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Abstract. The importance of microscale thermal energy transport has dramatically increased in the past 
several years and a number of significant investigations have been undertaken to better understand the 
fundamental phenomena that govern the behavior of energy transport at the microscale. While the original 
focus of this research was directed towards the thermal management of semiconductor devices and spacecraft 
thermal control, there has been an increased interest in the thermophysical phenomena occurring in 
biological systems, and bio-medical devices and applications. As a result a number of investigations have 
been reported, in which the thermal transport phenomena in microscale systems and passages are of 
significant importance. In this context, this following attempts to review the relevant literature on the 
theoretical and experimental investigations of microscale transport phenomena as specifically related to 
bioengineering and biomedical applications. Modeling methodologies, experimental studies, instrumentation 
techniques and research leading to the development of optimal bio-medical systems are reviewed and 
discussed. 
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1   Introduction 

Thermal energy transport in physical domains of small dimensions has become increasingly important in 
the past two decades. Owing primarily to the scientific developments in the electronics and spacecraft 
thermal control arenas, which demanded miniaturization of the thermal control systems, research on 
microscale and nanoscale heat transfer grew tremendously. The applications of the new methodologies 
and approaches introduced were not limited to these areas and have expanded significantly in the past 
decade. Many of the innovations, experimental findings and analytical methods associated with 
microscale and nanoscale physical systems are fundamental in nature, and as a result, can be applied to 
a large number of applications in areas such as micro-fabrication methods, materials engineering, 
biological systems and bio-medical processes, apart from thermal management of microelectronics. 
Interestingly, the methodologies and measurement techniques developed to analyze heat transfer 
processes in microscale and nanoscale systems are also quite well suited for understanding the thermal 
phenomena in biological systems. They are also appropriate as tools in designing and optimizing 
processes and products related to biological systems. As a result, more recent research in microscale and 
nanoscale heat transfer has focused on biological systems and applications.  

Analysis of heat transfer in domains with small dimensions often requires approaches different from 
those applied for conventional heat transfer problems [Sobhan and Peterson, 2008]. Fundamental 
transport coefficients, such as the thermal conductivity and viscosity, if defined using the continuum 
assumptions are of limited value in analyzing conduction or convection problems, as the sizes of the 
domains become very small. This results in what is known as the “size-effect” on the transport 
coefficients, due to the incomplete molecular interactions imposed by the domain boundaries. In 
convective heat transfer analysis, as the sizes of the passages become smaller and approach the 
molecular mean free path of the fluids in the passages, the usual assumption of no-slip boundary 
conditions in analyzing problems will have to be modified. As the dimensions become even smaller, the 
continuum assumption itself may prove to be insufficient, demanding molecular approaches in analyzing 
heat transfer problems. This situation may be encountered in the case of flow in nanochannels, under 
normal pressures, for the flow of liquids. These types of situations are not uncommon in biological 
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systems, due to the small sizes of the passages, and the liquid and solid domains involved in the thermal 
interactions. Hence, special treatment of the problems related to the thermal phenomena becomes 
necessary to analyze many of the microscale and nanoscale heat transfer problems in biological systems. 
As direct instrumentation is almost impossible, and non-intrusive instrumentations such as optical 
instrumentation have their own limitations due to the inherent size limits imposed by the wavelengths 
of the electromagnetic radiations used, theoretical modeling and analyses often become essential to study 
such problems. Experimental research, developing and utilizing innovative techniques have also been 
undertaken, as reported in the literature. Theoretical and experimental approaches reported in the 
literature, aimed at analyzing microscale and nanoscale heat transfer problems related to biological 
systems are reviewed in this paper. Investigations have been conducted, in order to understand the 
physical mechanisms, as well as to implement the results in developing useful products and processes, 
which are relevant due to their application areas in bio-engineering. Some of the relevant research in the 
authors’ laboratories is also discussed and reviewed. 

One of the early articles which discussed the potentials and challenges of microscale heat transfer, and 
gave guidelines on how to approach problems that require special treatment due to size-affected 
phenomena in conduction and radiation, was published in 1994 (Tien and Chen, 1994). Focusing on 
conduction and radiative heat transfer, this paper identified different microscale heat transfer regimes, 
based on a comparison of the characteristic device dimensions to the heat carrier characteristic lengths, 
reviewed the methods of analysis, and discussed the difficulties encountered in the analysis and 
experimental research, prevalent at the time of its publication. The topics addressed were of relevance to 
generic applications. Microscale convective heat transport has been reviewed extensively in later 
publications, discussing the prospects as well as the challenges in modeling, and instrumentation, as well 
as bringing out the risks in making conclusions based on external observations and intuitive predictions 
(Sobhan and Garimella, 2001; Sobhan and Peterson, 2008). However, most of the work reviewed was 
focused on engineering applications such as those in thermal management of microelectronics, and little 
attention was devoted to the advances in the area of biological and bio-engineering applications.  

Though the fundamental mechanisms of microscale heat transfer could be similar in engineering and 
biological systems, the nature of the physical domains, as well as the levels of sophistication required in 
the analysis and experimentation can be much different.  

A consolidated article on a US National Science Foundation-sponsored workshop entitled ‘‘Frontiers 
in Transport Phenomena Research and Education: Energy Systems, Biological Systems, Security, 
Information Technology, and Nanotechnology” held in May of 2007 at the University of Connecticut has 
been published by Bergman et al. (2008). The importance of heat transfer research focused on bio-
medical and bio-engineering applications has been discussed in the paper, indicating the biotechnology 
challenges would benefit from the contributions of thermal science research. The topics pointed out in 
this paper included characterization and manipulation of physical and transport properties of biological 
materials including biomolecules, cells, tissues and arterial walls, modeling of transport phenomena in 
biological systems, developing engineered biosensors and actuation methods, and developing system 
approaches to study complex biological processes. The discussions presented specific guidelines for future 
research.  

