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Abstract In this article, we develop a model of forecasting credit and debit of pension funds of the
NSIF in Cameroon. By using time series tools and relying on the ARMA model (Auto - Regressive
Moving Average), we appropriately analyze and predict the main existing credit and debit of funds.
The aim is to elaborate a model that is able to provide reliable information on credit and debit,
mainly on the financial balance of the regime in order to guarantee and also ensure the management
and financial planning of pension funds managed by the National Social Insurance Fund (NSIF) in
Cameroon.

Keywords: time series analysis, pension funds, credit, debit, ARMA, NSIF, forecasting and
planning

1 Introduction

The policy of retirements is nowadays one of the major concerns of modern societies, and for any national
economy. It appeared at the beginning of the 20th century in Western Europe and was essentially based
on the wage earning. The retirement systems have been set in Sub-Saharian African countries during the
colonial period ([5]). Equally some organizations were created to address the problem of social security.

In Cameroon for example, a pension fund is an autonomous entity in charge of providing services to
its members and to all the administration that is involved. It is managed by the National Social Insurance
Fund (NSIF) and contributes in supporting the workers of private and public sectors under a well-defined
labor code. The financial situation of the NSIF of Cameroon pension fund authority shows a deficit so far
since debit are more than credit. Alongside the accrued deficit can be added the problems of recovery
which is estimated in 2011 for more than 600 billion FCFA [5]. The main objective of this research work
is to develop a model and system of forecasting NSIF management in Cameroon. To address this problem
we will use the data of credit and debit of statistical yearbooks (2010-2016) obtained from the General
Directorate, Department of Studies, Communication and Translation (GDDSCT). For this end, we shall
provide ourselves with mathematical and statistical tools such as time series analysis, or chronological
series, that correspond to statistical data analysis techniques of the observations regularly spaced in time.
It is well established that the domain of application of these tools is vast and spreads from Astronomy
to Economics, passing through Biology or the Theory of Signal. They have also aroused a very keen
interest, which has led to the development of various models such as AR, MA, ARMA, ARIMA, SARIMA,
GARCH, the list is not exhaustive, for further reading see for example [7]. In this work, we use specifically
the ARMA model (Auto Regressive Moving Average) and techniques from Box and Jenkins book to set a
model that will allow us to adequately analyze the evolution of credit and debit of pension funds and the
NSIF in Cameroon. We finally use the R software, and the command “predict” involved in the algorithm
to carry out forecasting for the year (2017-2018). This article is divided into three main parts, the first
part describes the concept of time series analysis using the selected models; the second part focuses on
the application of the model and the third part will analyze the obtained results.
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2 Time Series Analysis

2.1 Univariate Process

White noise A white noise ut by definition is a stationary process with mean zero and constant variance
in the weak sense.

ut  N(0;σ2)

So, ut is a white noise if for all t ∈ T : E[ut] = 0; E[u2
t ] = σ2 <∞; E[ut;ut−h] = 0 with ut and ut−h

independents if h 6= 0 et (t− h) ∈ T .

Linear process There exists a series {ε}t∈R so that {yt} can be represented by:

yt = A(L)εt = (
+∞∑

j=−∞
ajL

j)εt =
+∞∑

j=−∞
ajεt−j (1)

Decomposition of Wold : Every stationary process in the weak sense with mean zero {yt}, admits the
following representation:

yt =
+∞∑
j=0

ϕjεt−j + kt (2)

where ϕ0 = 1 and
+∞∑
j=0

ϕ2
j <∞

The term εt is a white noise that represents the error made in foreseeing yt from a linear function of
its historic: Yt−1 = {yt−j}∞j=1; εt = yt −E[yt|Yt−1]. The variable kt is non-correlated εt−j , for all j ∈ Z,

although kt may be foreseen arbitrarily from a linear function of Yt−1:
+∞∑
j=0

ϕjεt−j Is a stochastic linear

component and kt is a deterministic linear component of yt.

