nanoscale, possesses many of the desirable coating properties highlighted above as well as 
controlled pore size and high surface roughness, with the latter property being known to be directly 
associated with high potential for osseointegration of an orthopaedic implant [11-14]. Thus, method for 
depositing a nanoHA coating on metallic biomedical implants and the characterization of the coating, 
the coating-bioalloy substrate interface, and the coating-bioalloy substrate-electrolyte system is a very 
active field of research, spawning a large body of literature. However, to the best of the authors’ 
knowledge, there are no comprehensive reviews of this body of literature; as such, the purpose of the 
present work was to perform such a review, subject to one caveat. This is that the review is limited to 
deposition of an unmodified nanoHA coating on unmodified bioalloy substrates. In other words, the 
following aspects are not considered: deposition of modified nanoHA coating, such as fluoridated HA [15] 
or nanoHA-based composites (for example, nanoHA/poly(lactic acid-co-glycolic acid) composite [16]); 
and deposition of an unmodified nanoHA coating on a substrate on which there is an intermediate 
coating, such as a MgF2 conversion coating on an AZ91 Mg alloy substrate [17], micro-arc oxidation 
coating on ZK60 Mg alloy substrate [18], plasma electrolyte oxidation film on AZ31 alloy        
substrate [19], polydopamine coating on AZ31 substrate [20], poly-l-lactic acid coating on cast WE43 Mg 
alloy [21], and titania nanotube layer on a Ti alloy [22].  

The remainder of the present review is organized into four sections. In recognition that different 
methods have been used to synthesize nanophase HA powders that are used in the subsequent coating 
deposition method, the first section, Nanosphase Hydroxyapatite, is devoted to these methods and the 
properties of the powders. There are two focal aspects in the second section, Coating Deposition and 
Characterization Methods. The first involves steps used in and key process variables of each of the 
popular deposition methods, such as electrophoretic deposition [15,17,18,23-28] and sol-gel [29,30]; the 
less popular deposition methods, such as aerosol deposition [31] and radiofrequency magnetron 
sputtering [32]; and proprietary deposition methods, such as a patented “transonic particle acceleration 
deposition process” [1]. The second focal aspect involves expositions on the influence of process variables 
on a large collection of properties of the coating and of the coating-bioalloy substrate system, for a given 
coating deposition method. In the third section, Directions for Future Research, ten suggested directions 
for future research studies, aimed at addressing shortcomings of the extant literature, are offered. The 
fourth section, Summary, contains succinct summaries of the some of the key points made in the review. 

2   Nanophase Hydroxyapatite Powder 

A vast number of methods have been used to synthesize nanoHA powder and there are comprehensive 
reviews of these methods [11,12,33]. As such, only very brief summaries of four widely-used methods for 
synthesizing nanoHA powder used specifically in coating bioalloy substrates are given here. 

One of these methods is metathesis [34,35], with the reaction involved being 10Ca(NO3)2+6 
(NH4)2HPO4+8NH4OH→Ca10(PO4)6(OH)2+6H2O+20NH4NO3. 

The second is a sol-gel method. Typically, a Ca precursor (such as 17mMol – 2M Ca(NO3)2.4H2O) and 
a phosphorus precursor (such as 0.5mM – 2M P2O5) are dissolved separately in ethanol and then the Ca 
precursor is added drop-wise to the P precursor, yielding a final solution with Ca/P molar ratio of 1.67, 
which is then stirred in a closed beaker (at room temperature at, typically, 400 rev min-1, for 5 h) until 
it gels [27,36]. Then, the gel is aged at room temperature for between 4 h and 72 h, after which it is 
dried at 60oC for 24 h, and then sintered (from 60oC to 600oC at 5oC min-1) [27,36]. 

The third method is wet chemical synthesis or precipitation. There are many variants of the steps 
that have used for this method, with five popular ones being summarized here. One involved using 
Ca(NO3)2.4H2O), KH2PO4, distilled water, ammonia, and acetone, with a stirring time of 1 h, aging time 
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of 24 h, and, finally, filtering and sintering at 900.oC [37]. Another involved using Ca(OH)2 solution, 
H3PO4 solution, adjusting the pH of the mixture of solutions to alkaline level, stirring (at 60 rev min-1 
for 16-24 h), centrifugation of the precipitate (at 6000 rev min-1 for 0.5 h), aging for 7 d, washing in 
distilled water at least three times or in boiling water, and drying in air, after which the resulting 
powder was calcined (at 700oC for 0.5 h) [38]. For the third variant, Ca(NO3)2.4H2O, (NH4)2HPO4, and 
ammonia solution were mixed and then the mixture was heated to 80 oC, vigorously stirred for 1 h, aged 
at room temperature for 24 h; the suspension was washed thoroughly; and, then, the resulting gel was 
dried, at 65oC, for 24 h in a dry oven and, finally, calcined, at 900oC for 1 h [24]. For the fourth variant, 
concentrated NH4(OH)2 was added to vigorously stirred water, pH = 10, and then NH4PO3 and 
Ca(NO3)2 were added drop-wise while stirring for 10 min at room temperature and, then, the HA 
precipitate was placed in a Teflon liner that was sealed tightly in an autoclave and processed 
hydrothermally, at 200oC for 20 h [39,40]. The fifth variant is a modification of the fourth one, with the 
modification involving spray-drying the HA precipitate at 120 ± 5oC [41]. 

The fourth method is a hydrothermal method, in which microcrystalline HA is precipitated for 10 min 
at room temperature, after which some of supernatant is removed by centrifuging once to reduce the 
suspension by 75%, and then the concentrated HA-precipitated aqueous solution is placed on a tightly-
sealed Teflon® liner that is in an autoclave and, finally, processed hydrothermally at 200oC for 20 h [39]. 
After that, the HA particles are rinsed with distilled water twice and dried, in an oven that is heated at 
80oC, for 12 h [39]. 

A summary of comparison of some characteristics of nanoHA powders prepared using some of these 
synthesis methods is given in Table 1. 