It would be interesting and useful to look into the current state of the art in thermal science research, 
relevant to bio-engineering applications, in order to get a picture of the directions of growth, as well as 
to understand the challenges involved in this area. As a part of this venture, this article focuses on 
research related to microscale thermal transport phenomena in biological systems and applications, and 
discusses methodologies and findings, by categorizing and reviewing some of the recent advances. 

2   Theoretical Analysis of Transport Phenomena: Conventional Models 

Modeling of heat transfer problems related to biological systems and bio-engineering applications using 
conventional continuum methods and their solution using analytical and numerical solution techniques 
have been the object of a large number of investigations. Macroscale bio-heat transfer have been helpful 
in understanding processes, and applying the findings in innovative designs, and modified processes. 
Recently, Wang and Fan (2011) have developed and discussed macroscale thermal models for biological 
tissues by the continuum mixture theory, which scales down the physical approach from the global scale, 
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and the porous media theory which scales up from the microscale by volume averaging of microscale 
properties. However, it is well known that essentially the fundamental thermal transport processes in 
biological systems are microscale in nature, which may be size-affected, and simplifying assumptions 
might not provide reliable predictions from size-averaged theoretical models. In order to obtain a clear 
picture of the physical phenomena of thermal energy transport in biological systems, a microscale or 
nanoscale analysis would be required. Further, with the advent of Micro/Nano Electromechanical 
Systems (MEMS/NEMS), the possibilities of applications of engineered systems in bio-technology have 
been extended to miniaturized engineering systems and devices, which require microscale and nanoscale 
analysis of the processes, in order to apply the prediction methods to bio-engineering designs. 

Bischoff and Rubinsky (1993) developed a set of heat and mass transfer equations to predict vascular 
and intracellular ice formation during freezing in liver tissue. The intracellular ice formation was 
predicted using a probability integral, which depended on the volume of the cell compartment, 
temperature, and time. Finite Difference method was used to make transient prediction of the 
temperature distribution in the tissue and the freezing interfaces. Bischoff (2006) has discussed in his 
interesting publication, micro and nanoscale bio-heat transfer problems, mainly focusing on thermal 
therapies, and mentioning also some cryo-preservation applications. Molecular (nano), cellular (micro) 
and tissue level (nano, micro and macroscopic) interactions of probes, thermal sources and sinks with 
biological systems have been mentioned in this paper. Pertaining to microscale (cellular) biophysics, 
mathematical models of cryothermic events, describing cellular dehydration and intracellular ice 
formation were discussed. In the case of hyperthermia and thermal therapy, time-dependent models for 
damage accumulation have been described. The paper also reviewed in-vitro and in-vivo measurement 
and imaging of cryothermic and hyperthermic injuries. 

 

Figure 1. Comparison of drug concentration uniformity for different thermal boundary conditions in outlet planes 
and/or different axial stations, for a particle diameter of 10 nm. From Kleinstreuer et al. (2008).  

An interesting computational analysis of the microfluidics of nano-drug delivery through 
microchannels has been presented by Kleinstreuer et al. (2008). The investigation involved 
computational analysis of the propagation of drug nanoparticle suspensions in microchannels. The 
discussions were focused on the optimal delivery of drug nanoparticles in an aqueous suspension 
(nanofluid). Uniform particle concentration and uniform temperature of mixing are the primary concerns 
in such an application, where the dilute suspensions are conveyed to living cells in a well, through 
microchannels, from a plenum chamber. Computational solutions of the tree-dimensional time dependent 
governing equations, namely the momentum, energy and concentration equations were obtained using a 
finite volume procedure, while utilizing correlations for nanofluid properties. The model was validated 
against theoretical predictions for friction factor in rectangular channels. The major results presented in 
this paper are those of concentration distributions in the nanofluid, such as the ones shown in Fig. 1 and 
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Fig. 2. The nanoparticle uniformity was quantified using an index defined as 

 ( ) /   100 %c v gU A A x=   (1) 

where, Av is the area where the particle concentration was equal or larger than 90% of the local 
maximum concentration, and Ag is the channel exit area. 

 

Figure 2. Comparison of drug concentration uniformity in the outlet plane at an axial location of 10 mm, for 
different Reynolds numbers. Particle diameter is 500 nm. From Kleinstreuer et al. (2008).  

Kathawate and Acharya (2008) performed computational modeling of the drug delivery process with 
different vitreous substitutes, in the vitreous chamber of the eye. The analysis dealt with drug 
distribution within the eye following intra-vitreal injection of drug for treatment of vitreo-retinal 
diseases. It was concluded that the concentration distribution depended on the properties of the vitreous 
substitute, the diffusion coefficient of the drug and the permeability of the retinal surface. For drugs 
with low diffusion coefficients, along with low viscosity vitreous fluids, convection was found to play an 
important role, which may produce toxically high drug concentrations on the retina. The work utilized 
numerical solution of the continuity, momentum and species transport equations, within the vitreous 
chamber of the eye, using the FLUENT software package. 

Reversible electroporation is a method by which cell membranes can be made permeable, reversibly, 
by exposing them to strong electric pulses of microsecond rates. The approach is used to introduce 
molecules and genes into human cells. Granot and Rubinsky (2008) introduced a multiscale 
mathematical model to analyze mass transfer into cells during reversible electroporation of tissues. The 
model combined a macroscopic model for the electrical field, a cell-scale model for electroporation, and a 
macroscopic model for tissue-level mass transport. The applicability of the model was illustrated for a 
situation typical for electrochemotherapy for cancer, in predicting the concentration distributions of the 
drug using FEM solution. Analysis of the temperature fields during drug delivery in tissue cells with 
reversible electroporation has also been presented by Davalos and Rubinsky (2008). In order to obtain 
the temperature distribution, the mathematical model involved FEM solution of the modified form of 
Pennes bio-heat transfer equation (Pennes, 1948) in the following form: 

 ( ) 2'''
b b p

Tk T w cT q pc
t

δ φ ∂
∇ ⋅ ∇ − + + ∇ =

∂
  (2) 

Devireddy et al. (2002) performed numerical investigations of freezing in biological tissues. The effects 
of microscale mass transport and phase change on freezing were studied. The heat transfer problem was 
formulated as a one-dimensional model, solved using finite volume method, and the latent heat release 
was determined using a combined thermal- biophysical approach. The results suggested that the 
microscale biophysical processes in the biological tissues during freezing do not significantly limit the 
rate at which phase change occurs. Kandra and Devireddy (2008) presented numerical solution of a two 
dimensional unsteady conduction model to predict the time-depended temperature history of biological 
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cells during ice-nucleation in suspension. Computations were presented assuming single, duel, and four 
cells in suspension. The results were analyzed to predict the magnitude and time response of 
perturbations to the local temperature field after ice nucleates within a cell. The analysis was aimed at 
estimating effective sampling rates of microscale thermocouples to measure temperatures during 
intracellular ice formation. A typical result of the solution is shown in Fig. 3. 

