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Abstract The general CSE model fits Treloar’s uniaxial extension test and predicts unfitted
uniaxial compression, equibiaxial extension, biaxial extension, pure shear, and simple shear tests. As
a newly proposed method, the general CSE model, along with the stress-softening ratio, the residual-
stretch ratio, and the weighted piecewise two-point interpolation function, fits the Cheng–Chen’s
test and the Diani–Fayolle–Gilormini’s test in cyclic uniaxial extension at different pre-stretches
and predicts corresponding responses at untested pre-stretches. Physical mechanisms of the Mullins
effect have also been predicted based on the evolution of constitutive parameters.
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Nomenclature
C right Cauchy–Green tensor
c1, c2, c3, c4 constitutive parameters
E Green–Lagrange strain tensor
F,Fe,Fp total, elastic, plastic deformation gradient tensors
f, g, h three arbitrary functions
I second-order unit tensor
I1, I2, I3 invariants of the right Cauchy–Green tensor
i, j, n two indexes for three orthogonal directions, nth cycle
P, P0, Pn nominal stresses in general, virgin, nth cycle
Pbe1, Pbe2, Pee nominal stresses in biaxial extension, equibiaxial extension
Pij nominal stress tensor in indicial notation
Pps, Pss nominal stresses in pure shear, simple shear
Puc, Pue nominal stresses in uniaxial compression, uniaxial extension
Pur nominal stress in uniaxial extension with residual stretch
Rrn, Rsn residual-stretch ratio, stress-softening ratio in nth cycle
r1 parameter for residual-stretch ratio function
S second Piola–Kirchhoff stress tensor
s1, s2 parameters for stress-softening ratio function
w weight for the piecewise two-point interpolation function
Greek Symbols
κ shear stretch
Λ, λ ratio of total stretch to residual stretch, normal stretch
Λp, Λp1, Λp2 normalized untested pre-stretch and tested pre-stretches
λr, λr0, λrn residual stretches in general, virgin, nth cycle
Ψ,ΨE isotropic CSE functional or model, its covariant functional
ψ1, ψ2, ψ3 three independent first-integrals used in Lie group method
Abbreviations
CSE continuum stored energy
LLSQ linear least squares
EPDM ethylene-propylene-diene monomer
NR-S8 natural rubber vulcanized with 8 phr sulfur
SBR styrene-butadiene rubber
TED trial-and-error-on-digit
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1 Introduction

Natural rubbers and synthetic elastomers with a wide range of applications, including but not limited to
tires, engine mounts, seals, dampers, hoses, tunnel linings, and bump stoppers, can be classified as isotropic
hyperelastic materials. Sulfur vulcanization and filler reinforcements are fundamental manufacturing
processes for achieving desired properties of rubber materials and performances of rubber products. Sulfur
vulcanization is a chemical process that converts natural rubbers and synthetic elastomers into crosslinked
rubbers and elastomers. Fillers such as carbon-black, silica, and other nano-structured particles are usually
added during reinforcement processes, in which filled rubbers have enhanced material properties such
as abrasion resistance, tear strength, tensile strength, wear, and fatigue. The mechanical responses of
elastomeric materials under cyclic loading exhibit stress-softening, hysteresis loop, permanent stretch set,
permanent stress set, anisotropy, and loading rate effects. The stress-softening induced from previous
stretches has generally become known as the Mullins effect [1]. Both unfilled and filled rubbers exhibit
the Mullins effect, which is more pronounced for filled rubbers. Stress-softening of filled vulcanizates
mainly occurs at the first stretch, gradually reduces at stretches less than the previous stretch, but
changes relatively little at ever higher stretches and after several cycles of reloading and unloading.
Failure of components made of carbon-black filled rubbers has drawn attention to the need for a better
understanding of the physical mechanisms of the Mullins effect and the possible causes of a failure [2].
With appropriate experimental characterizations, predictive constitutive models, and actual microscopic
observations, physical mechanisms of the Mullins effect can be better understood.

The two-phase model, with soft matrix and hard filler phases, was postulated by Mullins and Tobin [3].
Two-phase models have been further developed by Wineman and Rajagopal [4], Wineman and Huntley
[5], Johnson and Beatty [6], Beatty and Krishnaswamy [7], Zúñiga and Beatty [8], Qi and Boyce [9],
and others. Models based on continuum damage mechanics, with a statistical mechanics approach, have
been developed to simulate the Mullins effect by Gurtin and Francis [10], Simo [11], Govindjee and Simo
[12,13], De Souza Neto, Peric, and Owen [14], Miehe [15], Miehe and Keck [16], and many others. The
tube model has been applied by Klüppel and Schramm [17], by Lorenz and Klüppel [18], by Raghunath,
Juhre, and Klüppel [19], and by Plagge and Klüppel [20]. The network decomposition model has been
developed and extended by Dargazany and Itskov [21,22], by Dargazany, Khiêm, and Itskov [23], and
by Khiêm and Itskov [24,25]. The pseudo-elastic model was developed by Ogden and Roxburgh [26],
Dorfmann and Ogden [27,2], Rickaby and Scott [28], and Naumann and Ihlemannthe [29]. Many models
developed include the network alteration theory by Septanika and Ernst [30], extensively applied by
Marckmann et al. [31], Diani, Brieu, and Vacherand [32], Zhao [33], Wang and Gao [34], and Zhu and
Zhong [35,36], the internal sliding and friction thermodynamics model by Cantournet, Desmorat, and
Besson [37], and so forth.

