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Abstract. In this paper, Bayesian approach based on Markov chain Monte Carlo (MCMC) to (fully)
Semiparametric regression problems is described as a mixed model using a convenient connection
between penalized splines and mixed models. We investigate the inferences on the model coefficients
under some conditions on the prior, as well as studying some properties of the posterior distribution
and identifying the analytic form of the Bayes factors.
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1 Introduction

Semiparametric regression models have been investigated by many researchers. Lenk (1999) presented
the Bayesian inference of a semiparametric regression model using a Fourier representation[6]. Natio
(2002) studied semiparametric regression with multiplicative adjustment[10]. Also Brezger et al. (2002)
investigated and analyzed Bayesian semiparametric models[1]. Ruppert et al. (2003) introduced
semiparametric regression models based on penalized regression splines and mixed models[12]. Tsiatis
and MA (2004) studied locally efficient semiparametric estimators for functional measurements error
models by defining after projecting the score vector with respect to the parameter £ on to the

nuisance tangent space for the nonparametric conditional distribution of X given Z , where Z is the
predictor variable measured precisely[14]. In (2007), Yuan and DE Gooijer presented semiparametric
regression with kernel error model[16]. Also in (2007), Jensen and Maheu studied bayesian
semiparametric stochastic volatility modeling[3]. Choi, Lee and Roy (2008) investigated the large sample
property of the Bayes factor for testing the parametric null model against the Semiparametric
alternative model[2].

Wand (2009) presented semiparametric regression and graphical models[15]. Tarmaratram (2011)
proposed a robust estimation method in semiparametric regression models for penalized regression
splines that can be used in the presence of outliers in the response variable, and studied a robust version
of the model selection criterion AIC, Akaiki's information criterion for regression models where S- and
MM- estimators are used for estimation[13]. Pelenis (2012) studied Bayesian semiparametric regression
that considered a Bayesian estimation of restricted conditional moment model with linear regression as a
particular example[11]. Mohaisen and Abdulhussain investigated Bayesian semiparametric regression
based on penalized spline[7-9].

This paper came to shed light on the semiparametric regression model which has two parts, the
parametric (first part) is assumed to be linear function of p-dimensional covariates and the
nonparametric (second part) is assumed to be a smooth penalized spline, as well as the error term which
has normal distribution with mean zero and variance of. We can represent semiparametric regression

model as a mixed model by using a convenient connection between penalized splines and mixed model.

In this paper, Bayesian approach based on Markov chain Monte Carlo (MCMC) to (fully)
Semiparametric regression problems is described as a mixed model using a convenient connection
between penalized splines and mixed models. We investigate the inferences on the model coefficients
under some conditions on the prior, as well as studying some properties of the posterior distribution and
identifying the analytic form of the Bayes factors.
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2 Description of the Problem and the Prior Distribution

Consider the model:

P
=D B, +9(x,, )+e,i=12..n (1)
j=0

p
where Z ,Bjxﬁ is the parametric part which assumed to be linear function of p-dimensional

covariates, g(xpm.)the nonparametric part and the unobserved errors ¢ ,¢,,...,&, are known to be i.i.d.
normal with mean zero and covariance azln with o-j unknown. By using penalized spline of degree q

for the model (1) we get:
y _Zﬁ/ Ji zﬁp+/xp+ +zu ]1+11_ q +8 Z—l2 (2)
i=

,k,, are inner knots a <k <..<k <b . By using a convenient connection between
penalized splines and mixed models, the model (2) is rewritten as follows:
Y=XpB+Zu+e¢ (3)

where Y has length n, X is a nx(p+¢+1) design matrix of pure polynomial component of the

where k...

spline, Z is a n x K design matrix of spline truncated functions, B is a(p+ ¢+ 1)-vector of parameters
of pure polynomial component of the spline, u is a K - vector with spline truncated functions, and the
vector of error term & has length n, gij (0,6°1).

Assume that u and & are independent and the prior distribution on u, 7z, (u) is N(0, 0'3]), the
prior distribution on the parameters vector B, x,(f) is N(0, 0';] ), and we will assume that the prior
distribution on o?, 7 (0?) is inverse gamma IG(e,,f,), also we assume that o’ ~ IG(a,,f,), where

the hyperparameters «_,f, ,«, ,f, that determine the priors and must be chosen by the statistician.