 
Figure 3. Typical thermal distortion contours in a cell at time = 1.96 s, after the simultaneous nucleation of ice 
within four cells. From Kandra and Devireddy (2008). 

Xu et al. (2010) described multiscale approaches for modelling cell and tissue cryopreservation. The 
discussions included aspects of heat transfer at macroscale level, crystallization, cell volume change and 
mass transport across cell membranes at microscale level. Physical and mathematical models were dealt 
with extensively, with case studies presented. 

Theoretical modeling has been applied to predict the behavior of specific biological systems and 
processes, where models have been numerically solved. These studies pertain to a wide spectrum of 
problems, and are diverse in applications. 

 
Figure 4. Isobaric lines for a single RBC (Ht = 3.09%) flowing in the capillary with (a) U = 1 mm/s, (b) U = 5 
mm/s and (c) U = 10 mm/s. From Merrikh and Lage (2008). 
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Fleming Glass et al. (2008) presented optimization study of a microfluidic device, designed for 
extraction of Dimethyl Sulfoxide (DMSO) from a cryopreserved cell suspension. The method was based 
on diffusion, and used a two-stream (a cell suspension stream and a parallel wash stream) microfluidic 
device. Numerical computations leading to optimization of the geometry of the device as well as the 
operating conditions are presented in this paper. 

Xi and Longest (2008) performed computational studies to predict aerosol deposition in the nasal 
cavity. The aerosol particles considered were sub-micron in size. The modeling was based on a drift-flux 
approach. The geometry of the nasal cavity geometry was developed based on MRI data. A correlation 
for mass transfer and deposition of particles in the nasal airways was proposed, which can be applied for 
sub-micrometer aerosols. 

Merrikh and Lage (2008) studied plasma microcirculation in blood capillaries. The effects of plasma 
microcirculation speed and red blood cell (RBC) shape on carbon monoxide exchange in alveolar (lung) 
capillaries were analyzed using relevant fluid dynamic and diffusion equations, solved numerically using 
Finite Volume method. Blood was modeled as a two-constituent substance, consisting of the blood 
plasma, assumed to be a homogeneous Newtonian fluid, and the red blood cells (RBC) modeled as 
discrete, suspended solid particles in the plasma medium. The effects of the shape of the RBC shape and 
the velocity of blood on the alveolar diffusion process were predicted, and represented using the 
variations in streamlines and isobaric lines (typical results are reproduced in Fig. 4), as well as 
quantified using a capillary diffusing capacity of the lung. 

A novel cancer treatment method utilizes albumin coated liquid droplets of a perfluorocarbon, as 
small as 6 microns in diameter, injected into the blood stream, which subsequently vaporize selectively 
to produce large vapor bubbles. Motivated by this physical system, a mathematical model has been 
presented by Eshpuniyani et al. (2008), where the system of governing equations for Stokes’ flow with a 
bubble sliding along one of the walls of a 2D channel has been solved using the boundary element 
method. Pressure distributions and stress profiles along the channel walls were obtained. The 
obstruction of flow through the channel due to the bubble was also studied.  

Santos et al (2008) modeled heat transfer in large blood vessels during radiofrequency tumor ablation, 
to obtain the tissue temperature, and the effect of the assumption of a variable heat transfer coefficient 
in it. A time-dependent model with the heat transfer coefficient as a function of the temperature 
distribution at the wall of the blood vessel was used. Finite-element method was utilized in the solution. 
It was concluded that for longer time tumor ablation procedures of the order of 5 minutes, a constant 
heat transfer coefficient assumption was sufficient to obtain precise predictions.  

Axons transmit electrical signals from neurons to cells. Kunzetsov and Hooman (2008) have modeled 
the intracellular transport in axons. The paper suggested a model for traffic jams caused by 
Irregularities in intracellular traffic in axons, due to mutations of molecular motors, producing various 
neurodegenerative diseases. The model was based on the motion of intracellular particles under the 
combined action of diffusion and motor-driven transport. The solution was obtained using the Finite 
Difference method. 

Understanding non-Newtonian blood flow in curved channels with circular or elliptical cross sections 
is important in bio-mechanics. A theoretical analysis of creeping viscoelastic flow has been performed by 
Norouzi et al. (2013), aiming at the convective heat transfer in a curved circular pipe. The flow and heat 
transfer were assumed to be fully-developed, with a constant heat flux at the walls. The effects of 
normal stress differences on heat transfer were investigated. The investigation gives useful information 
on arterial bio-fluid dynamics.  

 An interesting theoretical study of the vapor-liquid phase interaction in flare flashing sprays used in 
dermatolegic cooling was presented by Vu et al. (2008), in which flashing of a high superheat fluid 
flowing through micro tube nozzles, resembling medical devices, was investigated. A one-dimensional, 
semi-empirical model of refrigerant flow through capillary tubes was used in this analysis, in which 
solutions of governing conservation equations were obtained using numerical methods. Experimental 
results using flash lamp photography were also presented. Another interesting theoretical investigation 
on a specific problem has been reported by Chen et al. (2008), on transport of water and 
cryoprotectants through dendritic cell membrane. A biophysical model was used for the analysis to 
determine the transport properties of the cell membrane, and the cell volume changes under various 
extracellular conditions (in mouse dendritic membrane) were also observed using a video camera. The 
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work has relevance in cryopreservation of dendritic cells, which is of immense value in immunotherapy 
treatment.  