Constitutive models and physical mechanisms including bond rupture, molecules slipping, filler rupture,
disentanglement, and double-layer for the Mullins effect have been reviewed by Mullins in 1969 [38] and
further reviewed by Diani, Fayolle, and Gilormini in 2009 [39]. Physical mechanisms of the Mullins effect
have been classified into three categories: damage within the rubber matrix, filler network alteration,
and rubber-filler interface change by Diaz, Diani, and Gilormini [40]. Polymer network, filler network,
polymer-filler interaction, hydrodynamic amplification, breakdown of filler network are thought to be the
key factors for the Mullins effect and the related studies based on statistical mechanics, along with the
tube model, have been reviewed by Vilgis, Heinrich, and Klüppel in 2009 [41]. No unanimous agreement
has been reached for the physical mechanisms of the Mullins effect. Not many constitutive models can
accurately fit uniaxial extension test and predict experimental tests in other deformation modes for both
unfilled and filled rubbers. Thus, predictive constitutive modeling and physical understanding of the
Mullins effect remains a major challenge despite its extensive studies for more than seven decades.

The major objectives are threefold: (i) to apply the general CSE functional for predictive constitutive
modeling of Treloar’s tests for an unfilled rubber, (ii) to apply the general CSE functional, the stress-
softening ratio, the residual-stretch ratio, and the weighted piecewise two-point interpolation function
together as a newly proposed method for predictive constitutive modeling of the Cheng–Chen’s test
and the Diani–Fayolle–Gilormini’s test in cyclic uniaxial extension for filled rubbers with the Mullins
effect, and (iii) to predict physical mechanisms of the Mullins effect based on the evolution of constitutive
parameters as a function of pre-stretches.
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2 Constitutive Modeling of Rubberlike Materials

2.1 General CSE Model

Mathematical models of natural laws are frequently formulated through the concept of symmetry into
nonlinear partial differential equations. For constitutive modeling of rubberlike materials with finite
isotropic deformations, the second Piola–Kirchhoff stress tensor, S, has been derived in continuum
mechanics from the Clausius–Duhem form of the second law of thermodynamics as

S = 2∂Ψ
∂C . (1)

An isotropic stored energy functional as function of three invariants of the right Cauchy–Green tensor,
Ψ = Ψ(I1, I2, I3), was established by the classical work of Rivlin [42]. Taking derivatives with the chain
rule, the general constitutive equation reads

S = 2
[(

∂Ψ
∂I1

+ I1
∂Ψ
∂I2

)
I− ∂Ψ

∂I2
C + I3

∂Ψ
∂I3

C−1
]
, (2)

where the three invariants of right Cauchy–Green tensor C, I1, I2, and I3, are defined by

I1 = trC, I2 = 1
2

[
(trC)2 − trC2

]
, I3 = detC. (3)

For a physically consistent, mathematically covariant, and geometrically meaningful formulation, the CSE
functional was postulated and balanced with its stress work done by Zhao [43]

Ψ = S : C
2 . (4)

The general CSE functional (4) is covariant to ΨE = S : E under the transformation of E = 0.5(C− I).
Substituting (2) into (4), simplifying, and rearranging yields the partial differential equation of the
isotropic CSE functional in terms of three symmetric functions I1, I2, and I3

Ψ = I1
∂Ψ
∂I1

+ 2I2
∂Ψ
∂I2

+ 3I3
∂Ψ
∂I3

. (5)

With Lie group methods, the characteristic system of (5) takes the form of

dI1

I1
= dI2

2I2
= dI3

3I3
= dΨ

Ψ . (6)

Taking its independent first-integrals, ψ1 = I2/I
2
1 , ψ2 = I3/I

3
1 , and ψ3 = Ψ/I1, the general solution to

the CSE partial differential equation (5) has been obtained as

Ψ = I1h(I2/I
2
1 , I3/I

3
1 ), (7)

where h as an arbitrary function has been selected as the summation of two arbitrary functions of invariant
groups albeit other available combinations

Ψ = I1
[
f(I2/I

2
1 ) + g(I3/I

3
1 )
]
, (8)

where f and g as two arbitrary functions can be fixed by curvatures of deformations. For normal and
shear deformations, the first arbitrary function, f , has been defined as

f(I2/I
2
1 ) = c1 + c2

√
I2/I2

1 = c1 + c2

√
I2

I1
, (9)

and for different degrees of ellipsoidal deformations, the second arbitrary function, g, has been generalized
and selected as

g(I3/I
3
1 ) = c3(I3/I

3
1 )−c4 = c3

I3c4
1
Ic4

3
. (10)
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For better predictive constitutive modeling mechanical responses of rubbers under monotonic and
cyclic loadings, substituting (9) and (10) into (8) yields the general CSE functional [44]. Applying the
normalization condition, Ψ(I) = 0, gives

Ψ = c1 (I1 − 3) + c2

(√
I2 −

√
3
)

+ c3

(
I3c4+1

1
Ic4

3
− 33c4+1

)
, (11)

where the four constitutive parameters, c1, c2, c3, and c4, will then be determined by experimental tests.
Thus, the general CSE functional will be used to establish constitutive equations of commonly used
deformation modes in experimental tests.

2.2 General CSE Constitutive Equations

Nominal stress and stretch results are preferably calculated from force and extension measurements with
original sample dimensions recorded in experimental tests. The nominal stress as a function of stretch in
indicial notation is generally expressed as

Pji = ∂Ψ
∂I1

∂I1

∂λij
+ ∂Ψ
∂I2

∂I2

∂λij
+ ∂Ψ
∂I3

∂I3

∂λij
, (i, j = 1, 2, 3). (12)

The three derivatives of the general CSE functional (11) for rubber-like materials with the incom-
pressible assumption of I3 = 1 are

∂Ψ
∂I1

= c1 + c3(3c4 + 1)I3c4
1 ,

∂Ψ
∂I2

= c2

2
√
I2
,

∂Ψ
∂I3

= 0. (13)

Mechanical characterizations of isotropic hyperelastic materials are often conducted by uniaxial
extension, uniaxial compression, equibiaxial extension, biaxial extension, pure shear, and simple shear
tests. Thus, the general isotropic CSE constitutive equations in the six testing modes will be derived
based on the equations (11) through (13).

