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Abstract In this paper, we examine a problem of pollutant transport described by a nonlinear
parabolic Partial differential equation (PDE) on a planar domain with obstacles. We then establish an
existence and uniqueness result for this corresponding problem with Neumann.boundary conditions.
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1 Introduction

The propagation of pollutants in a river obeys to the physical laws of transport which consider that the
concentration c(t,z) at a point x at time ¢ measured in term of oxygen demand satisfies the following
partial differential equation

% —V.(AVe)+V.Ve+ F(c)=f in]0,T[x 2 (1)
where £2 is a R? bounded domain which represents the surface of a portion of a river. The domain {2 is
supposed to be of a complex geometrical form that can contain obstacles and we shall assume that the
study domain satisfies the Lipschitz boundary condition. In the above equation, the term A designs the
pollutant dispersion coefficient, V is the velocity field of the fluid in the river, F(c) is a non-linear term
that describes the phenomen on of chemical reaction due to the presence of pollutants in the river and, f
is the source term.

In addition to equation (1), following Neuman boundary and initial conditions are considered to
complete the description of the problem:

oc

a—n:gon ]O,T[xFlLJFg (2)
%:OOD]O,T{XFQUF4UF5 (3)
c(0,z) =co(x) e (4)

where the boundary of (2 is split into I3, with i = 1,2,3,4,5 (see figure 1) and where g and ¢ are given
functions. Here g represents pollutants concentration flow between two portions of the boundary Iy and
I3, while ¢g is the initial concentration in all the domain f2.

This is a diffusion-reaction -convection problem that belongs to the class of nonlinear parabolic Partial
differential equations system. For these such problems, many papers have already been published (see for
example [1,?]). The most frequently seen approaches start out by seeking some form of weak solution as a
limit in some large space with the equation interpreted in a quite generalized sence (weak solution) and
then look for regularity results to hope these are solutions in something closer to a classical sence. For
the existence and uniqueness of these types of problems, two approaches seem to stand out. The first
ones is based on the use of semi-group theory which is mainly interested in finding strong solutions while
the second approach uses the fixed point theory via a weak formulation of the problem. In this paper,
we state and demonstrate the existence and uniqueness of a weak solution of our problem , using an
approach quite similar to that already used in [2] for the study of lakes sedimentation problem.
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Figure 1. An illustration of the boundary of the study domain representing the surface of a portion of river with
obstacles in the form of islets.

2 Main Result

Suppose that the solution of the system (1) - (4) is sufficiently regular. Then, multiplying equations (1)
and (4) by ¢ € H'(£2) and, integrating over the domain, we finally obtain following weak equations

% /Q o6+ /Q AVeVé + /Q Glo)p = /Q fé+ /F | gear (5)

/QC(O,.)gb:/Qcoqﬁ (6)

V¢ € HY(R2). In (5) dI" denotes the surface measurement and we have set
G(c) =V.Ve+ F(e). (7)

In the following, a function c¢ is said to be a weak solution of the problem (1)-(4) if it satisfies (5)-(6).
Furthermore, we will assume following hypotheses.

Hypothesis 1 Functions g, ¢y and F are assumed to be differentiable with respect to each of their
arguments.

Hypothesis 2 Function G satisfies growth condition
(Glu) —G())(u—v) >0, Yu, veER (8)

and
G(0) =0. (9)

Our main result is the following.

Theorem 1 According to hypotheses 1 and 2, there exists c € C°(0,T; H*(2)) a unique weak solution
of (1)-(4) that satisfies the weak formulation (5)-(6).

3 Proof of the Theorem 1

We prove this theorem in three stages.
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3.1 Step1
H(£2) being a separable Hilbert space, it admits a Hilbert basis {¢;} that satisfies

/ pip; = 0ij (10)
2

For fixed k, , we set Vi, = span{p1, 2, ..., o1} a finite dimension subspace of H!(£2) and we look for
cr € C(0,T; V) that satisfies

d
LAy - / AVer Vg + / Gler)pi = / Foit / Agprdl’ (1)
dt g 0 0 Q Ul

/ e (0)p = / cops (12)
0 0
Voi=1,..k

Searching solutions of (11)-(12) leads to determine coefficients cy;(t) such as ¢k (¢,.) = Z?:l ek (t) ;.
Replacing this expression in equations (11) and (12) yields the following Cauchy system

k k
d
arcmi(t) = _chj(t)/ AV; Vi _/ G D et | v
dt j=1 2 2 =
+/ fs0i+/ Agpidl, i=1,..,k
1Y) I'nuls

Cki(O) = / CoPi, = 17 ,k (14)
2

Thanks to hypotheses 1 and 2, the second member of the equation (13) is differentiable with respect to
each of its arguments. By Cauchy-Lipschitz theorem, it follows that the system (13)-(14) admits a unique
solution. We have therefore shown that there is a unique solution ¢, € C°(0,T; V) satisfying (11)-(12).