Process of moving average

MA of order 1 We say that the following series yt is a process of moving average of order 1 and we
note MA(1), if it is generated by a white noise εt under the form:

yt = εt − θεt−1

= (1− θL)εt

The transfer function of the filter reduces to an only term. By a simple calculation, we can show that:

V ar(yt) = (1 + θ2)σ2
ε ; V ar(yt) > σ2

ε

Meaning that by modelling, we reduce the variance of the phenomenon which is by nature, the peculiarity
of every modelling.

Auto-correlation of yt. We can demonstrate that:

ρ(k) =


−θ

1 + θ2 si k = 1
0 si k ≥ 2

(3)

Now we can draw the Auto-Correlation Function ACF. This plot is called auto-correlogram. The partial
auto-correlation function exists in order to define to which extent of shift, there is a direct relation
between yt and the preceding values.
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MA of order q We say that the series yt is a process of moving average of order q and we note MA(q),
if it is generated by a white noise εt under the form:

yt = εt − θ1εt−1 − θqεt−q

= θ(L)εt

We suppose obviously that q is inferior to the number of observations. Auto-correlation of yt. We can
demonstrate that: {

ρ(k) 6= 0 si k ≤ q
ρ(k) = 0 si k > q

(4)

In summary: To recognise whether a series yt is a process of Moving average of order q, we first draw
the auto-correlogram of this series. For each values of correlation, we shall have an interval of confidence
on that value. If we can decide that till a shift q, those values are different from 0, and that they are
statistically different from 0, then we could say that the series follows a process MA(q). We can also
realise that such a series is stationary.

Auto-regressive processes

AR of order 1 We say that a series yt follows an auto regressive process order 1 and we note AR(1), if
we can write:

yt = φyt−1 + εt

εt = yt − φyt−1

εt = (1− φL)yt

where the series εt is a white noise. We can also notice that we do a regression of shifted series by 1 on
the series itself and the residuals are white noise. The function of transfer can be written as:

yt = εt + φyt−1

yt = εt + φyt−1 + φ2yt−2

yt = εt + φyt−1 + φ2yt−2 + ...+ φkyt−k...

The function of transfer has an infinite number of terms. If we come back to our formal writing under the
form of a polynomial, we notice that we have calculated the inverse of the polynomial (1− φL) and that

(1− φL)−1 =
∞∑

i=0
φiLi (5)

The variance of yt is obtained by simple calculations as follows:

V ar(yt) = σ2

1 + φ2 (6)

We perform the variance reduction through modelling under the condition that φ is taken in absolute
value less than 1.

Also we can show that as far as the auto-correlation of yt is concerned: Moreover, we can demonstrate
that ρ(k) = φ2 for k ≥ 1. We obtain two types of correlograms depending whether φ is positive or
negative.

Stationarity: the process AR(1) is stationary only if the absolute value of φ is less than 1, i.e : |φ| < 1.

AR of order p A series yt follows an auto regressive process order p and we note AR(p), if we can write:

yt = φ1yt−1 + φ2yt−2 + ...+ φpyt−p + εt

εt = (1− φ1L+ φ2L
2 + ...+ φpL

p)yt

εt = Φ(L)yt
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where the series εt is a white noise. Here again, we do a regression of p series shifted on the series itself.
Auto-correlation: For a process AR(p), we cannot say anything of its function ACF, if it is only for

ρ(k) 6= 0 for all k. It is in order to recognise an auto-regressive process that we have introduced the partial
auto-correlation function. The partial auto-correlation with shift k (PACF (k)) is defined as being the
correlation between:
The residual of the regression of the series yt+k by the series:yt+1, yt+2, ..., yt+k−1 and ;
The residual of the regression of the series yt by the series: yt+1, yt+2, ..., yt+k−1. In other words:

yt+k = α1yt+1 + α2yt+2 + ...+ αk−1yt+k−1 + u (7)
yt+k = β1yt+1 + β2yt+2 + ...+ βk−1yt+k−1 + v (8)
yt+k = Corr(u, v) (9)

We should understand that the partial auto-correlation is the correlation between yt and yt+k, once we
have explained those by the values between the both yt+1, yt+2, ..., yt+k−1.