3 Posterior Distribution

From the model (3) we have

Y|6,0%,0° ~ N(CO,0°1) (4)
where, C'=[X Z] and @ =[f u]". Then, the likelihood function L(Y |0,07,07) is
-1/ .
LY |0.6%.0%) «|o?| " exp{-L(¥ - COY (o°1,)" (v - CO)} (5)
Then, the posterior distributions of the vector of coefficients 6 and the error variance of and O'i
are
7 (0|Y,0,07)c LY |0,07,0°)7,(0) )
= 7,(0]Y,07,07) x exp (-1 (Y = CO) (21, ) (Y - CO)} 7,(6) (
and
-1/ .
70" |Y.0.6%) x|o?| " exp{-L(Y = CO) (o°1,)(V - CO)} 7,(57) (7)
-1/
70" |Y.0.6%) x|o?| " exp {-L(¥Y = CO) (671, (V - CO)} 7,(c7) (8)
From (6) we can see
2 2
0| Y’O_s’o-u - N(ﬂe\yxaj,af’zs\y,aj.af ) (9)
where
-1
ﬂ@ﬂ’.cff,of = {z A} {O-:]n + [z ACTC}} CT (1())
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Zg‘y<6§‘63 -
and

TA-SACT [P +[ZACTC] {CA)

s=|% O acffom O
0 o 0 I
then

n—(p+q+1)

2
S A= ol 0
0 o’

u” n—(p+q+1)

Now, by spectral decomposition we obtain C'C = PDP" [4], where D = diag(d
eigenvalues and P is the orthogonal matrix of eigenvectors. Thus

P 5[;+ +1 O
o'l +XAC'C=0PI + [0(1 DiP”

,.yd ) is the matrix of

(12)
7/[717(p+q+1)
O'; 0'2
where, 6 =—= and y =—. Then, the conditional density of Y given 0' ,0 and ycan be written as:
o o
5 1
m(Y | o%.6.7) -
s ol ., 0
(2ro?)* det| I +| " D
0 ylrz,—(p-%—q-%—l)
-1
ol 0
exp _L{)YTP ]n +{ prg+l JD PTY
20—5 0 yjnf(pwﬂ)
_ 1 1
- (27[0'2)n/2 prg+l 1/2 n 172
’ { [1+§di]} { IT o+ ydi]}
i=1 i=p+q+2
(w8 e &
exp< — — + :
p{ 20'52 ( ; 1+4dd, i:pzﬂ:’+21+7dl_
where s = (s],...,sn)T =P"Y.

Theorem 1. The joint posterior density of 6, y given Y is

)
Gp,(?

b/2 511 1 B,
7(8,7|Y) y(

pHq+l -1/2 n 172
ﬁ[ I1a+ 5di)) [ IT a+ 7d7f)J
i=1
[ p+g+l 2

i=p+q+2

(13)
oo £ ]

i= p+q+21+ 7/d]

Proof. Since 6 ~ Gamma(er_,f.), y ~ F(b,a) [5]

@7 |Y)=[m(Y |02,8,7)f(8,a,,B)f(r.b.a)f(c>,a,, B)

= i=p+q+2 ﬁgr(ab) ﬁg

-1/2 -1/2 9 9 a,-1
1 p+q+l n o o 5
:J.<2”O_2>n/2( (1+5d1)] ( H (1+7/d1)] . [ . ]
c i=1
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1 pg+l 8,2 n 3.2 O' 5 bb/2 a/2 (b/2)-1
eXp 9 Z ‘ + Z : 7/ (a+b)/
20—5 i=1 1+ 5dz i=p+q+2 1+ 7dl ﬂ ﬂ(b a’) ((Z + b}/)