Table 1. Comparison of some characteristics of nanophase HA powder prepared using three preparation methods 

Characteristic 
Preparation method 

Sol-gel Wet chemical 
synthesis 

Hydrothermal 

Ca/P molar ratio  1.71 1.61 
Mean degree of crystallinity (%) 45-57   
Particle size parameters    
    -Mean (nm) 31  6000 
    -Standard deviation (nm) 2   
    -Range (nm) 10-65 20-30  
Equivalent spherical crystallite 
diameter (nm) 18-68  31; 43 

Mean agglomerate size (nm)  182  
Particle shape Ellipse-shaped  Polygonal 

3   Coating Deposition and Characterization Methods 

3.1   Established Deposition Methods 

3.1.1 Electrophoretic deposition  
Conventional electrophoretic deposition (EPD) is a two-step process. The first step involves preparation 
of a suspension of nanoHA particles (typical mean particle size and range of particle sizes: 160 nm and       
35-550 nm, respectively) alone [27] or in combination with carbon black powder (typical mean particle 
size and range of particle sizes: 360 nm and 120-960 nm, respectively) (the powder serves as the 
sacrificial template) [25] in a suitable liquid, such as isopropanol [25], methanol [27], acetic anhydride 
[42], or ethanol [24,43]. After that, the suspension is magnetically stirred for, typically, 24 h, and 
ultrasonically-dispersed [25-27], and then rested for, typically, 1 h (to allow sedimentation of the 
nanoHA particles, when only these particles are used [27]). In the second step, the suspension is placed 
in a cell, after which a bioalloy plate (working electrode; cathode) and a counter electrode (anode: a 
smaller plate of the same bioalloy [25] or another one [26,27]) are mounted in the cell. Then, a voltage is 
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applied to the cell, causing the positively-charged nanoHA particles to migrate to and, ultimately, 
deposit on the working electrode, forming a dense coating on it [25-27]. 

Prior to characterization, the coated working electrode is subjected to post-treatment. Features of four 
of widely-used methods used for this purpose are now outlined. One, the coated specimen is dried, in            
room-temperature air [25] or in a humid oven at 60oC [27], for 24 h [25,27]. Two, the coated specimen is 
dried and then sintered (room temperature to 480oC at 10oC min-1; then, 480oC to 650oC at 1oC min-1; 
held at 650oC for 0.5 h; then, 650oC to 700oC at 5oC min-1; and, finally, at 700oC for 1 h) [25]. Three, the 
coated electrode is sintered, at 800oC, for 1 h [42]; or heated in a previously degassed electric furnace to 
800oC, then heated in argon to 1000oC at 10oC min-1, held at 1000oC for 1 h, slowly cooled in the furnace, 
and then removed (“Ar sintered” set) [43]; or heated in a previously degassed electric furnace to 800oC 
and then heated in vacuum to 1040oC at 10oC min-1, and then held at 1040oC for 1 h, slowly cooled in 
the furnace, and then removed (“vacuum sintered” set) [43]. Four, the green coating is dried in air in 
room temperature for 24 h and, then, sintered in an argon-purged atmosphere at 900oC at 1.7oC min-1 
with a dwell time of 1.5 h [24].  

On 316L stainless steel substrate, the variation of the deposition current density (id) with deposition 
time (td) (0-360 s) is influenced by the concentration of the nanoHA particles in the suspension (CHA)           
(10 or 20 g/L), the concentration of the carbon black powder in the suspension (CCB) (0, 2.5, 5.0, 10.0, 
or 20.0 g/L), and the voltage used in the deposition (Vap) (60 or 200 V) in a complex manner. For 
example, with CHA, CCB, and Vap=10 g/L, 2.5 g/L, and 200 V, respectively, id dropped continuously and 
markedly with increase in td; with CHA, CCB, and Vap=20 g/L, 10 g/L, and 200 V, respectively, id 
increased continuously and less markedly with increase in td; and, with CHA, CCB, and Vap=20 g/L, 20 
g/L, and 200 V, respectively, id increased very sharply with increase in td after which id was essentially 
invariant with increase in td up to 360 s [25]. For a given combination of CHA (10 or 20 g/L), Vap (60 or          
200 V), and td (15-360 s), the wet density of the deposit did not increase monotonically with increase in 
CCB (0, 2.5, 5.0 g/L) when Vap=60 or 200 V or with increase in CCB (0, 5, 10 g/L) when Vap=60 or 200 V. 
Rather, the densest coating was obtained when the intermediate value of CCB was used; thus, with 
CHA=10 g/L, it was obtained when CCB=2.5 g/L, whereas, with CHA=20 g/L, it was obtained when 
CCB=5 g/L [25]. Overall, the densest deposit (just slightly < 13 g cm-3) was obtained with CHA, CCB, Vap, 
id, and td of 20 g/L, 5 g/l, 200 V, 40 A cm-2, and 360 s, respectively [25]. The influence of CHA, CCB, and 
Vap on the kinetics of deposition is also complex. For example, with CHA/CCB=0.50 and Vap was either 60 
V or 200 V, the increase in deposit mass per surface area of substrate (Dmd) with increase in id was linear; 
with CHA/CCB=0.25 and Vap=60V or 200V, this increase appeared to be slightly parabolic, and, with 
CHA/CCB=1.00 and Vap=60 or 200V, Dmd fluctuated with increase in id in a hysteresis-like manner [25]. 

After 3 or 5 days of exposure of Ti-6Al-4V specimens to osteoblasts cultured in Dulbecco’s Modified 
Eagle Medium (DMEM) supplemented with 1% fetal bovine serum and 1% penicillin, the results of a 4-
hour 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) osteoblast assay (seeding 
density = 35 cells cm-2) showed significantly high cell viability (higher osteoblast density) for specimens 
covered with a nanoHA coating deposited using EPD compared to uncoated specimens, demonstrating 
significantly easier formation of a mineralized matrix by osteoblasts when exposed to the former 
specimens [26]. Also, results of a bacterial assay using S. aureus showed that, after 8 h of culture, there 
was significantly decreased bacteria colonization (significantly fewer colony-forming units) on the 
specimens that were nanoHA-coated compared to uncoated specimens, a trend that is consistent with 
the significantly greater hydrophilicity (greater surface area and exposure of the coating on the substrate) 
of the former specimens [26]. 

On AZ91 (Mg-9Al-1Zn alloy) specimens, the coating is practically crack-free, homogenous, and rough, 
with the last-mentioned characteristic being good because rough surfaces are known to confer excellent 
performance (high stimulation of the adhesion, growth, and proliferation of osteoblasts and improved 
osseointegration) [44,45]. Results of corrosion tests (potentiodynamic polarization of AZ91 specimens 
immersed in acellular simulated body fluid (a-SBF-2 solution) at 37 ± 1oC) found marked decrease in 
corrosion rate (lower corrosion current density) for coated specimens compared to uncoated ones (mean 
decrease of ∼90%), indicating effective mediation of corrosion by the coating [27].  

On a Ti substrate roughened by etching and oxidizing in a 1:1 (vol./vol.) concentrated H2SO4 and 
30% H2O2 mixture, 1) the coating was homogeneous without cracks; 2) the adhesive strength of the 
coating was 18 ± 2.5 MPa, with fracture occurring at the coating-substrate interface; and 3) the coating 
displayed good biocompatibility and bioactivity, as illustrated by the following results: after culturing 
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for 3 d, rabbit mesenchymal stem cells (MSCs) adhered onto the coating and elongated; after 12 days, 
cell adhesion increased significantly and the cells covered the coating completely; and after culturing for 
4 days, the MSC proliferation on the coated substrate was markedly greater (27% increase) than on an 
uncoated substrate [42]. 