Investigations on heating due to magnetic fluids (biocompatible superparamagnetic nanoparticle 
suspensions), in magnetic fluid hyperthermia of tumor with blood profusion, have been reported. The 
effects of magnetic nanoparticle properties were studied. Finite difference schemes (Kappyoor et al., 
2010) and analytical method (Liangruksa et al., 2011) have been utilized to obtain the solutions of the 
governing equations. 

In most biological detections specimens at low concentrations are mixed, which may lead to 
exothermic reactions, and hence need a microfluidic thermal management system (MTS). Lee (2013) 
developed a refrigerant based on iron-ferrite magnetic particles for a heat pipe based MTS. The 
evaporator section was disk-shaped porous wick with good capillary characteristics and high effective 
thermal conductivity. The use of a magnetic microfluid in the cooling section showed an enhancement in 
cooling performance upto 25%.  

Sinha and Shit (2015) conducted a theoretical study on the electromagnetohydrodynamic flow of 
blood through a capillary subjected to constant heat flux. In electrohydrodynamic flows of conducting 
fluids electric field applied can result in joule heating resulting in temperature rise and creation of 
temperature gradients thus culminating in loss of resolution during analysis. Infrared/ultrasonic 
radiations used in treatment of muscle spasms, breast tumors, etc. are found to affect blood flow. The 
present study showed that magnetic field can be used to regulate blood flow particularly during surgery. 
As the magnitude of joule heating increases the spatial distribution of blood temperature uniformly 
increases and decreases temperature gradient at capillary walls thus reducing the heat transfer 
characteristics. 

3   Laser Heating of Tissues 

Surgery, chemotherapy and radiation are the most popular treatment methods used for cancer. Off-late 
hyperthermia treatments like radiofrequency ablation, microwave, laser, and focused ultrasound are used 
as the modern therapeutic methods used for destroying tumors through safe heating of biological tissues. 
In thermal therapy method using focused laser beam a pre-determined volume of heat is delivered to the 
affected tumor region. Accurate prediction of the temperature field and extend of damage to the tissue 
is important in such exercise. Modeling of biological tissues with blood perfusion presents a challenging 
problem, as it often needs non-Fourier models to describe the conduction phenomenon, and because of 
the non-Newtonian behavior of blood during its perfusion through the tissues. A number of 
investigations have been reported on laser heating of skin and blood-perfused tissues. Arkin, et al. (1994) 
have reviewed the developments in modeling heat transfer in blood perfused tissues. Liu et al (1999) 
presented discussions on thermal wave aspects of the theoretical analysis and evaluation of burn of skin 
subjected to instantaneous heating. Comparative study of the Pennes equation and the newly developed 
Thermal Wave Model of Bio-heat Transfer (TWMBT) has been performed in this paper. Interesting 
results for temperature prediction in the skin using theoretical models were discussed, as shown in Fig. 5. 
Subsequent studies have also applied both the Pennes model and TWMBT to investigate the thermal 
behavior of tissues during external laser heating. Liu (2000) has also presented a survey on the wave-like 
behavior of heat transfer in living tissues. 

Katsidis (2002) studied the effect of lasers and light absorption on human skin analytically, using the 
Pennes bio-heat transfer (PBTE) model. The thermal interaction of short-pulse laser with skin tissue 
cylinder was numerically studied by Jiao and Guo (2009). They observed that the focused beam can 
penetrate a greater depth and generate higher temperature rise at the target area, thus reducing the 
possibility of thermal damage to the surrounding healthy tissue. Banerjee et al. (2005) analyzed 
temperature distributions in different materials caused by short-pulse laser irradiation with both Fourier 
and non-Fourier heat conduction models. They compared the measured temperatures with those 
obtained by the Fourier, as well as non-Fourier model and observed that the non-Fourier results agreed 
better with the experimental data. Kim and Guo (2007) presented a combined radiation and conduction 
model to simulate the multi-time-scale heat transfer in turbid tissues exposed to short-pulse irradiation. 
They found that the maximum local temperatures obtained from a hyperbolic model are greater than 
those predicted by the parabolic model. Jaunich et al. (2008) solved the bio-heat transfer equation for 
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short pulse laser irradiation on body tissues. They validated their numerically generated results by 
examining the experimental data, and results showed that the experimentally measured temperature 
distributions agreed better with the predictions made through the hyperbolic heat conduction model. 
Molina et al. (2008) presented an analytical solution for the hyperbolic heat conduction model in 
cylindrical coordinates for the following typical samples of heat-treated biological tissues: heating of the 
cornea for refractive surgery, cardiac ablation for eliminating arrhythmias, and hepatic ablation for 
destroying tumors. They applied a two layer model to describe the heat conduction process in the skin 
tissue. A dynamic photothermal model of CO2 laser tissue ablation was developed by Zhang et al. (2008). 
They solved the PBTE model numerically using the finite difference method to predict the temperature 
history and laser energy field deposition. Coupled photon and heat transport simulation in biological 
tissue for laser therapy was performed by Sakurai et al. (2009). They employed the finite volume scheme 
for solving the governing equations and observed that the temperature distribution inside the tissue 
changed slightly with the optical properties. Their results indicated that the optical properties of 
biological tissues are quite sensitive to the temperature characteristics. Zhou et al.(2009) numerically 
studied the thermal damage to biological tissues caused by laser irradiation through the dual-phase-lag 
(DPL) bio-heat transfer model using a finite volume scheme. They compared their results with the 
Fourier, as well as thermal wave models, and observed that their approach predicted significantly 
different temperatures and thermal damages in tissues. A two-dimensional axisymmetric DPL model was 
considered, and solved numerically for the laser heating of living tissue by Zhou et al. (2009). The 
numerical data were compared with analytical results to validate the numerical scheme. It was found 
that when the heating spot became equal to the thickness of the cylinder, the numerical data agreed 
very well with the analytical results. A study on the photothermal mechanism of laser-skin interaction 
has been presented by Guan et al. (2011). Ozen et al. (2011) applied the TWMBT model and the 
Pennes equation to predict the burn injury of skin tissue exposed to microwaves. They solved the 
resultant governing equations numerically, and observed that the TWMBT predicts a lower temperature 
rise than the PBTE model.  