Duality: We introduce a table of duality between process MA and AR:

Table 1. Duality between MA and AR

AR(p) MA(q)

ACF = 0 for all k >q
PACF = 0 for all k >p

We recognise that a series follows a process MA(q) if its Auto-Correlation Function ACF cancels
from a shift q or that it follows a process AR(p) if its Partial Auto-Correlation Function PACF cancels
from a shift p.

Mixed processes

ARMA processes We say that a series yt follows a process ARMA order (p, q) and we note that
ARMA(p, q), if we can write:

yt − φ1yt−1 − ...− φpyt−p = εt − θ1yt−1 − ...− θqyt−q (10)
Φ(L)yt = Θ(L)εt (11)

where the series εt is a white noise.

The process ARMA(1,1) While taking p = 1 et q = 1, the series follows ARMA(1, 1) an process if
we can write:

(1− φL)yt = (1− θL)εt (12)

The properties of an ARMA(1, 1) are:
• For the series yt to be stationary and invertible (i.e., that we may calculate εt according to yt), we must
have: |φ| < 1 and |θ| < 1.
• The ACF of an ARMA(1, 1) decreases exponentially from k =1, whereas the ACF of an AR(1)
decreases exponentially fromk = 0.
• The PACF of an ARMA(1, 1) resembles that of an MA(1) from k = 2.

We can say, roughly, that if we are not obviously in front of a process AR or MA, it is very likely to
find ourselves before an ARMA process.

ARIMA process A series yt follows an ARIMA process (Auto-Regressive Integrated Moving Average)
order (p, d, q) order, if it follows an ARMA order (p+ d, q):

Φ(L)yt = Θ(L)εt (13)
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where the value L = is root of order d of the polynomial Φ(L). We model the series then under the form:

Φ(L)(1− L)dyt = Θ(L)εt (14)

where the polynomial Φ(L) is the degree p and the polynomial Θ(L) is the degree q. We shall say that
the series yt follows an ARIMA(p, d, q) process.

Remarque 2.1 A yt series following the ARIMA process is not stationary since we must apply the
operator of differentiation to have a white noise generating it.

2.2 Principle of Construction of an ARMA Model

Principle of construction of a model The Box- Jenkins models where introduced [3] in the economy
in 1973 with an article having significant impacts. As its name implies those models contain two processes:
AR for Auto-Regressive and MA for Moving Average. Two parameters (p, q) defining the model: p is the
degree of auto-correlation and q for the degree of the moving average. The main problem is that of the
strategy of modelling, i.e the choice of parameters p and q. A process in three steps must be adopted.
• Identification: It deals with the analysis of functions of auto-correlations and partial auto-correlation

to see if the series is stationary or not; to see if the stationary process a white noise follows , a moving
average or an autoregressive structure; and finally to identify the order structures.
• Estimation: It consists to use the packages already available to evaluate the parameters of the

model. Those parameters must meet two conditions: they must be in the limits of inversibility and
stationarity. They must be statistically significant. If they do not meet those conditions, we should
restart the process. In this section the main interest is laid upon techniques of estimation and models of
evaluation.

The techniques of estimation and models of evaluation are:
- Criterion of log-likelihood: We examine the log of probability of results from the estimated parameters.
- Akaïke Information Criterion (AIC): statistics permitting to decide on the order of the model. The AIC
criterion regards both the quality of adjustment of the model to the observed series and the number
of parameters used in the adjustment. Seek the model describing the series adequately and whose AIC
criterion a is minimum.
- Schwartz Bayesian Criterion: statistics helping to decide on the order of a model. The SBC regards both
the quality of adjustment of the model to the observed series and the number of parameters used in the
adjustment. Seek the model describing the series adequately with a minimum SBC. The SBC is based on
Bayesian Criteria (Maximum of Likelihood)
• Diagnostic: The diagnostic is relating to the statistic adequation of the model. This one leans on

an analysis of remainders which must follow a white noise. A Q statistic allows to test if the set of the
auto-correlation process is different from the white noise.