Uniaxial Extension and Compression Modes. The nominal stress as a function of principal stretch
in uniaxial extension and uniaxial compression modes for incompressible isotropic hyperelastic materials
can be unified as

Pue = Puc = 2(λ− λ−2)c1 + 1− λ−3
√

2λ+ λ−2
c2 + 2(3c4 + 1)(λ2 + 2λ−1)3c4(λ− λ−2)c3. (14)

Biaxial Extension Mode. The nominal stresses in two extension directions as a function of principal
stretches in biaxial extension mode for incompressible isotropic hyperelastic materials are worked out as

Pbe1 = 2(λ1 − λ−3
1 λ−2

2 )
[
c1 + (3c4 + 1)(λ2

1 + λ2
2 + λ−2

1 λ−2
2 )3c4c3

]
+ λ1λ

2
2 − λ−3

1√
λ2

1λ
2
2 + λ−2

1 + λ−2
2

c2, (15)

Pbe2 = 2(λ2 − λ−2
1 λ−3

2 )
[
c1 + (3c4 + 1)(λ2

1 + λ2
2 + λ−2

1 λ−2
2 )3c4c3

]
+ λ2

1λ2 − λ−3
2√

λ2
1λ

2
2 + λ−2

1 + λ−2
2

c2. (16)

Equibiaxial Extension Mode. The nominal stress as a function of principal stretch in equibiaxial
extension mode for incompressible isotropic hyperelastic materials is simplified by substituting λ2 = λ1 = λ
into (15) or (16) and rearranging yields

Pee = 2(λ− λ−5)c1 + λ3 − λ−3
√
λ4 + 2λ−2

c2 + 2(3c4 + 1)(2λ2 + λ−4)3c4(λ− λ−5)c3. (17)
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Pure Shear Mode. The nominal stress as a function of principal stretch in pure shear mode for
incompressible isotropic hyperelastic materials turns out to be

Pps = 2(λ− λ−3)c1 + λ− λ−3
√
λ2 + λ−2 + 1

c2 + 2(3c4 + 1)(λ2 + λ−2 + 1)3c4(λ− λ−3)c3. (18)

Simple Shear Mode. The nominal shear stress as a function of shear stretch in simple shear mode for
incompressible isotropic hyperelastic materials is given by

Pss = 2κc1 + κ√
κ2 + 3

c2 + 2(3c4 + 1)κ(κ2 + 3)3c4c3. (19)

Variables λ and κ in the CSE model are normal and shear stretches, respectively.

2.3 Uniaxial Constitutive Equation with Residual Stretch

The general CSE constitutive equation in uniaxial extension mode can be modified to capture cyclic
mechanical responses with residual stretches as

Pur = 2(Λ− Λ−2)c1 + 1− Λ−3
√

2Λ+ Λ−2
c2 + 2(3c4 + 1)(Λ2 + 2Λ−1)3c4(Λ− Λ−2)c3, (20)

where the ratio of total stretch to residual stretch is also called the normalized stretch by a residual
stretch, Λ = λ/λr ∈ [1, λp/λr], in extension mode.

2.4 Stress-Softening Ratio

The Mullins effect refers to the stretch induced stress-softening for many materials. Stress-softening curves
of the Mullins effect are commonly predicted by a damage or softening function. The softened stress at
the nth circle, Pn, can be related to stress from virgin loading, P0, at a certain pre-stretch, λp, by the
following stress-softening ratio

Rsn = Pn(λp)
P0(λp)

=
(

1 + s2

n

)−(λp−1)s1n

, (n = 0, 1, 2, 3, · · · ), (21)

where the two softening parameters, s1 and s2, for the stress-softening ratio, Rsn, are determined by
experiments. Unlike common practices, the stress-softening ratio is only used to predict the softened
stress points at untested pre-stretches rather than whole curves. Untested cyclic mechanical responses
are embedded in the constitutive parameters fitted from experimental tests. Thus, interpolations of
constitutive parameters are desired.

2.5 Interpolation of Constitutive Parameters

The general CSE functional or model will be used to fit the unloading and reloading experimental data
at tested pre-stretches. For predictions of unloading and reloading curves at untested pre-stretches, the
weighted piecewise two-point interpolation will be used

ci(Λp) = (2− w) Λp − Λp2

Λp1 − Λp2
ci(Λp1) + w

Λp − Λp1

Λp2 − Λp1
ci(Λp2), (i = 1, 2, 3, 4), (22)

where a normalized untested pre-stretch, Λp, falls within the nearest neighborhood between the normalized
tested pre-stretches Λp1 and Λp2. For predictions of untested reloading curves, the four constitutive
parameters will be interpolated in such a way that changing the weight w ∈ (0, 2) until the difference
between the fitted experimental stress-softening (21) and the CSE model predicted stress-softening with
constitutive parameters interpolated by (22) at the normalized untested pre-stretch is numerically mini-
mized. For predictions of untested unloading curves, the four constitutive parameters can be determined
similarly but the stress on virgin loading curve at an untested pre-stretch will be targeted. In essence, the
start and end points of an untested curve, along with tested curves, are used to simultaneously predict
constitutive parameters at an untested pre-stretch normalized by residual stretch.
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Figure 1. Contour of general CSE model for Treloar’s uniaxial extension test.

Table 1. Constitutive parameters of CSE model for Treloar’s uniaxial extension test.

Material c1(MPa) c2(MPa) c3(MPa) c4

NR-S8 0.1461648 0.0818923 3.7833917×10−7 0.9828514

2.6 Residual-Stretch Ratio

For untested permanent stretch sets or residual stretches, λr, the piecewise three-point interpolation
among tested residual stretches can be used. Considering the cyclic residual stretches, λrn, due to viscous
heating effects, the residual-stretch ratio, Rrn, can be defined as

Rrn = λrn(λp)
λr0(λp)

= 1 + (λp − 1)r1ln(1 + n), (n = 0, 1, 2, 3, · · · ), (23)

where the parameter, r1, for the residual-stretch ratio is determined by experiments.