 
Figure 5. Temperature prediction at the interface between epidermis and dermis for different heating durations. 
Reproduced with permission from Liu et al. (2002). 

Sarkar et al.(2015) provides an analytical solution using Pennes equation for a two dimensional 
cancerous skin tissue with five layers. The effect of heat generation during thermal therapy on the skin 
is analysed by deriving the temperature distribution on individual skin layers. The analytical solution 
was found to be within 0.04% of the FEM results. The maximum rise in temperature was observed in 
the region where the tumour is present. It was also found that with decrease in tumour size the 
temperature distribution widens and reduces the maximum temperature rise. 

Grabski et al.(2016) models the time dependent blood perfusion in biological tissues using the Pennes 
equation which is formulated as an inverse problem and solved using the method of fundamental 
solutions. 

Ma et al.(2016) modeled brain as consisting of two layers, scalp and brain matter, the thermal 
response of which was modeled using the Pennes equation. The solution of the temperature distribution 
was obtained using the Laplace transform method.  
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Wang et al.(2015) proposes a mathematical model for predicting the temperature distribution in the 
achilles tendon of human subjected to radiofrequency ablation. The biological tissue is modeled as a 
porous structure with blood perfusion, the blood flow in the tumor region being modeled using the 
Darcy flow model. The ablation probe is modeled as a heating source. It was found that the mechanical 
properties of tissues like Young’s modulus and skin tissue stiffness got reduced as temperature rises due 
to heating. 

Wang et al.(2015) investigated the combined effect of cryosurgery and hyperthermia for cancer 
treatment using coupled heat transfer and fluid flow models in a 3D space. The 3D vascular network in 
the tissues was modeled using fractal theory based on MRI images. The heat transfer in the interstitial 
spaces of biological tissue is modeled using the Pennes equation and the flow and heat transfer in 
vascular network is modeled as the Navier Stokes equations (continuity, momentum and energy). 

The usage of laser for therapeutic and diagnostic purposes has increased the risk of accidental 
exposure of human eye to lasers and causing damage. Heussner et al.(2014) developed a three 
dimensional thermodynamic model of the human eye which takes into account the effect of irradiation 
on sclera, retina, choroid and eye lid. The effect of vertical blood flow in the choroid is also considered 
as it is important in long exposures. The model can predict the temperature rise and hazards caused by 
irradiation. The results were compared with measurements in rabbit.  

Wessapan and Rattanadecho (2013) analysed the effect of electromagnetic radiation exposure and 
frequency on human eye to quantify the Specific Absorption Rate (SAR) and temperature distribution. 
It was found that the cornea was subjected to the highest SAR at frequencies of 900 and 1800 MHz. The 
highest temperature was in the anterior chamber and vitreous at frequencies of 900 and 1800 Mz, 
respectively. 

4   Non-Conventional Theoretical Models 

In some of the physical problems related to biological heat transfer, analysis based on Non- Fourier 
models are required, due to the special thermal behavior of biological cells and tissues. Further, owing to 
the size limited domains and size affected phenomena, often encountered in microscale and nanoscale 
transport, conventional models based on continuum hypothesis and solutions using usual numerical 
methods also sometimes prove to be insufficient in analyzing biological systems. In such cases, modified 
models, and discrete computation methods are applied. The parabolic heat diffusion theory based on 
Fourier’s law breaks down in the case of heating in biological tissues owing to their non-homogeneous 
material structure and high power with short durations, occasionally subjected to cryogenic 
temperatures. The Fourier’s law assumes that the electrons and atomic lattice attains thermal 
equilibrium instantaneously and the thermal equilibrium propagates at high speed through the medium, 
which fails in the case of biological tissues. The heat transfer analysis of biological tissues has been 
performed using the Pennes Model of bioheat transfer equation (PMBTE), Thermal Wave Model of 
bioheat transfer equation (TWMBTE) and Dual Phase Lagging model for heat conduction. Pennes 
model based on macroscopic heat diffusion theory fails to take into account the finite speed of thermal 
wave propagation. The Thermal Wave model, at times, generates solutions like negative thermal 
energies and negative entropies which are physically impossible, due to the inability to consider 
relaxation times between electrons and atomic lattice. There have been interesting investigations 
reported in the literature, where special modeling and solution techniques have been applied. Some of 
them are reviewed here. 

Zhang (2009) investigated on non-equilibrium heat transfer in living biological tissues. Dual-phase lag 
bioheat equations were obtained, with the temperature of blood or tissue as the sole unknown 
temperature, based on the non-equilibrium model. In the dual-phase model, the phase lag times were 
expressed in terms of the properties of blood and tissue, the interphase convective heat transfer 
coefficient and blood perfusion rate. The model was found to be superior to the dual-phase lag bioheat 
equation normally obtained as a modification of the classical Pennes bioheat equation. From the model, 
it was found that the phase lag times for heat flux and temperature gradient for the living tissue are 
very close to each other. 

Askarizadeh and Ahmadikai compares the PMBTE, TWMBTE and DPL models of bioheat transfer 
on a skin tissue subjected to instantaneous heating, considering the effects of blood perfusion and 
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metabolic heat generation. The analytical solution was arrived at using the Laplace Transform (LT) 
technique coupled with inversion theorem and separation of variables method. It was found that at the 
conditions when the heat flux relaxation time ( qτ ) become equal to the temperature response time ( Tτ ), 
DPL model reduces to the PMBTE model. It was also concluded that as the radius of the incident heat 
flux spot increases tissue burn time decreases. 