Q(ddl) = n
k∑

i=1
ACF 2

i oÃź ddl = k − p− q

This statistic distributes according to a distribution of χ2.

Validation of the parameters of the model The tests that are undergone by the models are of two
types: the tests regarding the parameters φi and θi of the model and those regarding the hypothesis done
on εt.
• Tests concerning the parameters: To compare a formulation ARMA(p, q) with a formulation (p1, q1);

it is practical to be placed in the case where one of the models is a particular case to the other. We
suppose in the following that we start from an ARMA(p, q) model and examine the tests corresponding
to diverse values of p1, q1.
* p1 = p− 1, q1 = q. We want to check whether it is possible to reduce by one unit the number of delays
intervening in the auto-regressive part. This to test the significance of the coefficient φp, which can be
done with a test of Student type.
* p1 = p + 1, q1 = q. We want to check whether it is necessary to introduce an extra delay in the
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auto-regressive part. We must then estimate the model ARMA(p1, q1) = ARMA(p+ 1, q) and test in
this second model the nullity of φp+1. This obviously lead us to the previous case.
• Tests concerning the residuals: The issue is to know whether the hypothesis on normality and white

noise (independence of residuals are satisfied).

Choice of a model Several models might pass the verification phase et we must choose in that set. The
first thing to be done is doubtlessly to identify the «twins» models, i.e those corresponding in fact to
different representations of a model (or close models and that are equivalent for the forecasting having
chosen a representative in each twin class, we can be found at the head of several models really different.
The choice of a model will be then done according to some criteria.

Criteria of predictive power: The objective is to minimise the residual variance, to maximise the
simple and modified coefficient of determination. The coefficient of determination being defined as follows:

R2 = 1− σ̂2

v
, v which is the empirical variance of the differentiated series d times.

This is modified as follows: R2 = 1− σ̂2/(N − p− q)
v/(N − 1) .

Criteria of information: Another approach, introduced by AkaÃŕke, 1969, consists in assuming
that models ARMA(p, q) provide approximations of the reality and the true unknown law of observations
∇d

yt
Inevitably satisfy such a model. We can then base our choice of a model on a measurement of the

gap between the unknown law and the proposed model.
The measurement usually retained is the quantity of information of Kullback. Either f0(y) the unknown

density of observations {f(y), f ∈ Fp,q}, the family of densities corresponding to the model ARMA(p, q)
the gap between the true law and the model is measured by:

I(f0, Fp,q) = minf∈F

∫
ln
f0(y)
f(y) f0dx

The aim is then to find the p and q which minimise the estimator of this quantity of information. And we
propose some:
• AIC(p, q) = ln(σ̂2) + 2(p+ q)

N
; (Akaike, 1969)

• BIC(p, q) = ln(σ̂2) + (p+ q) lnN
N

; (Akaike, 1977)

• ρ(p, q) = ln(σ̂2) + (p+ q)c lnN
N

; (avec c > 2 (Hannan−Quinn, 1979)
Let’s note that only the estimations p and q deducted of the last two criteria are convergent to a

selection asymptomatically correct of the model for further details, see [10].

Forecasting A large number of phenomena changing in time, in an underlying, cyclic or irregular manner,
the statistic methods of analysis of chronological series permits to describe, decompose and foreseeing the
evolution of those phenomena either economic or meteorological or linked to a disturbance of a production
process. The R software besides its graphic possibilities of a large number of functions allowing the
exploitation of chronological data.