3 Applications of General CSE Model

3.1 Predictive Constitutive Modeling of Unfilled NR Rubber

The uniaxial extension, uniaxial compression, equibiaxial extension, biaxial extension, pure shear, and
converted simple shear tests of an unfilled and vulcanized natural rubber with 8 phr sulfur (NR-S8) have
been conducted at 20◦C by Treloar [45]. The Treloar’s experiments with all specimens taken from a single
sheet of the material are usually used as a benchmark for evaluating constitutive models of incompressible
isotropic hyperelastic materials [46,47,48]. The constitutive parameters of the general CSE constitutive
equation in uniaxial extension mode (14) for Treloar’s test data have numerically been solved by the
trial-and-error-on-digit (TED) method and the linear least square (LLSQ) method combined by Zhao [49].
The contour of the general CSE functional is depicted in Figure 1. The constitutive parameters calibrated
in uniaxial extension mode have been submitted into (14), (17), (15), (18), and (19) to predict tested but
unfitted finite deformations in uniaxial compression, equibiaxial extension, biaxial extension, pure shear,
and simple shear modes, respectively. The comparison between the Treloar’s tests and the general CSE
model is shown in Figure 2. The constitutive parameters fitted for Treloar’s uniaxial extension test are
listed in Table 1.
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(a) uniaxial extension (b) uniaxial compression

(c) equibiaxial extension (d) biaxial extension

(e) pure shear (f) simple shear

Figure 2. Comparison between Treloar’s tests and general CSE model.
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(a) fitting of loading and unloading (b) prediction of unloading

(c) fitting of reloading (d) prediction of reloading

Figure 3. Comparison between Cheng–Chen’s test and general CSE model.

3.2 Predictive Constitutive Modeling of Filled EPDM Rubber

Cyclic uniaxial extension tests of filled ethylene-propylene-diene monomer (EPDM) rubbers have been
conducted at room temperature with different stretch rates by Cheng and Chen [50]. The uniaxial
extension test with the stretch rate of 0.004/s and the pre-stretches of 1.5, 2.0, 2.5, and 3.0, increasing
every 3 cycles has been selected. A self-developed graphics digitizer with MATLAB has been used to
read out all the related experimental data in the zeroth and first cycles. The constitutive parameters
of the CSE constitutive equation (14) for tested virgin loading data and the CSE constitutive equation
with residual stretches (20) for tested unloading and reloading data have respectively been solved by the
TED-LLSQ method. The stress-softening data at untested pre-stretches of 1.75, 2.25, and 2.75 is predicted
by the stress-softening ratio equation (21). The constitutive parameters of unloading and reloading with
stress-softening curves at untested pre-stretches of 1.75, 2.25, and 2.75 are determined by the weighted
two-point interpolation equation (22). The comparison between the Cheng–Chen’s test and the general
CSE model for virgin loading, unloading, and reloading responses is shown in Figure 3.

3.3 Predictive Constitutive Modeling of Filled SBR Rubber

The cyclic uniaxial extension test of styrene-butadiene rubbers (SBR) filled with carbon-black has been
conducted at room temperature with the stretch rate of 0.001/s by Diani, Fayolle, and Gilormini [39].
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(a) fitting of loading and unloading (b) prediction of unloading

(c) fitting of reloading (d) prediction of reloading

Figure 4. Comparison between Diani–Fayolle–Gilormini’s test and general CSE model.

The uniaxial extension test was performed with the pre-stretches of 2.00, 3.00, and 4.05, increasing every
5 cycles. A self-developed graphics digitizer with MATLAB has been used to read out all the related
experimental data with the cycle numbers of n = 0 and n = 1. The constitutive parameters of the CSE
constitutive equation (14) for tested virgin loading data (n = 0) and the CSE constitutive equation (20)
for tested unloading and reloading data (n = 1) have respectively been solved by the TED-LLSQ method.
The stress-softening data at untested pre-stretches of 2.5 and 3.5 is predicted by the stress-softening ratio
equation (21). The constitutive parameters of unloading and reloading with stress-softening curves at
untested pre-stretches of 2.5 and 3.5 are determined by the weighted piecewise two-point interpolation
equation (22). The comparison between the Diani–Fayolle–Gilormini’s test and the general CSE model of
virgin loading, unloading, and reloading behaviors is shown in Figure 4.

4 Discussion

4.1 Predictive Constitutive Modeling of Unfilled Rubber

The convexity of a stored energy functional can be shown on a contour plot. For the contour plot of the
general CSE functional (11), the constitutive parameters fitted from Treloar’s uniaxial extension test are
listed in Table 1 and the three corresponding invariants, I1 = λ2

1 +λ2
2 + (λ1λ2)−2, I2 = λ2

1λ
2
2 +λ−2

1 +λ−2
2 ,
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and I3 = 1, are used. As shown in Figure 1, the clamshell shaped contour lines radiate outwardly from
the zero energy location with the coordinate of (λ1, λ2) = (1, 1) and expand with the increase of stored
energy values, indicating the convexity of the general CSE functional for Treloar’s tests.

Many constitutive models can fit uniaxial extension tests. A constitutive model fitted or calibrated
in uniaxial extension tests, however, could fail to predict responses of biaxial extension tests and tests
in other deformation modes as emphasized by Marckmann and Verron [51]. Furthermore, constitutive
parameters simultaneously calibrated in multiple deformation modes could pollute the overall accuracy
since experimental tests at different deformation modes possess different accuracies, different amounts
of deformations, and even different stabilities. Among which, uniaxial extension tests exhibit the best
accuracy, the largest deformation range, and the greatest stability. Thus, in this predictive continuum
constitutive modeling, the constitutive parameters fitted from Treloar’s uniaxial extension test are used
to predict tested but unfitted finite deformations in uniaxial compression, equibiaxial extension, biaxial
extension, pure shear, and simple shear modes plotted in Figure 2. As shown, the predictions are accurate
in all the selected deformation modes. The equibiaxial extension test and uniaxial compression test with
the bubble inflation technique reduce the usual overestimation. With the assumption of incompressibility,
superposition of a hydrostatic pressure to cancel the in-plane tensile stresses and to construct the out-of-
plane compressive stress converts equibiaxial extension test data into uniaxial compression test data by
Treloar [52] and the original uniaxial compression test data is given by Treloar [45]. The biaxial extension
test data obtained by sequentially combining uniaxial extension and pure shear tests by Treloar are
obtained from the article by Chagnon, Marckmann, and Verron [47]. The Treloar’s simple shear test data
is transformed from his pure shear test data. The equations, κ = λ− λ−1 and Pss = Pps/(1 + λ−2), are
used for the transformation.