(13)

and

3.2 Step 2

Having established the existence of a sequence of functions ¢, € C°(0,7T;Vy) (11)-(12) we try to establish
here some a priori estimates.

An a priori estimate of V¢, Multiplying each equation of (13)-(14) by cx;(t), then summing over j,
we obtain for all ¢

1d
—— (ck)2—|—/ /\|Vck|2+/ G(ck)ckz/ fck—i—/ Agerdl” (15)
2dt Jo Q Q Q Murs

Thanks to hypotheses 1 and 2, ones obtains

CZ/Q|Ck(t)|2+/Q|VCk(t)|2§U(/Q|f||ck(t)|+/BQ)\|g||ck(t)|dF) (16)

where o is a positive constant. By successively applying the trace theorem, Cauchy-Schwartz inequality
and Young inequality we obtain

d
Zler®)22() + 1V er®I? < o (I 320) + lgllEar) + lex @) (17)

Integrating over [0, T'] we obtain

T T
(T + / IVex ()220 < lewolZaa +0 ( / T

T T
4 / 912 + / e ()l20
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T
Knowing that Hck(T)Hig(m < / Hck(t)||2L2(Q) and ||ck0||%2(m < ||COH2L2(Q) we finally deduce
0
IVer(®)llcoo,rsz22)) < & (leollzzey + 1 flleoo. iz @) + llglleoo. iz ry) (18)
where k is a positive constant.

An a priori estimate of ¢, Counsidering again the inequality (16) ones can deduce

d 2
@ <o ([ 1la@l+ [ Adieor)

and, thanks to Cauchy-Schwartz inequality we obtain

d
e Ola <o ([ 1714 [ Nalar).
2 o0

Thus, integrating over [0,¢] for all ¢t < T, its follows

T T
lex(®) 2o < & <||60||L2(9) + / 1z + / ||9||L2(F)>

for a positive constant k. This last inequality finally implies
T T
leullovoazian < (leolzacon + [ 17lzzcay+ [ laliacr ) (19)
0 0

3.3 Step 3

The existence According to the a priori inequalities (18) and (19) the sequence (ci) is bounded in
C°(0,T; H'(£2)) , then it follows that it admits a subsequence also denoted by (c) such that

cx, — ¢ weakly in C° (0,T; H'(02)) (20)
and by the compact injection property
¢, — ¢ strongly in C° (0,73 L?(£2)) . (21)

Now consider a function ¢ € H'(§2). As (¢;) is an Hilbert basis of H(2) then there exists a sequence of
reals (a;) such that

k
ve =Y aipr — ¢ in H'(£2), (22)
i=1
On the other hand, from (11) and (12) we also have
d
— [ cpug +/ AVer. Vg +/ G(cg)vp = / fuk —|—/ AguidI’ (23)
dt Jq 19 0 0 Ul

/Q cr(0)vy, = /Q Covk.- (24)

Then, thanks to (20), (21), (22) and passing to the limit in these above expressions, ones finally obtains

% /Q o6 + /Q AVe. V6 + /Q Glo)p = /Q fé+ /F | gear (25)

[ 0o [ e (26)

for all ¢ € H'(£2). This establishes the existence of a weak solution of the problem (1)-(3) in C° (0, T; H(£2)) .
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3.4 The Uniqueness

Suppose there exists two functions u(t) and v(t) weak solutions of the problem (1)-(3). Then replacing
these functions in equation (5) we obtain

d
G |y =vno+ [ Ao - v®).vo+ [ Gt~ ot)e =0

for all ¢ € H'(£2). By setting ¢ = u — v this equation becomes
d 2 2
gl = vllze@) + [ AV@-v)F+ | Glu-v)(u—v)=0 (27)
Q Q

Due to hypotheses 1 and 2, / NV (u—v) > + / G(u —v)(u — v) > 0. Thus this above equation yields
2 7

d
aﬂu — || < 0. Therefore the function ¢ — [|u — v||L2() is decreasing. It then follows

[u(t) = v(®)llL2(2) < [1u(0) = v(0)]|L2(02)-

By equation (6), we can see that |[u(0) —v(0)||2(o) = 0. Then we deduce for all t > 0, [Ju(t) —v(t)||12(2) =
0. This establishes the uniqueness of the solution.

4 Concluding Remarks

In this paper, we have stated and demonstrated the existence and uniqueness of the weak solution of the
problem (1) - (4). These results will allow us to solve this problem numerically.
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