Heat transfer into skin tissue involves conduction through tissue, convection between tissue and blood, 
diffusion through micro vascular beds and metabolic heat generation. Lin and Li (2016) propose an 
analytical solution to the bio-heat transfer for skin tissues subjected to pulsed laser heating and fluid 
cooling. The analysis is performed using boundary conditions as proposed in the Penner, Cattaneo-
Vernotte(CV) and Dual-Phase Lag (DPL) models. The thermal damage of the tissue is modeled by the 
Arrhenius burn integration. The analysis shows that for large phase lag qτ , the thermal wave speed is 

approximated as, /T qV k pCτ= . 

Jasi´nski et al.(2016) numerically analyses a soft tissue subjected to laser irradiation using the DPL 
model in 3D domain. The internal heat generation due to laser irradiation and tissue destruction are 
taken into account. It was found that as tissue damage increases porosity is decreasing leading to loss of 
perfusion. This in turn affects the heat flux relaxation time ( qτ ), temperature response time ( Tτ ), 
effective thermal conductivity and effective heat capacity. 

Precise prediction and control of temperature is vital to the success of thermal therapy in treatment 
of metastatic cancerous cells. Kumar et al. (2015) has developed a space fractional hyperbolic bio-heat 
transfer model for living tissues.The fractional bioheat model shows that as phase lag time increases 
temperature at hyperthermia position decreases. 

Kumar and Srivastava (2015) investigated the thermal response of biological tissues irradiated with 
laser using the Dual Phase Lag (DPL) model. The transient form of radiative transfer equation (RTE) is 
used to model the propagation of light through a biological tissue. Since the cancerous tissue has higher 
absorption coefficient, it results in localized temperature rise. The difference in temperature distributions 
due to the optical inhomogenities in biological tissues can be used for diagnosis as well as treatment. 

Majchrzak and Turchan (2015) modeled the bioheating of 3D tissues using the dual phase lag 
equation which was solved using the general boundary element method. The modeling of biological 
tissues using the dual phase lag model helps to analyse the heterogeneous nature of the tissues.  

Hooshmand et al.(2015) discusses an analytical solution for non-equillibrium heat transfer in biological 
tissues subjected to laser heating, modeled using the generalized dual phase lag model. The solution to 
the volume averaged local energy equation was arrived at using the separation of variables and 
Duhamel’s integration methods.  

Liu and Chen (2016) models the non-equillibrium effect due to heating of tissues using the general 
dual phase lag model. The thermal damage is quantified using the Arrhenius equation and the modified 
discretization technique and Laplace transform was applied in a hybrid form to solve the equation.  

Ahmadikia and Moradi (2012) presented an analysis based on Non-Fourier model, of phase change 
heat transfer in biological tissues during a freezing process. The simulation was based on hyperbolic heat 
equations with temperature-dependent enthalpy, which were compared with the parabolic model. 
Numerical solutions were obtained using the Finite Difference method. The results indicated that the 
Fourier model under predicted temperatures, compared to the non-Fourier model. 

Gowrishankar et al. (2004) investigated on bio-heat transfer in skin with spatially heterogeneous, 
temperature-dependent perfusion, using a transport lattice approach. The heat transport processes were 
modeled using a lattice that represents the Pennes bioheat equation in perfused tissues, and diffusion in 
non-perfused regions. The heat transport model of the skin was solved by utilizing an electrical analogy. 
Srivastava et al. (2009) has used a new homotopy perturbation method to solve the non-Fourier bio-
heat transport problem in microscale bio-films. 

Mach et al. (2011) applied Lattice Boltzmann method to analyze the heat transfer in cereal-based 
foam. The heat transfer processes were modeled with a microstructural point of view. The complex 
thermo-fluidic processes pertained to the solid and gas phases, introduced the microscale dynamics, and 
used Lattice Boltzmann Method. The results quantified the effects of porosity and interconnectivity of 
gas pores in bread crumbs, on the overall heat transfer.  
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A novel meshless radial basis collocation method (RBCM) was used by Jamil and Ng (2013) to 
analyze heterogeneous conduction and determine the temperature in biological tissues. RBCM was 
utilized to simulate the bioheat transfer problem in the two dimensional domain. The meshless nature, 
accuracy and point-based data dependency of the method makes it an attractive option for solving the 
bio-heat transfer problem. 

 
Figure 6. Temperature distributions along membranes in lipid systems of (a) DPPC, (b) DLPC, and (c) SMPC. 
From Nakano et al. (2013). 

Bhowmik and Repaka (2016) employed genetic algorithm to analyse the sub surface cancer tissues 
from the temperature measurements on the skin surface. It was attempted to quantify the tumor 
diameter, penetration depth and heat generation from the temperature distribution on skin surface 
captured using a thermal camera. This helps in diagnosis of melanoma (sub surface skin cancer) without 
the need of biopsy as it is a non-invasive and non-contact technique. In the present work the change in 
surface thermal responses captured using thermal camera were modeled as a forward model and supplied 
to a data-mining inverse algorithm to arrive at the in-vivo features of the tumor. The analysis was done 
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for Clark II and Clark IV classes of melanoma. It was found that simulated annealing (SA) algorithm 
was superior to genetic algorithm (GA) due to faster retrieval and reasonable accuracy. 

Molecular Dynamics (MD) simulation has been utilized to analyze bio-heat transfer problems, with an 
atomistic perspective. Lin (2011) studied heat transfer phenomena in bio tissue subjected to external 
heating, using the approach. The simulation focused on the temperature evolution and thermal 
conductivity of Alanine molecules. The study is relevant to applications such as thermal ablation and 
micro-scale hyperthermia. Nakano et al. (2013) analyzed molecular heat transfer in lipid bilayers, using 
Non-Equilibrium Molecular Dynamics simulations. Simulations were conducted on dipalmitoyl-
phosphatidyl-choline (DPPC), dilauroyl-phosphatidyl-choline (DLPC), and stearoyl-myristoyl-
phosphatidyl-choline (SMPC). The results provided useful information on transport characteristics of 
thermal energy in biocompatible materials. Typical simulation results on temperature distributions are 
shown in Fig. 6.  