The necessary conditions being sufficient (stationarity, white noise etc), we proceed to the forecasting
which deals greatly with several economic structures. Having observed y1, y2, ..., yn, we can foresee that
the future values yn+1, yn+2... For that we shall essentially use the decomposition models to do the
forecasting, and the methods of this work aim to do forecasting in the short term. We understand then by
forecasting to the horizon h which provides an evaluation of the value of the series on the datet = n+ h
(n=number of observations)

Error of forecasting Generally having carried out forecasting of the series at certain horizon, it is
appropriate to estimate their errors in order to appreciate the performance of the model. Thus, we can
then represent the errors of forecasting and calculate the amount of errors of forecasting squared called
MSE (Mean Squared Error) define by:

MSE =
n∑

t=1
err2(t)
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where err(t) = (yt − ŷt) are called errors of forecasting which must be minimal for a good model.

3 Applications and Simulations

In this section, we shall proceed with direct applications on the real data of credit and debit of pension
funds of the NSIF. We adopt the approach proposed in [3] by Box Jenkins to model a chronological series
presenting quite a few factors with all the necessary conditions besides, with the help of an ARMA(p, q)
model. We apply then the packages available in the R software to forecast the series in a horizon h to be
determined.

3.1 Presentation of the Data

The data submitted to our study are the collection of the credit and debit of the PVID branch contained
in the statistical yearbook of the NSIF Cameroon. They are given in months and calculated in billion
francs CFA. Also They represent a sample of data collected over seven years taken from 2010 to 2016.

The credits The following table gives in billion francs CFA and by months, the credits of the pension
funds of the NSIF (from 2010 to 2016).

Table 2. The credits

2010 2011 2012 2013 2014 2015 2016

January 2,168 4,438 4,642 2,843 2,843 2,843 5,781
February 3,181 1,256 1,954 4,842 1,642 1,845 7,507
March 5,181 4,025 5,425 2,745 1,225 3,545 4,854
April 3,931 5,152 5,602 3,845 3,845 5,543 3,516
May 2,381 3,548 4,245 6,452 2,954 2,605 7,845
June 3,161 2,685 1,856 4,985 5,845 6,842 6,145
July 1,505 4,454 6,514 2,895 6,851 4,315 8,648
August 2,109 1,964 3,335 3,654 2,364 3,854 6.845
September 5,523 5,543 4,985 5,845 2,845 5,654 5,945
October 8,337 7,284 4,985 7,235 8,554 6,464 9,654
November 4,085 2,841 1,287 1,264 3,684 1,541 6,257
December 2,495 3,685 3,508 3,254 4,657 4,34 4,608

Total 44,057 46,875 48,338 49,859 47,309 49,391 77,605
(Source : statisticals yearbook − NSIF − 2010 − 2016)

Table 3. Characteristics of credits

Average variance standard deviation max min extent

4.055 3.85447 1.96328 9.654 1.225 8.429

The debits The following table gives in billion francs CFA and by months, the debits of the pension
funds of the NSIF (from 2010 to 2016).
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Table 4. The debits

2010 2011 2012 2013 2014 2015 2016

January 4,543 5,158 6,452 3,365 6,158 3,158 7,025
February 2,654 2,645 2,354 5,215 2,344 2,154 6,154
March 5,688 4,985 5,152 3,254 4,325 3,284 5,125
April 3,915 3,654 4,268 3,854 6,216 5,168 6,125
May 4,385 5,454 3,354 7,368 3,215 3,258 4,258
June 2,034 3,154 3,294 5,295 6,802 6,348 7,154
July 3,818 5,921 5,345 3,158 7,254 5,258 4,318
August 3,615 3,542 4,365 5,645 3,158 3,154 6,215
September 5,524 5,963 5,235 5,134 3,645 5,157 4,258
October 7,524 2,452 5,845 6,259 7,166 7,365 8,155
November 3,145 4,845 2,366 3,294 4,215 3,125 5,214
December 5,254 6,658 5,365 6,158 7,658 6,315 10,612