On 316 LVM stainless steel substrate, 1) coatings deposited after 30 s and then vacuum-sintered were 
thin and compact; for coatings deposited after 60 s and vacuum sintered, the outer layer of 
agglomerated clusters had cracks through which a continuous inner layer of finer and sintered particles 
was visible; and for coatings deposited after 30 s and then argon-sintered, the morphology was 
observable not only at the agglomerates at the surface but also over all of the visible areas [43]. 

On Ti-8Al-4V alloy substrates prepared using wire brushing (with a 64-mm-diameter circumferential 
brush having stainless steel wires, rotated at 12,000-27,000 revolutions min-1, for 45-75 s while a 2 kg-
force was applied vertically to the surface of the workpiece, followed by mechanical polishing and 
etching (WB substrate)), the adhesive strength of the coating was twice as high and the coating was 
half as porous as the case when the coating was deposited on an as-received (AR) substrate [24]. It was 
postulated that this trend is a consequence of the surface roughening and enhanced mechanical 
interlocking induced by the wire brushing [24]. Furthermore, the corrosion rate (in corrected SBF, in air, 
at 37.4 oC) when WB-coated specimens were used was about 50% that when AR-coated specimens were 
used, a consequence of the significantly lower porosity of the coating on the former specimens [24]. 
3.1.2 Room-temperature electrophoretic deposition (RTEPD)  
This variant of the EPD method leads to a coating that does not have an amorphous phase, has 
excellent bond strength, but high porosity [46]. On Ti substrate, high-temperature sintering was used as 
a post-treatment method to decrease the porosity of the coating but as a consequence of the large 
difference in the coefficients of expansion of the coating and the Ti, cracks formed in the coating [46].  

On Ti alloy substrate, the adhesive strength of a RTEPD-deposited coating and the corrosion 
resistance it provides are 2-3 times higher and 50-100 times higher, respectively, than the corresponding 
values when a thermally-sprayed HA coating was used [46]. 
3.1.3 Sol-gel deposition  
This is a two-step process, with the salient features in each step now given. In the first step, the final 
sol-gel solution is prepared and stirred, as described in Section 2 above, after which one of the two 
process paths is taken. In the first, either an electric coat dipper or a belt-and-pulley assembly is used to 
vertically immerse a bioalloy specimen (usually, abraded and cleaned rectangular workpiece) into the 
solution and then withdrawn at, say, 6 mm min-1 or 50 mm min-1 [27,36]. Alternatively, the specimen is 
dipped into the solution and rotated at, say, 2000 rev min-1, and then withdrawn [30]. In the second step, 
the coated specimen is aged at room temperature for 24 h, dried in a humid oven at, typically, 60oC or 
80oC for 24 h and, then, calcined/sintered to, say, between 400oC and 700oC, at a heating rate of 1oC 
min-1 [27,36]. Alternatively, the coated specimen is placed in an air oven and held there at 150oC for 10 
min, and then, sintered at 300-900oC [30]. 

On die-cast AZ91 specimens, the coating 1) has a thickness of 6.3 ± 1.1 µm [29]; 2) has poor 
crystallinity (index = 45%) [29], which was attributed to the low curing temperature that was used 
(400oC) so as to not adversely affect the surface integrity of the substrate and decrease its tendency to 
react with oxygen [47,48]; and 3) is practically crack-free, homogenous, free of any delamination and/or 
gaps, and relatively smooth [27,29]. The last-mentioned characteristic indicates that some aspects of the 
performance of the coated specimen may be sub-optimal, as evidenced by low stimulation of the 
adhesion, growth, and proliferation of osteoblasts and low osseointegration of the coated specimens 
[44,45]. 

Results of an adhesion test (per ASTM D454-02) performed using a commercially-available adhesion 
tester found that the bonding strength of the coating to a die-cast AZ91 substrate was 4.2 ± 0.3 MPa 
and that there were cohesive and adhesive modes in the failure surface of the coating [29]. 

Results of corrosion tests (potentiodynamic polarization of die-cast AZ91 specimens immersed in c-
SBF2 solution at 37 ± 1oC [27,29]) found marked decrease in corrosion rate for coated specimens 
compared to uncoated ones (mean decrease of ∼87%), indicating that the coating provided an effective 
barrier against the electrolyte [27,29]. In another corrosion test, electrochemical impedance spectroscopy 
(EIS) measurements were made on the two above-mentioned systems (uncoated specimen-electrolyte 
and coated specimen-electrolyte systems). The results were presented in the form of a Nyquist plot 
(imaginary part of the impedance of the system versus real part of the impedance of the system, as a 
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function of the frequency (f) of the applied a. c. voltage (10 mV rms peak-to-peak)) and a Bode plot 
(magnitude of the impedance of the system versus f) [29]. The Nyquist plots were qualitatively the same 
for the two systems, with low-frequency loops seen that are attributable to pitting and/or release of 
oxidation products, such as Mg ions and magnesium hydroxide [29]. Relevant phenomena in these 
events include involvement of adsorbed intermediate species in the reduction in the cathodic reaction 
(reduction of hydrogen gas) and rearrangement of surface charge at the oxide/metal interface (in the 
case of uncoated specimen) [49]. Bode plots for an equivalent electrical circuit of each of the 
aforementioned two systems were calculated using a commercially-available software package and, in 
each case, the match with the experimental results was excellent, pointing to the plausibility of the 
suggested equivalent electrical circuit (EQCRT) [29] (Figure 1). In EQCRT, the CPE is, in this case, a 
double-layer capacitor and Rct is inversely proportional to the corrosion rate of the test specimen. The 
significant decrease in the corrosion rate of the coated specimen compared to the uncoated one was 
confirmed by the significant increase in Rct (∼220%), increase in Cdl (factor of 134), decrease in L (∼80%), 
and increase in RL (∼442%) [29]. 

 

Rsol: solution (electrolyte) resistance; CPE: constant-phase element; 
Rct: charge transfer resistance; L: system inductance; RL: inductance resistance. 

Figure 1. Schematic drawing of the equivalent electrical circuit for the nanoHA coating-plain AZ91 Mg alloy 
substrate-electrolyte (c-SBF, at 37 ± 1oC) system. (Circuit was proposed by Rojaee et al. [29] as an acceptable 
model for the experimental results). 