ﬂg i (O_;Z)f(afﬂ) exp {_IB_;} dO'j

o

&

U/,J

n/2 (O-ﬁé‘)a -1 I bb/Qaa/2 }/(b/Q)—l
(F(ag)) pb.a) (a+ by)—(rz+);)/2

il -1/2 . -1/2
o [H (1+6d,) J [ I (1+7di)j

i=p+q+2

pEgtl 1 s’ 2\—(n+2a,_+2)/2
ox B N o n+2ea, + d 2
p{ 202{/’75 ;1+5d lgq:+21+7dj}( )
5)0‘;' e P b2 g2 },(17/‘2)*1
(C@)f  Aa) (@ by) "

prgil -1/2 N -1/2
jﬁ( (1+5di)J ( 11 (1+7dl,)J

i=p+q+2

1 25 P*Zqill s° i 5’
exp<— + —+ .
P 20° ¢ o 1+ 502- iprg2 L+ 7/di

(n+2a5+2)/2

= (27)°

( )(n+2aﬁ_+2)/2

ptg+l 52 n 82

b+ z 1+15d " 7;:;+21+7;/d{

1+ 5d e+ yd

—(n+2a,+2)/2
p+g+l n 52 )
2B, + Z Z do;

2

055
(b/2)-1 aﬁ—l B, prg+l -1/2 . -1/2
4 o 1
oc ‘ 1+ dd. | | 1+ yd
(a + b]/) (a+b)/2 J‘ (272_0_2)71,/2 [ ][:l[ ( z)j [i_pﬂﬁg( l)J

pHg+l n 5_2
2P+ Zl od, 11§+21+}/di

[(n+2a,+2)/2]-1

=

28 + R d
= 1+0d e l+yd
20"

—(n+2a,+2)/2
p+q+1 n 5_2 )
i
26+ 2 > do;

1 é‘d i=p+q+2 1 + j/d]

rtd
y(b/Z)*lé‘% *161‘% pHq+l /2 n 172
oo —————T((n+2a, +4)/2)| [] 0+5d,) [T @+yd)
i=1

(a + b7) (a+b)/2 i=p+q+2
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—(n+2a_+2)/2
prarl g n §2 ‘

20 + — + :

[ P ; 1+ 4d, ,-_gq:+21+ydj]
625

b/z 150! 1 B, [ prq+l
(8,7 Y) ot e
1 ( b}’) (a+b)/2

[ p+q+1

n+2a +2)/
i= p+q+21+}/d J

Theorem 2. The posterior mean and covariance matrix of 9 are

51++1 0
E@|Y)=AP E{[I +|
n 0 }/

-1/2
(1 +9d, )] [

[1

pHq+2

-
]D} |Y+C's
)

n—(p+q+1
and
[ ( Zq: u 2
=1 +6d i= l+(+21+7/d1'
Var(@|Y) = ———E e A
n+2a, +2 Y
1 reasl 6P n s
—————AC'P E|2B +| D, ——+ Y —
n+2a, +2 ¢ o 1+od 1+ yd,
51 +q+1 O )
I+ D| |Y|PCA+
0 y1n,—(p+q+1)
-1
T 5IJ+ +1 0
E<AC'P In + r D S
0 }/[n—(erqul)
Proof.

BO|Y) =, ={SAHoT, + [ZACTC]}% cy

1
5] +q+1 O
=YA{GP|I +| plpl oty
O 7/]71,—([;+(1+1)
-1
ol 0
=£A(pT)*1 I+ o Dt P'C'Y
O-j ' 0 7I7zf(p+q+1)

-+ P is the orthogonal matrix of eigenvectors, then P~
Therefore

5]++1
E@|Y)=AP 1’0‘7
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5‘[ +q+1 0 )
_ap w1 o[ D| |YC's
0 7

5[ D+q+1 0
where the expectation E<| 1 +| "™
" 0 121

n—(p+q+1

-1
JD} | Y+ taken with respect to z,(d,7|Y). By
)
following the same way we can prove the variance of (6 |Y) o

4  Model Checking and Bayes Factors

We would like to choose between a Bayesian penalized spline semiparametric regression model as a
mixed model and a Bayesian penalized spline semiparametric regression model with known coefficients
by using Bayes factors for two hypotheses

