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Abstract. III-V and group IV semiconductor nanostructures such as quantum dots (QDs) are 
expected for various applications. In this study, effects of Bi supply during the deposition process on 
the self-organized nanostructure formation were examined for III-V and group IV semiconductor 
materials. It was found that Bi was successfully acted as a surfactant to form In(Ga)As QDs by 
MOVPE growth. By this method, QDs with superior optical quality were obtained. The unique 
features, such as ripening during the In(Ga)As QD formation and the phenomenon during the 
covering layer growth are discussed. As for the new approach on Ge-based nanostructure formation, 
high-density dot-like nanostructures were obtained by the low-temperature deposition sequence of Bi 
and Ge on SiO2 substrates. As the formation mechanism has not been revealed yet, we suggest 
hypotheses for that of the Bi and Ge system. 

Keywords: Nanostructure, quantum dot, III-V, group IV semiconductor, surfactant, bismuth, InAs, 
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1   Introduction 

III-V and group IV semiconductor nanostructures such as quantum dots (QDs) are expected for various 
applications, e. g. a laser diode with a temperature-stable operation [1, 2], a single-photon source in 
quantum-cryptography system [3-6], a semiconductor optical amplifier (SOA) with high-speed operation 
[7], a SOA for a slow-light device [8], a solar cell with an ultra-high conversion efficiency [9-11], and a 
memory device with high reliability [12]. From the perspective of their fabrication, phenomena of self-
organized nanostructure formation, such as Stranski-Krastanov (SK) growth has been utilized for that. 
One recent topic for the QD growth is a surfactant growth using Sb or Bi [13-21]. The main purpose of 
using the surfactants is to improve the QD density by reducing the migration length of adatoms. On the 
other hand, a counter discussion has also been held on Sb and Bi-surfactant for GaInP growth that the 
surfactants enhance the migration length [22]. These might indicate the effects of the surfactants are 
varied with growth conditions and methods used for their growth. We also have reported a novel growth 
method for In(Ga)As QDs using Bi as a surfactant. The beginning of using Bi for this purpose was as 
follows. In 1997, we were investigating Bi-containing III-V semiconductor materials such as GaAsBi, 
InAsBi, and InGaAsBi with the aim of developing new semiconductor materials which have 
temperature-insensitive energy gap [23-26]. In this period, the author found out following phenomena 
during the InAsBi/InAs and InGaAsBi/InP growth. For the InAsBi/InAs growth, Bi incorporation into 
InAs occurred in the limited growth temperature range at around 365°C and did not occur above 450°C. 
As for the InGaAs/InP growth, Bi was hardly incorporated into InGaAs, and 3D growth tended to arise 
with the growth temperature around 480°C. Another interesting phenomenon found in this system was 
that the partial decomposition of InGaAs appeared when Bi was supplied during the growth. Figure 1 
(a) and (b) show scanning electron microscope (SEM) images of an InGaAs/InP sample grown with Bi 
supply for Auger electron spectroscopy (AES) analysis: Fig. 1 (a) shows the initial surface of the InGaAs 
(covered with a thin InP layer) with a hillock, and (b) shows the surface after Ar-ion spattering. In Fig. 
1 (b), we have unexpectedly found some small particles in the InGaAs layer, and AES analysis revealed 
that the particles were In-rich InGaAs islands. In addition, Bi was detected only at the outermost 
surface, and not detected in the InGaAs layer. This fact means the supplying Bi during the InGaAs 
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growth assisted the partial decomposition of InGaAs as a surfactant. We will refer to this phenomenon 
again in section 3.2. By considering these facts, the author had realized that Bi might be an ideal 
surfactant to form In(Ga)As QDs. Several years later, we have successfully grown In(Ga)As QDs using 
Bi as a surfactant [27, 28]. By utilizing the superior optical quality of the QDs, we have reported fine 
structure and magneto-optics states in single InAs QDs [29, 30], single-photon emission from a QD in a 
microcavity structure [31], the cavity mode emission of QDs in a photonic-crystal-cavity structure [32, 
33], and tunable slow-light characteristics using a waveguide structure with the QDs [34]. 