Total 52,099 54,431 53,395 57,999 62,156 53,744 74,613
(Source : statisticals yearbook − NSIF − 2010 − 2016)

Table 5. Characteristics of debits

Average variance standard deviation max min extent

4,862 2,742844 1,656153 10,612 2,034 5,578

3.2 Study of the Normality

We present in this paragraph the normality tests of real data by the test of Shapiro, so the package
is available in the software R and explained in [1]. The table 6 contains values of tests and critical
probabilities of the normality test of Shapiro. Let’s remind that the null hypothesis H0 is the normality
and the alternative hypothesis H1 is the non normality. We reject the null hypothesis if the critical
probability is lower to a risk α generally fixed at 5%. At the threshold of α = 5%, only the credits pretend
to be normal, due to their critical probability Pc = 0.0527, which are higher than α. The expenses, having
a critical probability Pc = 0.01713, will in practice need other transformations that can normalise them.
We can also check this test using histograms or by using box plot, thus the concentration of observations
around the average testifies of the normality of the data. For example, in the box plot diagram, we notice
that the blue band of credits is quasi-central and the near the average value (4,055), which shows their
normal character.

Table 6. Normality test of Shapiro

Series Statistic value of the test Critical probability

Credits 0.97075 0.0527
Debits 0.96332 0.01713

3.3 Stationarity

This paragraph we check whether our data are stationary or not. To this end, we use the Augmented
Dickey-Fuller test. Let’s remind that with the Dickey-Fuller test, the null hypothesis is the non-stationarity
by default. We reject it then if the critical probability is lower than the threshold α, which is generally
fixed at 5 %. The following table 7 summarize the main characteristics of this test.

At the threshold α = 5%, every critical probability of the stationarity test of Dickey Fuller presented in
the table below are lower to this value. Which means that all our series are stationary. Let’s remind that
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Figure 1. Box of credits

Figure 2. Box of debits

Table 7. Critical probability of the Dickey-Fuller test

Series Statistic value of the test Critical probability Decision

Credits -3.4776 0.04907 Stationary
Debits -4.4867 0.01 Stationary

a stationary series fluctuate around an average value and its auto-correlation function declines quickly
towards zero.

3.4 Seeking the parameters p, q

We present the correlograms issued in the studied series. The adequate analysis of correlograms, allows us
to determine those maximal orders of p and q of Auto-Regressive and the Moving Average parts of the
model respectively. Actually those are, the ranks to be counted from 0 to the ACF (which determines qmax)
and from 1 to the PACF (which determines pmax) after which threshold of estimated auto-correlations
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of the process are non-significant to the threshold of 5%. Graphically that is illustrated by two dotted
line bands in blue determining the confidence interval of estimated coefficients of those parameters. The
reading of the stationary series correlograms give the table 8 which recaps the orders maximal p and q
read on these latter.

Figure 3. Correlogram of credits

Table 8. Maximal orders of p and q

Orders p q

Credits 6 7
Debits 6 7
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Figure 4. Correlogram of debits

3.5 Estimation of the Model

On second thoughts, every series being stationary, it is our task to find the “good” couple (p, q) compatible
with the data and to be estimated with an ARMA(p, q) the coefficients of the model then chosen. The
model could then be written:

Φ(L)yt = Θ(L)εt

where εt is a white noise of variance σ2 and Φ(L) = 1−φ1L−φ2L
2− ...−φpL

p, Θ(L) = 1 + θ1L+ θ2L
2 +

...+ θqL
q with φ1, φ2, ..., φp; θ1, θ2, ..., θq and σ2 are the parameters to be estimated. For the methods

of estimation of those parameters (cf [3]). Very delicate and expensive exercise since the significance of
the parameters p et q must be tested, and to verify the hypothesis of noises of residuals. The table 9
summarizes the characteristics of the estimated models at the end of this work.