5   Experimental Investigations 

Publications reporting experimental studies, using conventional and special instrumentation techniques 
to visualize and measure thermal phenomena in biological systems have appeared in the literature in 
recent times. Some of these pertain to the microscale measurements domain. While some of the 
investigations were focused on understanding and analyzing the phenomena, others were aimed at 
addressing problems in specific applications, as well as developing methodologies for new products and 
practices. Some of the important publications are reviewed here. 

Rubinsky (1997) discussed extensively on microscale heat transfer in biological systems at low 
temperatures, in his review paper. Thermal phenomena occurring at micro and nanoscale were discussed, 
dividing temperatures to those above and below freezing. Biomedical applications of low temperatures in 
cryopreservation of organs for transplantation and destruction of undesirable tissues by freezing in 
cryosurgery were also discussed, with electron micrographs pertinent to the understanding of the 
concepts.  

Ricketts et al. (2008) have reported non-invasive blood-perfusion measurement using combined 
temperature and heat flux surface probes. The probes utilized a small sensor with a laminated flat 
thermocouple to measure the heat transfer and temperature response, and the blood perfusion and 
thermal contact resistance were estimated by comparing heat flux data with a mathematical model of 
the tissue, based on Pennes bio-heat equation. Different designs were discussed. The probes were found 
to be effective in detecting small changes in perfusion, as low as 0.005 ml, per ml/s of blood flow. 

 
Figure 7. Molecular tagging measurement in electrokinetically driven flow. From Hu et al. (2010) 
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Hu et al. used molecular tagging technique for simultaneous measurement of velocity and temperature, 
using specially designed phosphorescent molecules, which produce glowing marks on excitation by 
photons of appropriate wavelength. Simultaneous velocity and temperature measurement were achieved 
by measuring the Lagrangian displacement of the tagged molecules, and utilizing the temperature 
dependence of the phosphorescence lifetime, respectively, utilizing two phosphorescence images. The 
method was demonstrated by making measurements in electro-osmotic flow inside a microchannel (as 
shown in Fig. 7), and also by measuring unsteady heat transfer and phase change inside micro-sized 
water droplets.  

Chua (2013) presented experimental studies on cryo-freezing. Extensive experimental studies were 
conducted to validate theoretical models, incorporating the effect of introducing gold nanoparticles of 30 
nanometers size, to enhance heat conduction and control freezing to minimize unintended cryo-injury to 
the neighboring tissues. Temperature profiles generated from the computation were compared with those 
measured in the in vitro studies. Thermocouple measurements and infrared thermography were utilized, 
with gelatin and animal liver as the experimental substances.  

Thermophoresis is the directed motion of molecules in temperature gradients. Seidel et al. (2013) 
utilized microscale thermophoresis for quantitative analysis of protein interactions in free solution and 
with low sample consumption. The technique is based on an optical measurement approach, in which an 
infrared laser was used for local heating, and the molecule motion was analyzed using the fluorescence of 
one of the binding partners. Measurement was possible even in complex bio-liquids like cell lysate, 
allowing close to in vivo conditions without sample purification. 

Roper et al. (2007) discussed in their publication, aspects of microscale heat transfer transduced by 
gold nanoparticles, as explained by surface plasmon resonance. In the experimental study, temperature 
in aqueous suspensions of 20-nm gold particles irradiated by a continuous wave argon- ion laser at 514 
nm was increased to a maximum equilibrium value. This value increased was found to be in proportion 
to incident laser power and to the nanoparticle content at low concentration. The microscale heat 
transfer time constant was determined for the gold nanoparticle suspension, from the transient 
temperature profile. Thermocouple measurements were utilized in the study. 

Thermochormic Liquid crystals are being used for thermal sensing in microfluidic devices. Organic 
compounds like cholesteryl esters, phenyl-4-alkyl benzotaes, etc. are the most popular thermochromic 
liquid crystals with structure falling between that of a crystalline and liquid. They have superposed 
planes with temperature dependent separation distances.TLCs encapsulated in polymeric materials are 
used by Gao et al. (2014) for thermography to map skin temperatures.  

TLCs can also be used for controlling local temperatures to enhance biosensing. It can also be used to 
sense temperatures without disturbing the local thermal field as in the case of polymerase chain reaction 
biorecognition systems which are highly temperature dependent (Chaudhari et al., 1998).  

Capture induced hyperthermia is considered as a major cause of morbidity and mortality of wild 
animals captured for translocation or research. Core body temperatures of wild animals are being 
monitored with microchip thermometry so that they can be cooled by water-dousing. Rey et al.(2016) 
conducted a study on springboks by inserting microchips subcutaneously and into gluteus muscles. The 
subcutaneous temperatures failed to reflect accurately the core body temperatures as compared to the 
muscle temperatures.  

Heat stress has shown to cause adverse biological and physiological effects in human and animals. 
Investigations by Giblot Ducray et al. (2016) showed that yeast fermentate Epicor (EH) can prevent 
heat stress related complications in rat. The exposal of animals like rats to heat stress was found to 
increase the body temperature resulting in morphological changes in intestine. The effect of heat stress 
in reducing mucosal thickness was found to be mitigated by treatment with yeast fermentate Epicor 
(EH). The pretreatment with EH was also found to keep the white blood cell (WBC) concentration, free 
vescicles concentration and diameter in the blood unchanged when exposed to heat stress.  

There have been interesting publications describing new methodologies and developing new devices for 
bio-engineering applications. Kleinstreuer et al. (2008) described a methodology for targeting drug-
aerosols in human respiratory system, in the context of inhalation of medicine. The new methodology is 
based on the use of a controlled air-particle stream, providing a patient-specific drug-aerosol deposition. 
Maximum deposition, based on optimal particle diameter and density, inhalation waveform, and 
particle-release position has been aimed at, which is essentially required during the use of targeted 

Journal of Advances in Nanomaterials, Vol. 2, No. 1, March 2017 53

Copyright © 2017 Isaac Scientific Publishing JAN



medicines. The methodology was suggested based on computational and experimental study, thus 
providing the optimal combination of the parameters. 