In this report, our study of the Bi surfactant growth for In(Ga)As QDs is reviewed with some new 
results, and the function of the Bi supply during the growth is reconsidered. We also show some our 
recent results on Ge-based nanostructure formation using Bi. 

     

(a)                                     (b) 

Figure 1. SEM images of an InGaAs layer grown on an InP substrate for AES analysis: Initial surface of the 
InGaAs covered with thin InP layer (with a hillock) (a), and the surface after Ar-ion spattering (small particles are 
unexpectedly appeared) (b). Small numerical characters ("2" and "3") appeared in these pictures are markers for 
AES analysis. This sample was grown for our previous study on Bi-containing alloy. Bi was supplied during the 
InGaAs-layer growth. 

2   Experimental Methods 

In(Ga)As-QD Samples were grown by conventional low-pressure metalorganic vapor phase epitaxy 
(MOVPE) on (100) GaAs substrates [28]. Trimethylindium (TMIn), triethylgallium (TEGa), 
triisopropylgallium (TIPGa), tertiarybutylphosphine (TBP), tertiarybutylarsine (TBAs), and 
Trimethylbismuth (TMBi) were the precursors. The novel growth sequence of this study was that the 
TMBi was supplied during QD and InGaAs-layer growth as a source of Bi. The growth temperature for 
QDs and InGaAs layers was approximately 400 °C, and that for the other layers was 580 °C. The 
growth temperature was calibrated by using the melting points of InSb and bismuth. Here, TIPGa was 
used for the QD and InGaAs-layer growth because its decomposition temperature is lower than that of 
TEGa [35]. Growth sequence for the QD samples was as follows. After the growth of GaAs-buffer layer, 
InGaP-cladding layer (optional) and another GaAs layer were grown. Then the wafer was cooled down 
to 400°C, dot-in-well (DWELL) structure or QDs with strain-reducing-layer (SRL) structure was grown. 
The InGaAs layers for both of the DWELL and SRL layers were grown by alternate supply of GaAs 
and InAs precursors. One-monolayer GaAs and submonolayer InAs were alternately grown by this 
method. During the growth, TMBi was supplied simultaneously except for some reference samples. The 
equivalent indium composition in the InxGa1-xAs layer was set at 0.08 or 0.12 as mentioned in following 
sections. Sample structures used for this study are schematically shown in Fig. 2. Two types of 
In(Ga)As-QD samples were grown. Structure-A2 in Fig. 2 includes the DWELL structure, in which QDs 
are embedded in an InGaAs quantum well (QW) [36]. On the other hand, Structure-B has the SRL 
structure, in which QDs are covered by an InGaAs layer (this also acts as QW layer) [37-40]. Although 
the naming has been done by the different way, the InGaAs layers of both structures act as SRL which 
elongate the emission wavelength of the QDs. Structure-A1 and Structure-A2 in Fig. 2 were used for 
atomic-force-microscope (AFM) observation and photoluminescence (PL) study, respectively. These 
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structures were used to examine the basic characteristics of the QDs. On the other hand, Structure-B 
was used for a study to obtain high-density QDs. The differences of Structure-B from Structure-A2 were 
that the QDs were grown on GaAs layers and the existence of surface QDs for AFM observation. 
Because an in-situ growth monitor was not installed in our MOVPE chamber, the equivalent thicknesses 
for the QDs were determined by the growth rate and the composition of the InGaAs (InAs/GaAs) layers 
grown on GaAs substrate. 

 

Figure 2. In(Ga)As-QD sample structures used for this study: Structure-A2 has DWELL structure, and Structure-
B has SRL structure. Structure-A1 was used for AFM observation. 

Ge-based nanostructures were formed by resistive heating (RH) and electron beam (EB) evaporation 
on SiO2 substrates. Here, Bi layers were deposited by the RH evaporation prior to the Ge deposition by 
the EB evaporation. Deposition thickness was monitored by a quartz crystal deposition controller during 
their growth. 