Table 9. Estimated models

Series Estimated models Box-Ljung AIC

Credits ARMA(6,7) 0,1197 358,5
Debits ARMA(6,1) 0.1741 328,16
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3.6 Validation of the Model

The analysis of the residuals shows that they are compatible with the hypotheses of white noise. Let’s
keep in mind that the hypotheses of this proposed test by Box-Pierce and improved by Ljung-Box [3] is:
H0: ε̂t is a white noise against the alternative hypothesis H1: ε̂t is not a white noise. At the threshold
α = 5%, every critical probability of table 9 above are higher than this value. Likewise, the totality of
residuals are from Gauss point of view white noise, all the models above are validated, but the question
that one asks is to know if the estimated coefficients of those models are significant? Which leads us to
analyse the following tables containing estimated coefficients.

Table 10. Coefficients of credits

orders ar1 ar2 ar3 ar4 ar5 ar6

coefficients 0.2314 0.2278 0.2545 -0.2344 -0.3242 0.6835

orders ma1 ma2 ma3 ma4 ma5 ma6 ma7

coefficients -0.0807 -0.2631 -0.1468 0.4514 0.5379 -0.6213 -0.2891

Table 11. Coefficients of debits

orders ar1 ar2 ar3 ar4 ar5 ar6 ma1

coefficients 0.0256 0.1020 0.0724 0.1243 -0.088 0.3100 -0.1559

The exploration of estimated coefficients generally presents their significance. That’s why it is very
important to note that with the program of AIC criterion set up, we also obtain a standard deviation σ
generally minimal which is one the most powerful criteria of choice of parameters p and q too. Our model
can generally be written as:

Φ(L)yt = Θ(L)εt (15)
with Φ(L) = 1− φ1L− φ2L

2 − ...− φpL
p; Θ(L) = 1 + θ1L+ θ2L

2 + ...+ θqL
q; p and q chosen in the

table 8 of the corresponding value.

3.7 Forecasting

The main objective of the approach taken in this chapter was to forecast credits and debits of the NSIF
pension funds. A large number of criteria being followed by our data, we think carrying out forecasting in
a two-year horizon is possible. Either from 2017 to 2018. For this end, by using the R software, we obtain
the following graphs and tables, with their forecast values and the forecast intervals.

According to the analysis of these tables, we found that the financial equilibrium observed in 2016
will be maintained until 2017 with a settlement of 892,906 millions FCFA. However, the imbalance will
reappear in 2018 again, with a deficit of approximately 2,375 billion FCFA. On the account of these
results, it is extremely important, to find management strategies and financing of funds, in order to
anticipate on the future situation of the funds.

The figure 4 represents the temporal dynamic of forecasting. The curve in blue represents the evolution
of credits. While that in red represents the evolution of debits. We can then from those two curves, see at
which precise moment a deficit can occur or not.

3.8 Qualitative Analysis of the Forecasting

The objective of this section is to study the quality of model forecasting.
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Table 12. Foreseen values of credits

Months Lower bound Forecasting Upper bound

Jan 2017 5,707779 6,568132 7,428484
Feb 2017 5,232856 6,121807 7,010759
Mar 2017 5,705094 6,622364 7,539633
Apr 2017 6,422133 7,367448 8,312764
May 2017 6,155569 7,128666 8,101763
Jun 2017 6,332070 7,332691 8,333312
Jul 2017 5,756699 6,784594 7,812489
Aug 2017 4,080789 5,135714 6,190640
Sep 2017 5,842692 6,924411 7,006130
Oct 2017 7,176252 9,284534 10,392816
Nov 2017 4,417646 4,552302 5,686958
Dec 2017 4,251726 5,412500 6,573274