Reviews and discussions on measurements on general and application-specific microfluidic systems are 
also found in the literature. Discussions on theoretical modelling, simulations and experiments pertaining 
to microfluidics applicable to lab-on-a-chip devices can be found in the article by Li (2005). Choi and 
Bischof (2010) reviewed measurement methods for material and thermal properties of biomaterials in the 
cryogenic regime, for prediction of freezing in cryobiology applications. The review revealed a lack of 
information of properties for many biomaterials, especially for systems with cryo-protective agents, at 
subzero temperatures. Jain and Goodson (2011) have extensively discussed thermal microdevices which 
find applications in biological and bio-medical systems. The paper focused on microfabrication 
technology, with emphasis on biomedical applications. Applications of thermal devices and tools in the 
study of cellular thermal interactions and biological macromolecules were reviewed. The paper discussed 
MEMS based temperature measurement techniques, and bio-medical and bio-analytical devices and 
techniques. Miralles et al. (2013) has presented a review of the techniques and applications of heating 
and temperature control in microfluidic systems. Recent strategies where integration of a heating source 
to generate a temperature gradient, thus offering control of a key parameter, as well as methods where 
high accuracy temperature gradient focusing is utilized, are examined in this paper. 

6   Micro Heat Spreader Applications in Bio-Medical Systems 

The micro heat pipe is a passive heat transfer device, with extremely high effective thermal conductance. 
These essentially consist of arrays of polygonal cross section channels, the corners of which produce 
capillary action to circulate a working fluid that undergoes phase change, in order to transport heat 
(Sobhan and Peterson, 2008). The high effective thermal conductance and the compact size of micro 
heat pipes make them attractive as heat spreaders, which can spread localized heat fluxes over a larger 
surface area.  

Suitable designs of the micro heat pipe heat spreader have been developed which are useful in 
interesting bio-medical applications. Fletcher and Peterson (1993) developed catheters which provide a 
hyperthermia or hypothermia source, effective in the treatment of tumors and cancers. In one of the 
designs, the heat pipe has the size of a hypodermic needle, and is thermally insulated along a substantial 
portion of its length. It has a channel, partially charged with an appropriate working fluid. The device 
provides the delivery or removal of thermal energy directly or from a tumor or diseased tissue site. In a 
second design, the catheter uses a variety of passive heat pipe structures alone or in combination with 
feedback devices. This catheter is particularly useful in treating diseased tissue that cannot be removed 
by surgery, such as a brain tumor.  

Polymer-based micro heat pipe heat spreaders have been developed and tested, for treatment of 
neocortical seizures. These are designed as small heat spreaders which are implantable. The heat 
spreader extracts heat from hot-spots in the brain, and spreads it over a larger area, thus effectively 
providing localized cooling. Hilderbrand et al. (2007) have discussed the design, development and testing 
of such heat spreaders. In this work, an analytical and experimental investigation has been reported, 
leading to the development of flat phase change heat spreaders for local thermoelectric cooling as a 
treatment for intractable neocortical epilepsy. The use of polymer films with microchannels to produce 
wicking structure in the heat spreaders are also discussed in this paper. The structure of a polymer 
material useful for heat pipe heat spreaders for bio-medical application is shown in Fig.8. 

Spinning off from conventional designs having fabricated microchannels, new designs of micro heat 
pipes with passages formed by wire-arrays sandwiched between plates (wire-bonded or wire sandwiched 
micro heat pipes) have been proposed (Wang and Peterson, 2002; Sobhan et al., 2007; Sobhan and 
Peterson, 2008). Attempts have been successfully made to design and fabricate wire-sandwiched heat 
pipes for bio-medical applications in external hyperthermia of the body. In a recent effort, wire 
sandwiched micro heat pipes have been fabricated using flexible PDMS sheets, and tested at operating 
conditions suitable for external application in hyperthermia. Fig. 9 shows a photograph of a typical 
device of this kind. The micro heat pipe passages provide capillary flow with phase change, transmitting 
heat from the evaporator section, maintaining an almost uniform temperature at a required level. The 
line for working fluid charging is also seen in the photograph. Investigations are underway for optimizing 
the design parameters and determining the best operating conditions for this device. 
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Figure 8. Polymer film material for micro heat pipe heat spreaders. 

 

Figure 9. Wire-sandwiched polymer micro heat pipe designed for external heating 

7   Conclusion 

Investigations on microscale thermal energy transport phenomena related to biological systems and bio-
medical applications, reported in recent times, have been reviewed in this paper. The major areas of 
interest for study and analysis of thermal transport problems have been biological tissues, cryo-
preservation and mass transport in cell membranes. Some of the investigations were focused on 
particulate transport in biological systems also. Prediction of temperature fields and velocity 
distributions in blood-perfused tissues, with conventional and modified bio-heat transfer equations have 
been reported in various papers. Accurate prediction of the temperature field and extend of damage to 
the tissue is important in thermal therapy using focused laser beam. The Fourier’s law breaks down in 
the case of heating in biological tissues owing to their non-homogeneous material structure and high 
power with short durations, occasionally subjected to cryogenic temperatures. Owing to the finite speed 
of thermal wave propagation in biological tissues, Dual Phase Lagging model for heat conduction is the 
preferred model off late. The vascular network in the tissues is being modeled accurately with the help 
of MRI images. Most of the theoretical investigations utilized numerical methods for solution of the 
relevant governing equations, while there have been a few papers on discrete computations and 
molecular simulations. There has been considerable amount of studies reported on laser heating of 
biological tissues. Experimental research using simulated as well as original biological tissues have been 
reported. Investigations are also proceeding in the direction of predicting damages to tissues by 
experimentally measuring the temperature distribution on skin surface using thermal imaging. The 
temperature distributions obtained from theoretical analysis of damaged tissues are being correlated 
with the experimental measurements to make the prediction more accurate. Materials like 
thermochromic liquid crystals are being used in thermography to measure temperature distributions in 
biological tissues accurately. Research focused on development of heat transport devices such as heat 
spreaders for biological applications also have been reviewed. 
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