Optical properties of the In(Ga)As-QD samples were evaluated by PL measurement using a 532 nm 
laser excitation source (0.8 W/cm2) and an InGaAs detector array cooled to 250 K. Structural properties 
were observed by AFM. 

3   Results and Discussions 

3.1   Characteristics of In(Ga)As Quantum Dots Grown by using Bi as a Surfactant 

Effect of the Bi supply during the In(Ga)As QD growth was examined by comparing the QD samples 
grown with and without Bi supply [28]. Structure-A2 in Fig. 2 with In0.12Ga0.88As QW layer was used. 
Figure 3 shows the PL spectra of the following three samples: grown without Bi supply (dotted curve), 
grown with Bi supply only for the well layer growth (broken curve), and grown with Bi supply for both 
of the well layer and QD growth (solid curve). As can be seen in this figure, PL intensity and peak 
wavelength of the samples grown with Bi supply were much stronger and longer than that of the sample 
grown without Bi supply. Furthermore, PL emission with telecom wavelength of 1.3 µm was attained on 
the samples with Bi supply. One of the interesting points is that the PL characteristics were improved 
even by the Bi supply only for the well layer growth. This result means Bi supplied for the bottom half 
of the well layer growth remains on the surface during the next growth step of QDs. As for the effect of 
supplying Bi on the red shift of the PL wavelength, we have to consider the possibility of InAsBi-dot 
formation because InAsBi has narrower energy gap than that of InAs [25, 26]. To examine the Bi 
incorporation into the QDs and wells, SIMS analysis was performed. By this analysis, Bi was not 
detected both in the QD and well layers [28]. The effect of supplying Bi on the red shift will be 
discussed in next subsection. To improve the dot density, we have investigated growth conditions and 
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layer structures, and found Structure-B in Fig. 2 with GaAs underlying layer is suitable for this purpose 
[28]. To evaluate the quality of the QDs with a density of 4 x 1010 cm-2, temperature dependences of PL 
intensity and PL spectrum were examined. These results are shown in Figs. 4 and 5, respectively. In 
these figures, we can see that the thermal quenching of PL intensity is very small up to 100 K, and the 
integrated PL intensity at 300 K is around 20% of that at 17 K. These indicate that the densities of 
defects in QDs and surrounding layers are considerably low. The activation energy Ea for the thermal 
quenching above 200 K is around 0.3 eV, which corresponds to the energy difference between the QD 
ground state of electrons and conduction band edge of the GaAs barrier layers. 
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Figure 3. PL spectra for three In(Ga)As-QD samples: grown without Bi (dotted curve), grown with Bi supply only 
for the well layer growth (broken curve), and grown with Bi supply for both of the well layer and QD growth (solid 
curve). 

0.01

0.1

1

0 10 20 30 40 50 60

N
or

m
. I

nt
eg

. P
L 

in
te

ns
ity

1000/T (1/K)

Ea=0.3 eV

 

Figure 4. Temperature dependence of normalized integrated PL intensity for an In(Ga)As-QD sample with a dot 
density of 4 x 1010 cm-2. 
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Figure 5. PL spectra of the In(Ga)As-QD sample correspond to the selected points plotted in Fig. 4. 

3.2   Unique Growth Features of In(Ga)As Quantum Dots using Bi as a Surfactant 

One of unique growth features of our QDs is fast ripening, which proceeds during the growth 
interruption just after the QD growth. Ripening is a process in which some islands grow at the expense 
of others by adatom-diffusion currents. Historically, this process was discussed with nearly equilibrium 
state of the two-phase system [41, 42]. Regarding QDs, ripening had attracted attention concerning the 
stability issue of II-VI QDs, since ripening proceeds even at room temperature for uncapped dots [43, 44]. 
For III-V QDs, ripening phenomena have also been observed during growth interruption or annealing 
process, and various results have been reported [45-49]. Although the ripening phenomena were complex 
and highly dependent on the materials and growth conditions, unified understanding of this 
phenomenon has been given by Suemune et al., that the ripening phenomena are not intrinsic nature of 
materials but are originating from excess surface adatoms or originating from oxide on the surface [50]. 
In this subsection, we show the effect of Bi surfactant on ripening, and also explain about another 
unique feature observed during the growth of covering InGaAs layers on the QDs. 