On 316L stainless steel substrate, 1) the coating was uniform, amorphous, with a thickness of 1.4 µm 
and mean Vickers hardness of 1.2 GPa; 2) EIS results, obtained after immersion of specimens in Ringer’s 
solution, at 37oC, for 1 h, found Rct when a coated specimen was used was over 4 times higher (hence, 
corrosion rate over 4 times lower) than when an uncoated specimen was used [30]; and 3) the sintering 
temperature (Ts) (300oC ≤ Ts ≤ 900oC) exerted marked influence on each of the characteristics of the 
coating; for example, with increase in Ts, the coating was more uniform and compact, coating thickness 
increased, and corrosion resistance and adhesive strength increased in a monotonic manner (up to Ts of 
800oC), but, at 900oC, there was depreciation of each of these properties) [30].  

On Ti substrates, 1) increase of Ts from 600oC to 700oC led to increase in the crystallinity of the 
coating but not of either its crystallite size or grain size, and 2) when the coating was not aged, it 
consisted of calcium oxide in addition to HA and, hence, delaminated easily [36].  
3.1.4 Electrostatic spray deposition 
Two variants of this method have been described. In the first variant (the NanoSpray® + microwave 
sintering process), a charge comprising nanoHA particles and a stream of air is fed into a powder spray 
gun; and, upon exit from the gun, the particles are exposed to an electrostatic field that is generated by 
a pointed electrode (typical voltage=60-80 kV), thus, making them charged. These charged particles 
follow the electric field lines toward the grounded member (the bioalloy test specimen), upon which they 
deposit, forming the coating [14]. Finally, the coated specimen is sintered in air in a microwave furnace 
(typical temperature and time = 1000-1300oC and 5-20 min, respectively) [14]. On both textured and 

RL 
L 

 

RSol Rct 

CPE 
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machined Ti substrates, 1) the coating was uniform, highly crystalline, with Ca/P ratio of 1.6 ± 0.06 
(very close to that of natural bone), thickness of 60.0 ± 2.1 µm, grain size of 50-300 nm, and excellent 
adhesion to the substrate; and 2) attachment of human palatal MSCs that had been cultured in Eagle’s 
Minimum Essential Medium with 10% fetal bovine serum was very good after 72 h exposure (85-90%), 
pointing to the high potential for early osteoblast gene expression of a coated bioalloy device               
in vivo [14]. 

In the second variant (an in-house spray system), a suspension of nanoHA particles (prepared using 
wet chemical synthesis) in ethanol was prepared using sonication of 15 min, after which the suspension 
was loaded into a syringe that was then mounted onto a syringe pump. A peristaltic pump was used to 
feed the suspension to a capillary tube. A voltage (5.6 kV) was applied across the tube and the 
grounded bioalloy specimen (substrate), causing the suspension to be atomized. The substrate was 
firmly attached to an XYZ stage that was moved by a manipulator. The resulting electrospray droplets 
of the nanoHA were thus directed onto the substrate, with a coating deposited on it after the solvent 
evaporated. To ensure uniform deposition, the manipulator moved the stage in a precise manner. The 
final step involved washing the specimen with deionized water and, then, drying it in room-temperature 
air [50]. 

On Ti-6Al-4V substrates, the coating 1) provided a rougher surface on the substrate compared to an 
uncoated specimen (arithmetic mean of the departures of the roughness profile from the mean line = 
2.77 µm and 2.34 µm squared of average roughness = 3.86 µm and 2.94 µm for the coated and uncoated 
specimens, respectively); and 2) conferred substantially increased corrosion resistance (in Hank’s solution, 
at room-temperature): the computed corrosion rate, from the results of potentiodynamic tests, in g h-1, 
when a coated specimen was used was 3.4 x 10-4 that when an uncoated specimen was used) [50]. 
3.1.5 Electrodeposition 
Typical steps in the process are now presented. In a two-electrode system, the bioalloy specimen and a 
Pt plate serve as the working electrode and counter electrode, respectively, and the electrolyte is 
prepared using either CaCl2, NaH2PO4, NaCl and then the pH is adjusted to 6.3 [51] or Ca(NO3)2 and 
NaH2PO4, and then the pH is adjusted to 7.4 [52]. For the deposition, two approaches have been 
described. In one, a commercially-available electrochemical workstation is used for the electrodeposition, 
using a current density (i) of ∼1 mA cm-2, solution temperature of ∼100oC, and deposition time of 1 h 
[51]. To minimize evaporation of the solution, a three-necked flask (one each for the working electrode, 
counter electrode, and a reflux tube) was used as a container. At the end of the deposition, the working 
electrode was rinsed three times using deionized water and, then, dried in air [51]. In the other approach, 
the bath containing the electrolyte is agitated throughout the deposition (using an ultrasonic generator), 
with the operation carried out at room temperature, using i of either 10 or 15 mA cm-2, for 0.5 h [52]. 

On Ti substrate, 1) the coating has a uniform two-layer topography, with wire-like nanocrystals in 
the outer layer and an ordered nest-like microtopography in the inner layer; 2) HA nucleates 
heterogeneously and then grows preferentially in the direction of the c-axis; 3) it was suggested that 
conditions necessary for the formation of the nanoHA coating are heterogeneous formation of adequate 
fine nuclei on the substrate, uniform growth environment for the nuclei, elimination of secondary 
nucleation, and formation of a viable gas bubble template on the substrate; and 4) the coated specimen 
demonstrated excellent biocompatibility and bioactivity against MG63 human osteosarcoma cells, with 
this result attributed to the nanostructure of the coating [51]. 

On Ti substrate, 1) the coating comprised complete and uniform coverage of small globules of HA; 2) 
there was clear influence of process variables on coating properties; thus, with ultrasonic agitation and i 
of 10 mA cm-2, grain size (dg), mean surface roughness (Ra), and mean adhesion strength (mean σA) were 
18 nm, 0.28 µm, and 7.2 MPa, respectively; with ultrasonic agitation and i of 15 mA cm-2, dg, Ra, and 
mean σA were 25 nm, 0.22 µm, and 8.7 MPa, respectively; and without agitation and i of 15 mA cm-2, dg 
was found to be 90 nm; 3) when agitation was used, the low σA is a consequence of the severe agitation 
conditions used; 4) after 2 days in culture in SaOS-2 (human osteoblast-like cells derived from a human 
osteosacorma), viability when a coated specimen (i = 10 mA cm-2) was used was significantly higher 
than that for uncoated specimen but, with i = 15 mA cm-2, the difference in cell viability between 
coated and uncoated specimens was not significant; 5) in the same cell culture as was used for item 4) 
above, total protein activity (TPA) was significantly higher on a coated specimen (regardless of the level 
of i) compared to an uncoated specimen; 6) based on the cell viability and TPA results, the coating 
deposited using 10 mA cm-2 was superior to that obtained using 15 mA cm-2, a consequence of the 
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former’s lower HA crystallite size; 7) during deposition, hydrogen gas bubbles were produced, which 
served as a template on which the HA crystals grow; and 8) during the early part of the deposition 
process (say, the first 12 minutes or so), nucleation of the HA crystals was instantaneous and there was 
two-dimensional growth of the coating, but, in the latter stages of deposition, the nucleation mechanism 
changed to progressive, with accompanying three-dimensional growth of the coating [52]. 
3.1.6 Hydrothermal deposition 
The essential features of the three steps in this method, as presented in one report, are now outlined [53]. 
First, a buffer solution was prepared by dissolving HEPES buffering agent in NaO aqueous solution, 
followed by dissolution of K2HPO4 and CaCl2, and adjustment of pH to 7.4. Second, the bioalloy 
specimen was placed in a beaker, the buffer solution was poured in the beaker, and the solution was 
hydrothermally treated at a temperature (Th) of 80-200oC for a time (th) of 5-12 h [53]. In the third step, 
the specimen was ultrasonically washed in distilled water for 5 min and, then, dried in air at 50oC for 24 
h [53]. 