As listed in Table 1, the value of c4 for Treloar’s uniaxial extension test is close to but not equal to
1. Nevertheless, the general CSE model with variable c4 indeed achieves better predictive constitutive
modeling of Treloar’s tests than those with a constant value, c4 = 1, as initially studied by Zhao [43]. All
in all, the general CSE model fits the uniaxial extension test and predicts unfitted finite deformations
in the different deformation modes for Treloar’s experimental tests, indicating the quality of the CSE
functional as a predictive constitutive model of the unfilled rubber. Benefits of the general CSE model
with variable c4 will be further demonstrated in predictive constitutive modeling cyclic uniaxial extension
responses of filled EPDM and SBR rubbers with the Mullins effect.

4.2 Predictive Constitutive Modeling of Filled Rubber

For filled rubbers under cyclic loading, the constitutive parameters of the CSE constitutive equation (20)
are tacitly understood as variables due to damaging, softening, and other effects based on the method of
variation of the constants. For residual stretches, the CSE constitutive equation (20) is augmented from
(14) based on the multiplicative decomposition of the deformation gradient into elastic and plastic parts.
With Fe = FF−1

p , related curve fitting, predicting, and finite element implementation can be treated
as elastic deformations. Indeed, without unloading or reloading, it is difficult to differentiate a plastic
deformation from total deformation and residual stretches are truly plastic deformations.

Predictive constitutive modeling cyclic responses of filled rubbers with the Mullins effect covers
the virgin loading, first unloading, and first reloading experimental test at different pre-stretches with
stress-softening and residual stretches. For the following cycles, the same method can be applied. By
the same token, hysteresis loops can be fitted and predicted. The permanent stress set or residual stress
can be readily handled by simple summation and subtraction operations. For the Mullins effect with
anisotropy, transversely isotropic constitutive models are usually utilized, which is beyond the scope of
this study.

By and large, the general CSE functional and its derived CSE constitutive equations, along with the
stress-softening ratio, residual-stretch ratio, and the weighted piecewise two-point interpolation function,
offer a new method for predictive constitutive modeling finite deformations and physical understanding
deformation mechanisms of filled rubbers with the Mullins effect.
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Table 2. Evolution of constitutive parameters for filled EPDM rubber by general CSE model.

λp λr c1 (MPa) c2 (MPa) c3 (MPa) c4 Note

1.00 1.00000 −2.0736732 3.2081138 9.28779×10−01 0.1140723 fit-loading

1.50 1.05083 0.2110987 0.7983706 3.53972×10−19 9.9364224 fit-unloading
1.75 1.05948 0.2318063 0.4319945 5.88092×10−14 6.2643379 predict-unloading
2.00 1.07000 0.2350243 0.3750591 6.79481×10−14 5.6936905 fit-unloading
2.25 1.08250 0.2654665 0.0961702 4.55107×10−14 5.3651124 predict-unloading
2.50 1.09667 0.2906265 −0.1343271 2.69666×10−14 5.0935478 fit-unloading
2.75 1.11250 0.3122325 −0.4062492 1.29057×10−14 4.9374487 predict-unloading
3.00 1.13000 0.3250858 −0.5680146 4.54099×10−15 4.8445860 fit-unloading

1.50 1.02200 −27603.126 4.3105877 2.75989×10+4 0.0000208 fit-reloading
1.75 1.02838 0.0022600 1.6306945 1.34641×10−5 1.8272009 predict-reloading
2.00 1.03475 0.0022656 1.6306945 7.86152×10−6 1.8272009 fit-reloading
2.25 1.04054 0.1392870 0.9686405 6.46982×10−7 2.1419788 predict-reloading
2.50 1.04633 0.1463470 0.9345284 2.75255×10−7 2.1581976 fit-reloading
2.75 1.05598 0.1815272 0.6372036 1.02270×10−7 2.2049422 predict-reloading
3.00 1.06564 0.1930051 0.5401984 4.58317×10−8 2.2201931 fit-reloading

4.3 Analyses of Constitutive Parameters

The constitutive parameters for predictive constitutive modeling Cheng–Chen’s test and Diani–Fayolle–
Gilormini’s test are listed in Table 2 and Table 3, respectively.

The general CSE model, along with the stress-softening ratio, residual-stretch ratio, and the weighted
piecewise two-point interpolation function, accurately fits and predicts finite deformations with the Mullins
effect for both the Cheng–Chen’s test shown in Figure 3 and the Diani–Fayolle–Gilormini’s test shown
in Figure 4.

The accuracy of using a damage or softening function to predict entire mechanical responses of the
Mullins effect is scanty. The relevance of continuum damage mechanics as applied to the Mullins effect
has been addressed by Chagnon et al. [53]. One of the most crucial findings in this study is that not all
constitutive parameters are decreasing or softening with increasing pre-stretch. The detailed evolution
of constitutive parameters as a function of pre-stretches will be elaborated on to elucidate physical
mechanisms of the Mullins effect.