Samples used to investigate the ripening phenomenon had Structure-B in Fig. 2 with an equivalent 
thickness of 1.9-ML In0.75Ga0.25As initial QDs covered by In0.12Ga0.88As SRLs. Surface QDs for AFM 
observation were covered with thin In0.12Ga0.88As layers to prevent coalescence of the QDs during the 
cooling down process after the QD growth. Figures 6 (a) and (b) show the AFM images (0.25 x 0.5 µm2 
area) and corresponding dot-height histograms of the samples: growth-interrupt times were 4 second (a), 
and 12 second (b) [51]. As can be seen in Figs 6 (a) and (b), uniformity of the QDs was much improved 
in this time span, and the height of the QDs (covered with thin InGaAs cap layers) was converged to 
4.5 – 5 nm. This result means that a partially stable condition to maintain the QD size appeared in this 
growth condition. In addition, the speed of ripening was considerably faster than that of the results 
reported for In(Ga)As QDs although the substrate temperature was lower than them [45, 48, 49]. We 
believe these features were caused by the Bi adatoms, which remained on the sample surface after the 
QD growth. The effect of Bi adatoms was examined by varying their coverage during the growth 
interruption [51]. Figure 7 shows the AFM image of the sample, for which Bi was supplied not only for 
the QD growth but also during the growth interruption. Large and low-density coalescent islands were 
observed. This result means ripening was accelerated by the excess Bi adatoms, and coalescence 
occurred subsequently. PL emission of the QDs was hardly observed with this sample. This result also 
indicates that the above mentioned partially-stable condition of the QD growth appears with an 
appropriate quantity of Bi adatoms, and Bi oversupply disrupts the condition. PL spectra of the samples 
corresponding to Figs. 6 (a) and (b) are shown in Fig. 8 [51]. QDs with narrower PL spectrum was 
obtained by the longer (12-second) growth interruption. This result also indicates the uniformity of the 
QDs was improved during the growth interruption. 
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Figure 6. AFM images (0.25 x 0.5 µm2 area) and corresponding dot-height histograms (0.5 x 0.5 µm2 area) of the 
In(Ga)As QDs covered with thin InGaAs layers: growth-interrupt times were 4 seconds (a), and 12 seconds (b). Bi 
supply was stopped during the growth interruption. 

 

Figure 7. AFM image (0.25 x 0.5 µm2 area) of an In(Ga)As-QD sample covered with thin InGaAs layers, for which 
Bi was supplied during the growth interruption. Growth interruption time was 12 seconds. 
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Figure 8. Room-temperature PL spectra of In(Ga)As-QD samples corresponding to Figs. 6 (a) and (b). 