On a Ti-Nb alloy substrate, 1) when Th was 200oC, a dense nanoHA layer formed on the substrate at 
5h ≤ th ≤ 12 h; and 2) TiO2 and Nb2O5 formed on the surface of the substrate during the hydrothermal 
treatment, which, then, transformed into Ti(OH)4 and Nb(OH)5, respectively [53]. 

3.2   Newer/Emerging Deposition Methods 

3.2.1 Aerosol deposition 
There have been only a few reports of the use of this method [31,54]. The steps used in these two studies 
are now summarized. In the study by Dong et al. [31], commercially-available nanoHA powder was 
heated, in air, at 1200oC, for 1 h, after which the powder was ball milled, using yttria-stabilized zirconia 
balls, for 24 h; and, after that, the powder was heated in air again (at 900oC for 1 h). This yielded the 
final prepared powder (herein “prepared powder”), which was then used for deposition of the coating 
with the aid of an in-house powder spray coating equipment. The process involved pouring ∼50 g of the 
prepared powder into the powder chamber that was shaken throughout the coating deposition process in 
order to produce a fine powder particle suspension in the upper part of the chamber. Oxygen gas, 
flowing at 5 x 10-4 m3 s-1, was used to move the fine powder particles from the powder chamber into the 
deposition chamber (which was evacuated to 0.65 Pa) and to spray these particles onto the bioalloy 
specimen through a nozzle in the deposition chamber that has a slit-type opening. The specimen was 
firmly fixed to a steel plate that itself was attached to a motored X-Y stage. Uniform coating was 
ensured by moving the substrate at a fixed rate (1 mm s-1) during deposition of the coating.        
The final step was to clean the coated specimen in an ultrasonic bath and then wash it in ethanol [31]. 
An optional step is to heat the coated specimen in air, at, say, 400 or 500oC for, say, 1 h. 

On Ti substrate, 1) before heat treatment, the coating comprised HA crystallites (size = 16.2 ± 5.5 
nm) and fine amorphous regions, whereas, after heat treatment, the size of the crystallites increased and 
the amorphous region disappeared; 2) the coating was dense (density = 3108 kg m-3, which is 98.5% of 
theoretical density), ∼1 mm thick, and without any observable pores or cracks or delamination; 3) the 
tensile adhesion strength of the coating (per ISO 13779) [55] was 30.5 ± 1.2 MPa, which is about twice 
the minimum recommended level for HA-coated metal specimens (15 MPa [55]; 4) proliferation of 
MT3C3-E1 pre-osteoblast cells (cultured in a-minimum essential medium and supplemented with                  
10% heat-inactivated fetal bovine serum, L-glutamine, penicillin, and streptomycinin in a humidified 
atmosphere (96% air + 5% CO2), at 37oC for 5 days)) on coated specimens was significantly greater 
than on uncoated specimens, a trend that was also seen in the alkaline phosphatase (ALP) activity 
results. All of the aforementioned results underscore the superior biocompatibility of the coated 
specimens [31].  

In the second report [54], the first step in coating a bioalloy substrate was to heat a commercially-
available HA powder, in air, at 1500oC, for 3 h. After that, the powder was poured into a powder 
chamber and the specimen was placed in the chamber, which was then evacuated and air (the carrier 
gas) flowed into the chamber (at 30 L min-1). Thus, the HA particles and the air were mixed in the 
chamber and then the mixture was ejected through a nozzle in the chamber onto the substrate, which 
was positioned on a motorized X-Y stage. The coating was formed by the collision of the accelerated HA 
particles + air mixture with the substrate. For post-treatment, the coated substrate was heat treated 
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using hydrothermal annealing; that is, heated in an autoclave that contained distilled water, at 150-
190oC, for 29 h [54]. 

On Ti substrate, 1) the composition of the nanoHA powder and the coating remained unchanged 
during the coating process; 2) the as-deposited coating was rough, with a sparse network-type 
microstructure, but the coating-substrate interface was continuous; however, after a hydrothermal 
treatment, the coating was free of cracks and its morphology was similar to that of an as-deposited 
coating; 3) a specimen with a hydrothermally-treated coating displayed higher bioactivity (in SBF, at 
36.5oC, for 7 d) than one with as-deposited coating this was attributed to the earlier precipitation of 
apatite crystals on the former coating, a consequence of the higher population of OH- groups with 
increased degree of crystallinity as well as their smaller crystallite size; and 4) a specimen with 
hydrothermally-treated coating displayed enhanced biological cellular response (in MC3T3-E1 pre-
osteoblast cells assay) than one with an as-deposited coating, attributed to the higher degree of 
crystallinity of the former coating [54]. 
3.2.2 Pulse electrodeposition 
Only a few reports of the use of this method have appeared [56,57]. Three steps were used in the 
deposition and key features in each step are now given. In the first step, the electrolyte was prepared, 
this involving mixing a solution of Ca(NO3)2, NH4H2PO4, and H2O2, adjusting the pH of the solution to 
4.5, and, then, stirring the solution (at 400 rev min-1) to obtain a uniform solution (“prepared solution”). 
In the second step, the prepared solution was placed in a cell together with the bioalloy specimen 
(cathode), a platinum electrode (anode), and a reference electrode (such as the saturated calomel 
electrode). In the third step, a voltage generator was used to apply a pulse potential (Vpp) to the cell 
and potentiostatic deposition of the coating on the substrate was achieved. Typical Vpp=-3 V and 
typical duty cycle=0.2. Duty cycle is defined as the ratio, ton/(ton + toff), where ton is the time during 
which Vpp is applied and toff is the time during which there is no current or applied potential and the 
potential of the direct mode is set to Vpp [56,57].  