Total 67,158648 79,235163 91.054985

Jan 2018 6,381454 7,534842 8,754809
Feb 2018 5,909435 7,584211 8,334180
Mar 2018 4,384501 5,854741 6,860227
Apr 2018 6,104293 7,321562 8,630603
May 2018 6,840414 7,896512 8,416918
Jun 2018 7,019532 8,254136 9,645850
Jul 2018 6,446714 7,251384 8,122475
Aug 2018 4,773294 5,452305 6,498134
Sep 2018 6,537629 7,054842 8,311193
Oct 2018 7,873565 9,856145 10,695503
Nov 2018 2,117281 4,895426 5,987322
Dec 2018 2,953629 6,254865 7,871371

Total 75,950456 85,210971 95,751268

Figure 5. Time evolution of forecasting

Method

The study of this quality is generally done through a good analysis of the theoretical model used to fit
the data.

The idea consists to suppose that we have n consecutive periods.
• We suppose that the theoretical model can be applied with k periods, k < n.
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Table 13. Foreseen values of debits

Months Lower bound Forecasting Upper bound

Jan 2017 5,116231 6,803078 7,489925
Feb 2017 6,124826 7,826647 8,528468
Mar 2017 7,133421 8„850216 9,567011
Apr 2017 4,42015 5,873784 6,605554
May 2017 5,150609 6,897353 7,644097
Jun 2017 4,159203 5,920922 6,682640
Jul 2017 6,167797 7,944490 8,721184
Aug 2017 7,176390 8,968059 9,759728
Sep 2017 4,184983 5,991628 6,798273
Oct 2017 6,193575 7,015197 8,836818
Nov 2017 7,202167 8,038765 9,875363
Dec 2017 6,210759 7,062334 8,913909

Total 67,156482 78,342257 89,851564

Jan 2018 8,219350 9,085903 10,952456
Feb 2018 4,227940 5,109471 6,991003
Mar 2018 6,236530 7,133040 8,029550
Apr 2018 7,245119 8,156609 9,068098
May 2018 5,253708 6,180178 7,106647
Jun 2018 6,262296 7,203746 8,145197
Jul 2018 4,270883 5,227315 6,183747
Aug 2018 6,279469 7,250884 8,222298
Sep 2018 7,288055 8,274453 9,260850
Oct 2018 7,296639 8,298021 9,299403
Nov 2018 5,305223 6,321590 7,337957
Dec 2018 8,313806 9,345159 10,376511

Total 76,453619 87,586369 98,564208

• We compare the theoretical period of forecasting for the k + 1 to n with the real data of k + 1 to n.
• We measure concretely the error margin between the theoretical model and the real data.

Application

We apply here, the theoretical model of forecasting on the data of credits and debits from 2010 to 2015.
We can then check the margin error between the theoretical model and the real data.

The results obtained at the end of this work, are deposited in the following figures. These are the
screen shots of the scripts in the console of the software R.

The obtained results from the theoretical model are very much closed to those of the real model (data).
We can confirm that the margin error between the theoretical model and the real data is very small.

4 Conclusion

In this article, we deal with modelling a system of forecasting credits and debits of the pension funds
of the NSIF Cameroon. This research has helped us to get involved with the chronological series in
their whole set and especially in their prediction aspect. The ultimate goal in our context is to obtain
a reliable prediction fitting the arrangement between the knowledge of the problem of a given system,
the understanding of the internal and external influences and the adequate responses to the concern
related to the approach being used. We were able to perform a prediction in a two-year horizon starting
from 2017 to 2018. We wish to extend our investigation by associating in this approach some additional
internal as well as external factors, that can influence the evolution of our variables or chronological series.
In this respect, we have to consider the number of retired people, the number of subscribers, the rate of
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Figure 6. 2016 credits

Figure 7. 2016 debits

the subscription, the age of the departure to retirement, the evolution of the life expectancy and many
others. This will allow us to put in place a more sophisticated model of forecasting credits and debits of
the pension funds of the NSIF in Cameroon and in developing countries as a whole.
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