Another unique feature observed during the surfactant growth of the In(Ga)As QDs was a dependence 
of InGaAs covering layer thickness on PL-peak wavelength. The result is shown in Fig. 9. Samples with 
Structure-A2 in Fig. 2 with InAs initial dots and In0.08Ga0.92As covering layers (upper part of QWs) were 
used for this experiment [28]. Longer PL-peak wavelength was observed with thicker covering layer 
thickness. Here, a point to be noted is that the indium content of the covering layer is much lower than 
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that of the QD-SRL layers reported for 1.5 µm light emission [40]. Thus, the large red shift shown in Fig. 
9 is not likely to be explained by the simple strain-reducing effect of the InGaAs covering layers. One 
possible explanation for this phenomenon is based on the mechanism of activated alloy phase separation 
(AAPS), which has been reported for MBE-grown QDs with InGa(Al)As alloy layers [52]. According to 
Ref. 52, AAPS is the mechanism that the small dots formed by the first growth step are enlarged by the 
second-step of an alloy layer growth according to the phase separation driven by strain. In our case, this 
effect arises much stronger with much lower indium content InGaAs than the results in Ref. 52. We 
believe the phase separation during the InGaAs covering-layer growth was enhanced by Bi supply. This 
hypothesis corresponds to the fact that the partial phase separation of InGaAs was observed with Bi 
supply in our previous study of Bi-containing alloy, as mentioned in section 1. To observe the growth 
characteristics of the InGaAs covering-layer growth, six samples with Structure-A1 in Fig. 2 were 
prepared: with two Bi supply conditions and three covering layer thickness. Figures 10 (a1-a3) and (b1-
b3) show the AFM images of the samples (0.25 x 0.5 µm2 area). Here, Bi was supplied only for the 
In0.12Ga0.88As-layer growth (a1-a3), and Bi was supplied both for the In0.12Ga0.88As-layer and the dot 
growth (b1-b3). The thickness of the In0.12Ga0.88As-covering layers were four cycles for (a2) and (b2) and 
eight cycles for (a3) and (b3). Samples shown in (a1) and (b1) have no covering layer. In Figs. 10 (a2) 
and (b2), QDs covered with thin InGaAs layer have larger lateral size than that of in Figs. 10 (a1) and 
(b1), and their shapes are elliptical. This result indicates the InGaAs was selectively grown around the 
QDs with anisotropic nature, and the AAPS seemed to proceed in this while. Here, the dot shapes and 
densities of samples (a1) and (b1) might be modified during the cooling down process. However, because 
the deformation process results in forming larger QDs than before, this does not affect the basics of the 
discussion. Another unique feature appeared in Figs. 10 (a3) and (b3) was that the much more flat 
surface was obtained for the sample shown in (b3). The difference in growth condition between the 
samples was that the Bi was supplied during the QD growth or not (Bi was supplied for the covering 
layer growth for both of the samples). This fact means Bi adatoms remained after the QD growth 
affected a large effect on the covering InGaAs layer growth. This phenomenon might be understood by 
the fact that the Bi/As rate for the QD growth was seven times larger than that of the covering InGaAs 
layer growth. This nature of the planarization is suitable for the multilayer QD growth. In fact, flat 
interfaces were observed in a 10-layer QD sample by transmission electron microscope (TEM) analysis 
(not shown) [28]. The growth sequence of the QD and SRL layer for Structure-B in Fig. 2, and the 
suggested growth nature are schematically illustrated in Fig. 11. First, Initial QD is grown with Bi-
precursor supply with high Bi/As-rate (a). Next, growth is interrupted, and Bi supply is stopped. 
Ripening proceeds and uniformity of the QDs is improved during the growth interruption (b). Then 
InGaAs covering layer (SRL layer) is grown by alternate supply of GaAs and InAs precursors (c). In 
this while, Bi precursor is supplied with low Bi/As rate. In the initial step of (c), InGaAs was selectively 
grown around the QDs and AAPS proceeds. This results in the formation of InGaAs QDs. Finally, 
surface planarization occurs spontaneously during the rest of covering layer growth. 
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Figure 9. Dependence of In0.08Ga0.92As covering layer thickness on PL-peak wavelength. 
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Figure 10. AFM images of the In(Ga)As-QD samples (0.25 x 0.5 µm2 area) with two Bi supply conditions and 
three covering layer thickness. Bi was supplied for InGaAs layers (a1-a3), and Bi was supplied for both of the 
InGaAs layers and InAs-dots (b1-b3). Covering layers were as follows: No covering layer (a1) and (b1), thin 
covering layers with 4-cycle In0.12Ga0.88As (a2) and (b2), and that with 8-cycle In0.12Ga0.88As (a3) and (b3). Note that 
the dot shapes and densities of samples shown in (a1) and (b1) might be modified during the cooling down process. 