On AZ31 Mg (Mg-2.8Al-0.9Zn alloy) substrate, 1) the coating was uniform, intertwined, and compact, 
with a crystallinity index of 94%; 2) the coating significantly reduced the degradation rate of the 
specimen (at any immersion time of the specimens in SBF solution, each of two corrosion measures 
using coated specimen was half of that when a uncoated specimen was used). These measures directly 
determined degradation rate and Mg2+ concentration in the solution; 3) the coating provided 
significantly better resistance to corrosion of the specimen, in SBF solution at 37 ± 1oC, compared to 
the case when the substrate was not coated, as evidenced by the results of two other corrosion tests: 
significantly lower corrosion current (icorr) (∼93% drop), as determined from potentiodynamic tests, and 
significantly lower amount of hydrogen evolved (10-fold decrease). It was pointed out that the latter 
result suggests that nucleation of bones would be facilitated when a nanoHA coated implant is used [58]; 
4) EIS results showed (i) a low-frequency inductive loop in the Nyquist plot, (ii) that an applicable 
model for the coating-substrate-electrolyte system is describable using the equivalent electrical circuit, 
EQCRT (Figure 1), and (iii) the superior corrosion performance of the coated specimen is reiterated by 
a significant increase in Rct (by a factor of ∼6) and a significant decrease in Cdl (by ∼ 80%) compared to 
the corresponding values when an uncoated specimen was used [56,57].  

Furthermore, on AZ31 Mg alloy specimens, clear differences were found in both the coating itself and 
the performance of the coated specimen when pulsed voltage was used in depositing the coating (“PV-
coated specimens”) compared to when a constant voltage was used (“CV-coated specimens”) [57]. For 
example, 1) the mean adhesion strength of PV-coated and CV-coated coatings were 16.5 and 11.5 MPa, 
respectively, consistent with the fact that the former and latter coatings are compact and porous, 
respectively; 2) mean Rct for uncoated, CV-coated, and PV-coated specimens were 40, 98, and 295 Ω.cm2, 
respectively, showing that the lowest corrosion rate was obtained with PV-coated specimens; and 3) the 
degradation rate in SBF of PV-coated specimens is about half that of both uncoated and CV-coated 
specimens. Each of these three sets of results is explained by the fact that the surfaces of the uncoated 
specimen, the CV-prepared nanoHA coating, and the PV-prepared nanoHA coating are porous, porous, 
and compact, respectively [56,57].  
3.2.3 Radiofrequency magnetron sputtering 
In one report, an apparatus that included a radiofrequency (RF) magnetron source was used to deposit 
the coating, with typical conditions being RF power level=500W and medium being pure Ar atmosphere 
[32]. On AZ31 Mg alloy substrate, 1) the coating was homogeneous and had regular grain-like 
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morphology; 2) the coating was homogeneously deposited on the substrate;  3) both dg and Z range of 
surface roughness (∆Rr) of the coating increased with increase in coating thickness (l); thus, with l = 
700 nm, dg and ∆Rr were 85 ± 30 nm and 42.9 nm, respectively, while, with L = 1500 nm, the 
corresponding values were 250 ± 55 nm, and 90.8 nm, respectively; 4) regardless of the thickness of the 
coating, it conferred an increase in contact angle (compared to the uncoated substrate), in deionized 
water at 20oC, a consequence of the hierarchical organization of the coating; 5) potentiodynamic 
corrosion tests, in 3.5 wt./wt.% NaCl solution at 37oC, showed the corrosion rate of a coated specimen 
to be significantly lower than that of the uncoated specimen (drops of ∼76% and ∼93% when coating 
thickness was 700 nm and 1500 nm, respectively) [32]. 
3.2.4 Electrohydrodynamic spray deposition (EHDSD) 
In one report of the use of this method, a HA suspension was sprayed onto the target specimen for 30 s, 
followed by a heat treatment [38]. More details are now provided. A needle connected to a power supply 
and a syringe attached to a pump were used to control the flow rate of the nanoHA suspension. The 
voltage applied to the needle (Vn) and flow rate of the suspension (Ms) were adjusted to obtain the cone-
jet mode of electrohydrodynamic spraying (typically, Vn and Ms were 4.8 kV and 18 L min-1, 
respectively), with the spray directed onto the bioalloy substrate. After deposition of the coating, the 
specimen was heated, in air, from room temperature to 900oC, at 2oC min-1, held at this temperature for 
2 h, and, then, cooled to room temperature [38]. 

On Ti substrate, 1) the thickness of the coating, which was free of cracks and nanoHA particle 
agglomeration, more than doubled from an initial value of 2.1 ± 0.7 mm, when spray time was increased 
from 30 s to 120 s; and 2) the coating showed bioactivity (in distilled water, at 37oC, for 7 days), with 
its surface morphology changing, after 5 days’ immersion, from rod-like nanoHA particles to a 
cauliflower-like (spheroidal) structure that is similar to that of bone-like apatite formed in vitro [38]. 
3.2.5 Liquid precursor plasma spraying (LPPS) 
In this process, the feedstock (HA liquid precursor) is atomized into a mist and injected into a plasma 
jet through an atomizing nozzle. The nanoHA coating is deposited using a direct-current plasma torch 
attached to a thermal spraying robotic arm [59]. 

On Ti-6Al-4V substrate, the coating 1) consisted primarily of the HA phase with very small amounts 
of β-tricalcium phosphate and CaO phases, 2) was carbonated; 3) had many small (5-20 µm) splats, 4) 
had nano-scale (20-50 nm)HA particles in certain regions, 5) had a crystallite size and thickness of ∼56 
nm and ∼100 µm, respectively, with these nano-structured features postulated to be due to limited grain 
growth in the very short deposition time; and 6) showed the presence of the OH- group (which suggests 
that the coating had good structural integrity) [59]. 

3.3   Proprietary Deposition Methods 

When the IonTiteFM method (Spire Biomedical, Inc., Bedford, MA, USA), which is described as a low-
temperature process, was used to deposit nanoHA coating on Ti substrate, 1) adhesion of human 
osteoblast-like cells (ATTC, CRL-11372) was significantly higher on coated substrate than on uncoated 
substrate; the same trend was found for the promotion of APL activity by the osteoblasts and Ca 
deposition by the osteoblasts; and 2) total proteins synthesized by the osteoblasts (TPSO) were greater 
when cultured on the uncoated substrates, although not significantly so, compared to the coated ones; 
and the trend in the collagen synthesis results was the same as found for the TPSO results [40,60]. 
These results suggest that the coated alloy has good potential to regenerate bone if used in implants. 