Constitutive Parameter c1. In the general CSE functional, the constitutive parameter c1 describes
the strength due to one-dimensional normal stretches. During the cyclic loading processes of both EPDM
and SBR rubbers, c1 changes from a negative value (damage), quickly to an even greater negative value
(severe damage), then to zero, and a positive number, starting to increase its values (hardening instead of
softening) as pre-stretch increases from 1 to its maximum value. This phenomenon is similar to muscle
growth, in which short fibers are initially fractured by virgin stretching and long fibers grow as the
stretching goes on, resulting in greater strength than before. In the two rubber cases, likewise, short
bonds within crosslinks may be ruptured and more long bonds are rearranged to enhance the strength
due to normal stretches. The short bond rapture mechanism was proposed by Bueche [54]. This physical
mechanism has also been addressed by Marckmann et al. [31].

Constitutive Parameter c2. The constitutive parameter c2 represents the strength due to two-
dimensional shear stretches. During the cyclic loading processes of both EPDM and SBR rubbers, c2
decreases (with damaging in unloading) as pre-stretch increases from 1 to its maximum value. With
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Table 3. Evolution of constitutive parameters for filled SBR rubber by general CSE Model.

λp λr c1 (MPa) c2 (MPa) c3 (MPa) c4 Note

1.00 1.00000 −65.1887663 5.0222194 6.28490×10+01 0.0043110 fit-loading

2.00 1.07315 −0.0229894 1.9760616 1.43451×10−10 4.1019102 fit-unloading
2.50 1.08411 0.1524263 0.8415104 5.65523×10−11 3.6772231 predict-unloading
3.00 1.10129 0.2378517 0.2889966 1.42337×10−11 3.4704052 fit-unloading
3.50 1.12467 0.2839642 −0.3720592 3.08712×10−12 3.3954942 predict-unloading
4.05 1.15956 0.3071800 −0.5655930 1.76294×10−13 3.5030108 fit-unloading

2.00 1.07315 −42397.495 6.2605695 4.23935×10+4 0.0000111 fit-reloading
2.50 1.08411 0.1326606 1.2041993 6.12219×10−6 1.6467686 predict-reloading
3.00 1.10129 0.1326643 1.2041993 2.39156×10−6 1.6467686 fit-reloading
3.50 1.12467 0.1845315 0.6871242 5.95312×10−7 1.7211344 predict-reloading
4.05 1.15956 0.2057522 0.5702242 1.22098×10−7 1.8061242 fit-reloading

the increase of pre-stretch, the strength of rubbers due to shear stretch decreases, making one part of
the contribution for stress-softening. This phenomenon may correspond to the molecules slipping theory
established by Houwink [55]. Based on atomic force microscopic observations, the short bond rupture and
chain slippage were attributed to the origin of the Mullins effect by Clément, Bokobza, and Monnerie [56].

Constitutive Parameter c3. The constitutive parameter c3 captures the strength due to three-
dimensional ellipsoidal deformations. During the cyclic loading processes of both EPDM and SBR rubbers,
c3 decreases as pre-stretch increases from 1 to its maximum value. With the increase of pre-stretch, the
strength of rubbers due to ellipsoidal deformations decreases, making another part of the contribution for
stress-softening. However, the contribution of c3 term is also related to c4. For the example of Cheng–
Chen’s uniaxial extension test of reloading curves at different pre-stretches, the values of c3 decreases
while that of c4 increases as pre-stretch increases. The stress-softening contributed by both c3 and c4
for Cheng–Chen’s uniaxial extension reloading test is depicted in Figure 5. A similar trend for Diani–
Fayolle–Gilormini’s reloading test has been observed. In the two filled rubber cases, the three-dimensional
rubber-filler interface is weakened during stretching. This phenomenon may be explained by the fuzzy
interface mechanism observed through the combination of small- and wide-angle X-ray scattering by Sui
et al. [57]. The gradual loss of the physical crosslinks across the fuzzy interface region, due to gradual
decreases of electron density and crosslink density, is believed to be the origin of the Mullins effect.

Constitutive Parameter c4. The constitutive parameter c4 delineates the degree of alignment for
elastomeric chains. In the virgin loading cases, c4 has values quite less than 1, indicating initial random
alignment of elastomeric chains. In both EPDM and SBR rubbers, c4 decreases during unloading cases
as pre-stretch increase while c4 increases during reloading cases. In the current predictive constitutive
modeling, the first cycle of unloading and reloading has been studied.

4.4 Summary

Important findings from predictive constitutive modeling monotonic and cyclic mechanical responses of
rubbers are summarized as follows:

– For Treloar’s tests of the NR-S8 rubber, the general CSE model produces both accurate curve-fitting
of uniaxial extension test and accurate predictions of uniaxial compression, equibiaxial extension,
biaxial extension, pure shear, and simple shear tests. The general CSE model with variable c4 becomes
more versatile than the CSE model with the constant of c4 = 1;
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(a) stress-strengthening by c1 term (b) stress-softening by c2 term

(c) stress-softening by c3 term

Figure 5. Term-wised stress changes in general CSE model for Cheng–Chen’s test.

– The general CSE model, along with the stress-softening ratio, residual-stretch ratio, and the weighted
piecewise two-point interpolation function, offers a new method in predictive constitutive modeling of
filled rubbers with the Mullins effect;

– As shown in Figure 5, the c1 term increases stress while the c2 or c3 term decreases stress as
pre-stretches increase in the general CSE model. Not all terms of the general CSE model soften the
stress, making traditional predictions of the Mullins effect using a stress-softening function difficult to
be accurate;

– In the new method, the start and end points of an untested curve, along with tested curves, are used
to predict constitutive parameters for reloading or unloading responses at an untested pre-stretch;

– Multiple physical mechanisms result in the Mullins effect. Each physical mechanism dominates the
stress-changing process at different pre-stretches.