 

Figure 11. Growth sequence of the In(Ga)As QD and SRL layer for Structure-B in Fig. 2 and suggested growth 
nature. 
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3.3   Ge-based Nanostructure Formation using Bi 

To examine the effect of Bi on the nanostructure formation of group IV semiconductors, Bi and Ge 
layers were deposited on SiO2 substrates. The purpose of this study is to obtain high-density nanodots 
with low-temperature process for the applications such as floating gate memories. Here, Bi was 
deposited prior to Ge deposition. Figures 12 (a-d) show the AFM images of the samples deposited in the 
temperature range from 110 to 170°C. In this case, Bi and Ge deposition thicknesses (dBi and dGe) were 
fixed at 0.5 and 1.2 nm, respectively. AFM scanning areas were 0.5 x 1.0 µm2. Dot-like structures were 
observed as low as 110°C deposition. This temperature is much lower than that of the reported value for 
crystalline-Ge-island formation on SiO2 substrates [53]. Next, dependencies of dBi and dGe on the 
structure were examined. AFM observation results are summarized in Fig. 13. We can see a unique 
dependence in this figure. In the case that dGe was fixed at 1.2 nm and dBi was varied, dot-like structure 
appeared when dBi was set at 0.5 nm, and not appeared when dBis were set at 0.1 or 0.2 nm. In contrast, 
dot-like structure appeared with thinner dBi of 0.2 nm when dGe was set at 0.6 nm. These results mean 
the condition of nanostructure formation is not directly related to dBi but related to the combination of 
dBi and dGe. These facts suggest the nature of the nanostructure formation is not based on surfactant-
mediated growth but based on other mechanisms: dot-like structure should appear with the condition of 
dBi=0.2 nm and dGe=1.2 nm if its nature of formation is the surfactant-mediated growth. As the 
mechanism has not been revealed yet, we suggest two hypotheses. One is that a mass transport of the 
deposited atoms is enhanced by the formation of Ge and Bi mixture with a specific composition. A 
problem for this hypothesis is that there have been no reports which indicate Ge and Bi mixture has a 
eutectic characteristic. Another hypothesis is that the dot-like structures are mainly composed of Bi. In 
this case, we have to consider the following results shown in Fig. 13. First, the dot-like structure did not 
appear with the condition of dBi=0.5 nm and dGe=0 nm by which only Bi layer was deposited. This 
result means Ge layer is needed to form the dot-like structure. Next, dot-like structure appeared with 
the condition of dBi=0.2 nm and dGe=0.6 nm but did not appear with the condition of dBi=0.2 nm and 
dGe=1.2 nm, as indicated before. These results mean relatively thin Ge layer is needed to form the 
structure. One possible hypothesis for this is that the surface free energy of deposited layer (first step: 
Bi) is modified by the deposition of thin Ge layer. In this case, however, we could not explain the reason 
why the appropriate Ge thickness exists. Further investigations such as analysis of the dot-like-structure 
composition are needed for this materials system. 

 

Figure 12. AFM images of the samples, for which Bi and Ge layers were deposited in the temperature range from 
110 to 170°C. Bi and Ge thicknesses were fixed at 0.5 and 1.2 nm, respectively. AFM scanning areas were 0.5 x 1.0 
µm2. 
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Figure 13. AFM observation results of the samples for which Bi and Ge deposition thickness were varied. The 
deposition temperature was fixed at 130°C. 

4   Conclusions 

Effects of Bi on self-organized nanostructure formation for III-V and group IV semiconductor materials 
were studied. Bi was successfully acted as a surfactant to form In(Ga)As QDs. By this surfactant 
growth, QDs with telecommunication wavelength range and superior optical quality were obtained. The 
unique features, such as ripening during the QD formation and the phenomenon during the covering 
layer growth were discussed. As for the new approach on Ge-based nanostructure formation, high-
density dot-like nanostructures were observed on the samples which were made by low-temperature 
deposition of Bi and Ge. As the formation mechanism has not been revealed yet, we suggested two 
hypotheses for that of the Bi and Ge system and discussed some problems. Although the formation 
mechanism may quite differ between the In(Ga)As QDs and the Ge-based nanostructures, Bi is an 
attractive material to form self-organized nanostructures. 
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