Using a patented method, which is described as “transonic particle acceleration deposition process” 
(Spire Biomedical, Inc., Bedford, MA, USA) with pure (99.9%) Mg substrate, 1) the nanoHA coating 
positively mediated Mg degradation both in phosphate buffered saline (PBS) and revised SBF solutions; 
and 2) significantly fewer rat bone marrow stromal cells adhered to both coated and uncoated specimens, 
in comparison to the case for the control (polystyrene cell culture plates) [1]. Each of these results points 
to the coated Mg specimen having improved properties. 

3.4   General Trends in Results 

Across the combination of deposition method, deposition variables (for a given deposition method), and 
substrate (Table 2), the summaries of results presented above show that while the thickness and some 
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other characteristics of an nanoHA coating depended on deposition method (Table 3), the coating was 
consistent in significantly enhancing corrosion resistance and in vitro biocompatibility, compared to an 
uncoated substrate. 

Table 2. Summary of process variables and typical values of variables in five nanoHA coating deposition methods. 

Process variables Typical values or range of values 
ELECTROPHORETIC DEPOSITION  
Concentration of nanoHA particles in the suspension       (g mol-1) 10, 20 
Concentration of carbon black powder in the suspension (g mol-1) 0; 2.5; 5.0; 10.0 
Ultrasonic dispersion time (min) 10, 60 
Distance between working and counter electrodes (mm) 10, 20 
Deposition voltage (V) 10-200 
Current density used in electrodeposition (mA cm-2) 4-48,000 
Deposition time (s) 
 15-900 

SOL-GEL DEPOSITION  
Post-production time (h) 0-24 
Post-preparation sintering temperature (oC) 300-900 
  
ELECTRODEPOSITION  
Current density (mA cm-2) 1, 10, 15 
Deposition time (min) 30, 60 
Agitation of solution during deposition No; yes 
  
HYDROTHERMAL DEPOSITION  
Temperature (oC) 80-200 
Time (h) 5-12 
  
ELECTROHYDRODYNAMIC SPRAY DEPOSITION  
Distance between needle and substrate (mm) 20.0 
Applied voltage (kV) 3.6-6.0 
Flow rate of nanHA suspension (m min -1) 0.5-33.0 
Spray time (s) 30-120 

4   Directions for Future Research 

From the preceding sub-section, it is seen that there are a number of important aspects of coating of 
nanoHA on bioalloy specimens that either have received little attention or have not been the subject of 
any study. These observations prompted ten suggestions for directions/topics for future research. 
Expositions on these suggestions are now given. 

Regardless of the coating deposition method, coating characteristics are influenced by the process 
variables (for some, markedly so); as such, each method should be optimized. Work in this area is 
lacking and, hence, constitutes the first suggestion. The task is to select and justify the properties to be 
included in the optimization exercise. It is suggested that coating-substrate adhesion strength, residual 
stress in the coating, and corrosion rate of the coated specimen, determined in a suitable biosimulating 
medium (such as PBS, at 37 oC), be among these properties. 

For the second suggestion, more work needs to be done on the growth kinetics of the coating on a 
given combination of deposition method and substrate. Results from a large number of results should 
then be analyzed to establish if a general growth law exists for that combination. 
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Table 3. Comparison of someproperties of nanoHA coating on bioalloy substrates as a function of coating 
deposition method 

Property 
Deposition methoda   

EPD SOL-GEL  HTP AD TPA 
Ca/P molar ratio     1.6 
Thickness (nm) 1,000  50-200   45 
Range of nHA particle size (nm)      
    - in long axis     50-1400 
    - in short axis     35-900 
Crystallite diameter (nm) 76 35-42  17-21  
Surface roughness (m) 45     
Morphology Crystalline     
Crystallinity (%) 12     
Hardness (GPa)  1.2    
Adhesive strength（MPa） 11-41 28-55    

aEPD: electrophoretic deposition; HTP: hydrothermal process; AD; aerosol deposition; TPA: transonic particle 
acceleration deposition. 

 
Regardless of the anticipated biomedical application, there are a number of desirable properties of the 

coating and of the coated specimen that have not been reported in the literature. Among these are 
fracture toughness of the coating (KIC), resistance to localized indentation (hardness) of the coating 
(HN), elastic modulus of the coating (E), residual stress in the coating (σr) scratch hardness of the 
coating (HS), corrosion fatigue life of the coated specimen (CF), steady-state corrosion fatigue crack 
propagation rate of the coated specimen (CFCP), wear rate of the coated specimen (WR), and corrosion 
adhesion (CAD) properties of the coating-substrate system. The third suggestion is that all of these 
properties should be determined using well-established methods; for example, compact tension specimen 
and ASTM E399 (KIC); nanoindentation (HN and E) [61]; and nanoindentation [62], neutron diffraction 
[63], and Raman piezo-spectroscopy [64](σr). Note that HN, E, and σr should each be determined not 
only on the coating but through the thickness of the coating (that is, spatial variation of the property). 
HS should be determined using either the appropriate standard, such as ASTM G171, or a nanoindenter 
[65]. CF, CFCP, and CAD should each be determined in a test medium whose combination of solution, 
solution temperature, and frequency is appropriate to the intended biomedical application, such as SBF 
solution, 37oC, and 2 Hz for TJRs. In addition, in the CAD tests, morphological details of the coating-
substrate interface should be obtained after a specified number of loading cycles, especially after fracture. 
WR should be determined using a suitable tester, such as a pin-on-disc tester, with the pin material, 
applied load, and rotational speed all being clinically relevant. For each of the aforementioned properties, 
determination should be carried out for various combinations of coating deposition method and 
substrate material. Additional work in this field should concentrate on the influence of coating 
deposition process parameters on given properties. Results from this body of work should allow 
discussion of, for example, coating deposition method-versus-property relationships. 

To date, study of corrosion mechanism has been conducted only on a few systems, namely, sol-gel-
coated MgAZ91 alloy [29] and pulse electrodeposited-coated AZ31 Mg alloy specimens [56,57]. Clearly, 
more studies are needed on this issue. These studies, which constitute the fourth suggestion, should 
focus on, for example, 1) influence of a given coating deposition method parameter on corrosion 
mechanism, for a given combination of deposition method and bioalloy; and 2) similarities and 
differences in corrosion mechanisms for different coating deposition methods, for a given bioalloy, and 
for different bioalloys, for a given deposition method. In this work, experimentally-obtained EIS results        
(both Nyquist and Bode plots) together with counterpart results generated from computations involving 
appropriate equivalent electrical circuits should be utilized. 