– At small stretches, the values of c1 are negative, causing damage due to short bond rupture. The
stress due to normal stretches, however, is enhanced as pre-stretch increases as shown in Figure 5(a);

– At medium stretches, the c2 term reaches its maximum value, dominating the stress-softening due to
shear stretch or molecular-slipping as shown in Figure 5(b);

– At large stretches, the c3 term dominates the stress-softening due to ellipsoidal deformation or
interface-softening by loss of physical crosslinks as shown in Figure 5(c);
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– Both damaging and softening effects occur during the cyclic uniaxial extension tests of EPDM and
SBR rubbers with the Mullins effect.

5 Conclusions

For Treloar’s tests of the unfilled NR-S8 rubber, the general CSE model calibrated in uniaxial extension
test accurately predicts uniaxial compression, equibiaxial extension, biaxial extension, pure shear, and
simple shear tests. The contour of the general CSE functional based on Treloar’s uniaxial extension test
demonstrates its convexity.

The general CSE model, the stress-softening ratio, the residual-stretch ratio, and the weighted
piecewise two-point interpolation function offer a new method for predictive constitutive modeling of filled
rubbers with the Mullins effect. For both the Cheng–Chen’s uniaxial extension test of EPDM rubber and
Diani–Fayolle–Gilormini’s uniaxial extension test of SBR rubber, the general CSE model fits the tested
virgin loading, first unloading, and first reloading curves at different pre-stretches with stress-softening
and residual stretches. The start and end points of an untested curve, along with tested curves, are used
to predict the untested response in reloading or unloading at an untested pre-stretch.

Not all constitutive parameters decrease with the increase of pre-stretches, making the applications of
a single softening function’s ability to predict entire responses of the Mullins effect questionable. Both
damaging and softening effects occur during the cyclic uniaxial extension tests of filled rubbers with the
Mullins effect. Multiple physical mechanisms rather than a single mechanism cause the Mullins effect.
The Mullins effect is caused by a combination of short bond rupture at small normal deformations,
molecular-slipping at medium shear deformations, and interface softening due to decreases of physical
crosslinks at large ellipsoidal deformations.
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14. E. A. De Souza Neto, D. Perić, and D. R. J. Owen, “A phenomenological three-dimensional rate-independent
continuum damage model for highly filled polymers: formulation and computational aspects,” Journal of the
Mechanics and Physics of Solids, vol. 42, no. 10, pp. 1533–1550, 1994.

15. C. Miehe, “Discontinuous and continuous damage evolution in Ogden-type large-strain elastic materials,”
European Journal of Mechanics A/Solids, vol. 14, no. 5, pp. 697–720, 1995.

16. C. Miehe and J. Keck, “Superimposed finite elastic-viscoelastic-plastoelastic stress response with damage in
filled rubbery polymers. Experiments, modelling and algorithmic implementation,” Journal of the Mechanics
and Physics of Solids, vol. 48, no. 2, pp. 323–365, 2000.

17. M. Klüppel and J. Schramm, “A generalized tube model of rubber elasticity and stress softening of filler
reinforced elastomer systems,” Macromolecular Theory and Simulations, vol. 9, no. 9, pp. 742–754, 2000.

18. H. Lorenz and M. Klüppel, “Microstructure-based modelling of arbitrary deformation histories of filler-
reinforced elastomers,” Journal of the Mechanics and Physics of Solids, vol. 60, no. 11, pp. 1842–1861,
2012.

19. R. Raghunath, D. Juhre, and M. Klüppel, “A physically motivated model for filled elastomers including
strain rate and amplitude dependency in finite viscoelasticity,” International Journal of Plasticity, vol. 78, pp.
223–241, 2016.

20. J. Plagge and M. Klüppel, “A physically based model of stress softening and hysteresis of filled rubber
including rate- and temperature dependency,” International Journal of Plasticity, vol. 89, pp. 173–196, 2017.

21. R. Dargazany and M. Itskov, “A network evolution model for the anisotropic mullins effect in carbon black
filled rubbers,” International Journal of Solids and Structures, vol. 46, no. 3, pp. 2967–2977, 2009.

22. ——, “Constitutive modeling of Mullins effect and cyclic stress softening in filled elastomers,” Physical Review
E, vol. 88, no. 1, pp. 012 602(1–24), 2013.

23. R. Dargazany, V. N. Khiêm, and M. Itskov, “A generalized network decomposition model for the quasi-static
inelastic behavior of filled elastomers,” International Journal of Plasticity, vol. 63, no. 12, pp. 94–109, 2014.

24. V. N. Khiêm and M. Itskov, “An averaging based tube model for deformation induced anisotropic stress
softening of filled elastomers,” International Journal of Plasticity, vol. 90, no. 12, pp. 96–115, 2017.

25. ——, “Analytical network-averaging of the tube model: Mechanically induced chemiluminescence in elastomers,”
International Journal of Plasticity, vol. 102, no. 11, pp. 1–15, 2018.

26. R. W. Ogden and D. G. Roxburgh, “A pseudo-elastic model for the Mullins effect in filled rubber,” Proceedings
of Royal Society London A, vol. 455, no. 1988, pp. 2861–2877, 1999.

27. A. Dorfmann and R. W. Ogden, “A pseudo-elastic model for loading, partial unloading and reloading of
particle-reinforced rubber,” International Journal of Solids and Structures, vol. 40, no. 11, pp. 2699–2714,
2003.

28. S. R. Rickaby and N. H. Scott, “A cyclic stress softening model for the Mullins effect,” International Journal
of Solids and Structures, vol. 50, no. 1, pp. 111–120, 2013.

29. C. Naumann and J. Ihlemann, “On the thermodynamics of pseudo-elastic material models which reproduce
the Mullins effect,” International Journal of Solids and Structures, vol. 69-70, pp. 360–369, 2015.

30. E. Septanika and L. Ernst, “Application of the network alteration theory for modeling the time-dependent
behavior of rubber. Part I. General theory,” Mechanics of Materials, vol. 30, no. 4, pp. 253–263, 1998.

31. G. Marckmann, E. Verron, L. Gornet, G. Chagnon, P. Charrier, and P. Fort, “A theory of network alteration
for the mullins effect,” Journal of the Mechanics and Physics of Solids, vol. 50, no. 9, pp. 2011–2028, 2002.