To date, the preponderance of studies has been carried out using Ti-6Al-4V, AZ31 Mg, and AZ91 Mg 
alloy specimens. For orthopaedic applications, research results show that there are other alloys that 
have many advantages over Ti-6Al-4V, examples being 1) wrought Ti-13Zr-13Nb: (i) its modulus of 
elasticity is 45% lower and, as such, has lower potential for stress shielding and, hence, for ensuing 
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osteolysis [66]; and (ii) having no Al, it has no potential for involvement in the etiology of Alzheimer’s 
disease [67,68]; 2) porous Ti-(4-10) Mo alloys [69], and 3) porous Co-Cr alloy: its modulus of elasticity is 
55% lower [70]. For the scaffold of a bioabsorbable coronary artery stent, new Mg-based alloys, such as 
wrought Mg-Nd-Sr-Zr, Mg-Gd-Nd-Zn-Zr, and Fe-35Mn alloys, powder-metallurgy Fe-Au and Fe-Ag 
alloys, and highly-porous Mg-Y and Mg-Y-Zn-Ca-Mn alloys are being evaluated [71-74]. New alloys that 
show good potential for applications as both bioresorbable TJRs and coronary artery stent scaffolds 
include Mg-0.63 Ca and Mg-0.89Ca [75]. As the fifth suggestion, studies should be conducted on 
deposition of nanoHA on the substrate of each of these new alloys and the full panoply of 
characterization tests of the coating and of the coated bioalloy specimen should be performed. 

There is a growing body of literature on methods of modifying the surface of a bioalloy to improve a 
number of its properties. Examples are laser surface melting to improve corrosion characteristics of 
AM60B Mg alloy [76], double-sided laser shock peening of 316L stainless steel to increase its fatigue life 
[77], and high-energy electro-pulsing treatment of Ti-6Al-4V alloy to enhance its corrosion resistance [78]. 
As the sixth suggestion, studies should be conducted on deposition of nanoHA on the substrate of each 
of these surface-modified alloys and characterization of the coating and of the coated bioalloy specimen. 

Apart from the deposition methods discussed in the present review, there are others that have been 
used to deposit nanoHA coating on bioalloy substrates that had undergone surface modification or 
which had a nanostructured coating, other than HA, on them. Examples of such methods are 
electrodeposition in the presence of a static magnetic field [79] and planetary ball milling [80]. As the 
seventh suggestion, each of these methods should be explored for use in the nanoHA-plain biolloy 
specimen system. 

Results (serial angiographic and intravascular ultrasound analyses) obtained from 65 patients with 
coronary artery disease in whom a bioresorbable Mg alloy stent was implanted and followed for up to 28 
mo (the PROGRESS-AMS prospective, multicenter clinical trial) revealed ISR (mean incidence of 
∼25 % at follow-up > 12 mo) [81]. It was suggested that the main mechanisms for these events were 
early recoil (negative remodeling of the artery area) (at follow-up of 4 mo) and modest neointimal         
formation [81]. Thus, in the next generation of bioresorbable Mg alloy stents, these shortcomings were 
addressed with the introduction of a bioresorbable drug-eluting Mg alloy stent (DREAMS-2G device), in 
which the entire surface of the scaffold (Mg alloy) is coated with a layer of a biodegradable polymer, 
poly(L-lactic acid), in which a drug, sirolimus, is embedded. Results, at 6 months follow-up, of a 
prospective, multicenter, non-randomized first-in-man trial involving 123 patients implanted with this 
type of stent (BIOSOLVE-II Trial) were encouraging; specifically, favorable clinical outcomes, such as 
low mean neointimal area, were reported [82]. Thus, it appears that there is a strong case for adding this 
type of stent to the collection of modalities for surgical treatment of coronary artery disease [9]. Hence, 
within the context of the present review, the focus of the eighth suggestion is development of methods of 
depositing a nanoHA coating on the Mg alloy scaffold that will remain intact and stable after a drug-
containing bioresorbable polymer layer is added. 

A probable life-limiting phenomenon for a nanoHA-coated coronary artery stent is failure (such as 
debonding) at the nanoHA coating-Mg alloy scaffold interface (in a bioresorbable non-drug-eluting Mg 
stent) or at that interface and/or the nanoHA coating-bioresorbable polymer layer interface (in a 
bioresorbable drug-eluting stent). As the ninth suggestion, both experimental and computational studies 
should be conducted to characterize the respective interface(s) and to determine factors that influence 
each of these characteristics. 

The ultimate in vitro test of the suitability of a deposition method for biomedical implants is the use 
of the method on full-scale implants, such as the femoral stem of a THJR or a coronary artery stent, 
and evaluating the construct by performing, for example, fatigue tests (for example, stress amplitude-
versus-number of cycles to fracture plots) and bioactivity tests (for example, responses to a human 
osteoblast-like cell line (MG-63) on coated and uncoated implants). The tenth suggestion is that these 
tests be performed. Upon completion of these tests and provided satisfactory results are obtained, the 
nanoHA-coated implants would be evaluated further; first, in appropriate small-animal models (for 
example, in skeletally-mature, adult New Zealand white rabbits for potential orthopaedic applications) 
and, then, in appropriate large-animal models (for example, in Dorset sheep for the aforementioned 
applications). 
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5   Summary 

The most salient points made in this review are: 
♦ The sol-gel method, a chemical synthesis (or precipitation) method, and a hydrothermal method 

are among those used to synthesize nanoHA powder, with the first-named being very popular. 
Typical characteristics of the powder include mean thickness and morphology of the particles being 
∼30 nm and ellipse-shaped when a sol-gel method was used and polygonal-shaped when a 
hydrothermal method was used. 
♦ A large number of methods, such as electrophoretic deposition, sol-gel deposition, aerosol 

deposition, and radiofrequency magnetron sputtering, have been used to deposit nanoHA coating on 
substrates of alloys that are used in a number of biomedical applications; in particular, Ti-6Al-4V 
alloy (used in hip implants) and Mg alloy (used for the scaffold of fully bioresorbable coronary artery 
stents). Various properties/characteristics of the coating, such as thickness and morphology, and of 
the coated specimen, such as adhesive strength, corrosion rate, and in vitro biocompatibility 
performance, have been determined. For a given coating deposition process, most of the determined 
properties are strongly influenced by the process variables. By and large, a given property of a 
nanoHA-coated bioalloy specimen, especially corrosion resistance and in vitro biocompatibility,           
is significantly better than that of its uncoated counterpart. 
♦ Shortcomings of the extant literature suggest directions for future research and expositions on 

ten such suggestions are given. Among these are determination of the optimal values of process 
variables for a given coating deposition method; determination of a wide array of properties of the 
coating, such as fracture toughness, and of the coated specimen, such as steady-state fatigue crack 
propagation rate; and development of methods of depositing nanoHA coating on the scaffold of a 
bioresorbable drug-eluting Mg coronary artery stent. 
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