32. J. Diani, M. Brieu, and J. M. Vacherand, “A damage directional constitutive model for Mullins effect with
permanent set and induced anisotropy,” European Journal of Mechanics A/Solids, vol. 25, no. 3, pp. 483–496,
2006.

33. X. Zhao, “A theory for large deformation and damage of interpenetrating polymer networks,” Journal of the
Mechanics and Physics of Solids, vol. 60, no. 2, pp. 319–332, 2012.

34. Q. Wang and Z. Gao, “A constitutive model of nanocomposite hydrogels with nanoparticle crosslinkers,”
Journal of the Mechanics and Physics of Solids, vol. 94, pp. 127–147, 2016.

35. P. Zhu and Z. Zhong, “Modelling the mechanical behaviors of double-network hydrogels,” International
Journal of Solids and Structures, vol. 193-194, pp. 492–501, 2020.

36. ——, “Development of the network alteration theory for the Mullins softening of double-network hydrogels,”
Mechanics of Materials, vol. 152, pp. 103 658(1–7), 2021.

37. S. Cantournet, R. Desmorat, and J. Besson, “Mullins effect and cyclic stress softening of filled elastomers by
internal sliding and friction thermodynamics model,” International Journal of Solids and Structures, vol. 46,
no. 11-12, pp. 2255–2264, 2009.

160 Journal of Advances in Applied Mathematics, Vol. 6, No. 3, July 2021

JAAM Copyright © 2021 Isaac Scientific Publishing



38. L. Mullins, “Softening of rubber by deformation,” Rubber Chemistry and Technology, vol. 42, no. 1, pp.
339–362, 1969.

39. J. Diani, B. Fayolle, and P. Gilormini, “A review on the Mullins effect,” European Polymer Journal, vol. 45,
no. 3, pp. 601–612, 2009.

40. R. Diaz, J. Diani, and P. Gilormini, “Physical interpretation of the Mullins softening in a carbon-black filled
SBR,” European Polymer Journal, vol. 55, no. 19, pp. 4942–4947, 2014.

41. T. A. Vilgis, G. Heinrich, and M. Klüppel, Reinforcement of polymer nano-composites: theory, experiments
and applications, 1st ed. Cambridge: Cambridge University Press, 2009.

42. R. S. Rivlin, “Large elastic deformations of isotropic materials IV. Further developments of the general theory,”
Philosophical Transactions of the Royal Society A, vol. 241, pp. 379–397, 1948.

43. F. Zhao, “Continuum constitutive modeling for isotropic hyperelastic materials,” Advances in Pure Mathe-
matics, vol. 6, no. 9, pp. 571–582, 2016.

44. ——, “Modeling and implementing compressible isotropic finite deformation without the isochoric–volumetric
split,” Journal of Advances in Applied Mathematics, vol. 5, no. 2, pp. 57–70, 2020.

45. L. R. G. Treloar, “Stress-strain data for vulcanised rubber under various types of deformation,” Transactions
of the Faraday Society, vol. 40, pp. 59–70, 1944.

46. M. C. Boyce and E. M. Arruda, “Constitutive models of rubber elasticity: A review,” Rubber Chemistry and
Technology, vol. 73, no. 3, pp. 504–523, 2000.

47. G. Chagnon, G. Marckmann, and E. Verron, “A comparison of the Hart-Smith model with Arruda-Boyce and
Gent formulations for rubber elasticity,” Rubber Chemistry and Technology, vol. 77, no. 4, pp. 724–735, 2004.

48. P. Steinmann, M. Hossain, and G. Possart, “Hyperelastic models for rubber-like materials: Consistent tangent
operators and suitability for Treloar’s data,” Archive for Applied Mechanics, vol. 82, no. 9, pp. 1183–1217,
2012.

49. F. Zhao, “On constitutive modeling of arteries,” Journal of Advances in Applied Mathematics, vol. 4, no. 2,
pp. 54–68, 2019.

50. M. Cheng and W. Chen, “Experimental investigation of the stress-stretch behavior of EPDM rubber with
loading rate effects,” International Journal of Solids and Structures, vol. 40, no. 18, pp. 4749–4768, 2003.

51. G. Marckmann and E. Verron, “Comparison of hyperelastic models for rubberlike materials,” Rubber Chemistry
and Technology, vol. 79, no. 5, pp. 835–858, 2006.

52. L. R. G. Treloar, The Physics of Rubber Elasticity, 3rd ed. New York: Oxford University Press, 2005.
53. G. Chagnon, E. Verron, L. Gornet, G. Marckmann, and P. Charrier, “On the relevance of continuum damage

mechanics as applied to the Mullins effect in elastomers,” Journal of the Mechanics and Physics of Solids,
vol. 52, no. 7, pp. 1627–1650, 2004.

54. F. Bueche, “Molecular basis for the Mullins effect,” Journal of Applied Polymer Science, vol. 4, no. 10, pp.
107–114, 1960.

55. R. Houwink, “Slipping of molecules during the deformation of reinforced rubber,” Rubber Chemistry and
Technology, vol. 29, no. 3, pp. 888–893, 1956.

56. F. Clément, L. Bokobza, and L. Monnerie, “On the Mullins effect in silica filled polydimethylsiloxane networks,”
Rubber Chemistry and Technology, vol. 74, no. 5, pp. 846–870, 2001.

57. T. Sui, E. Salvati, S. Ying, G. Sun, I. P. Dolbnya, K. Dragnevski, C. Prisacariu, and A. M. Korsunsky, “Strain
softening of nano-scale fuzzy interfaces causes Mullins effect in thermoplastic polyurethane,” Scientific Reports,
vol. 7, pp. 916 (1–9), 2017.

Journal of Advances in Applied Mathematics, Vol. 6, No. 3, July 2021 161

Copyright © 2021 Isaac Scientific Publishing JAAM