P q
. _ _ q
HO'yi_ /'Tn 2//+I p+lyi Z’U; P+l _++‘5‘
=0 j=1
versus
H :y = z + o St Zu ) e
Jogi J+1Tp+1, ])+1[ +
j=0 j=1
or

H, Y =XB' +Zu’ + ¢
versus (16)
H:Y=XB+Zu+¢

where A" and u’ are known. We compute the Bayes factor, of H relative to H, for testing

017

problem (16) as follows
B ( ) _ m(Y | Ho)
" m(Y | H,)

where m(Y | H,)is the marginal density of Y under model H,,i=0,1. We have:
m(Y | H,) = [f(Y |8 u',0?) 7 (07 Mo

= (27)™"” L)J‘(Gj )"/ exp [ﬁ_;j(o_j)(aﬁl) exp [_ Y-Xxp - Zu")? jdo-j
o)

(17)

(e, ’ 20"
= (27)""* %I(Gf )7[%%“] exp{ A 20_);/; ~ 2 JdO':
_ (27[)—71,/2 IB;%J'(G(?)[Z*%H] (ﬂ i1 (Y Xﬂ iy ) )[ +a +1)

[(e,)

&

iy X - ) 5 | Bt AV KB -
(B +1=xp - 2')) p

20

&

(B +1(0v-xp" - 7u'y )(’lj

-yt L

r 2,41
(O!g) (O_z)[z ¢ ]
exp| Lot i Q;(ﬂ“ Zuo)z}(ﬁ 1Y -Xp° - Zu")z)f[gﬂmj do*
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.
[2ray-2)

= (27)""° A j(ﬁ +y (Y - X - Zu) ]
I'(e,) o’
exp( ﬂ + = (Y )5,3 - Zu° ) ](,3 41 (Y Xﬂ 2 ) )—(%+a£+1] dgj (18)
207
/2 —ﬁ:!ﬁ n +a, +1
=(27) / o) ( +a, +1)(ﬁ +1 (Y xp° Zu))[ ]
and
prg+l -1/2 0 -1/2
v 1,020, = oty Tl ovan)| [ 11 0070
i=1 . i=p+q+2 (19>
1 pHq+1 (512 n S;
{ 20'5[; 1+0d, +i—§+21+7d1,}}
Therefore,

m(Y | H1> = j m(Y | H,0?.8,y)7,(02,8,y)do’ddy

pHq+l -1/2 n 172
le) exp(ﬁ‘; ](27[0'3)"/2 [ H (1+ 5d{)J ( H (1+ ;/di)j
o

)

1 pHq+1 3:2 n 5_2
expy— L+ : 7 (8,y)do’ddd
p{ 203[,2_1: 1+5di i_gﬁuyd} o( 7) s v

ﬂ pigil -1/2 N -1/2
- (27)"" ( (1+5d7_)J [ I1 (1+de)] 7,(8,7)

i=p+q+2

prg+l n 82
J do’ tdod
(ﬂ Z 5d -~ Eﬂuydi J} }4 /4

(Y | H,) = iﬁ)(m"/‘ﬁ’r(g + agj

I«

i=1 i=p+q+2

pHq+l -1/2 n -1/2
I( [T0+ 5%-)} ( [T a+ 7%)} 7,(8,7)

i=1 i=p+q+2

1 p+q+1 5_2 n 52
+— : dod
bt ;1+5d1, ,2;'”1 +7d, g

5 Simulation Results

In this section, we illustrate the effectiveness of our methodology, we generated observations from the
model (1) with the following regression functions:

(i) y, =2+3z, + exp{(x2 + 0.4)2} ,

(it)y, = 30 + sin{12(z, +0.2)} Y
: ! (z, +0.2) :

The observations for z are generated from uniform distribution on the interval [0,1]. The sample sizes
taken are n =25, 50, 100, 150, 200.
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The goodness of fit of the estimated models quantified by computing the criterions average mean
squared error (AMSE) and average mean absolute error (AMAFE) are defined as:

N
AM%z%ZM%@)

i=1

N
AMM:%ZMM@L
i=1

where MSE and MAF are mean squared error and mean absolute error criterions respectively.
Table (1) presents summary values of the (AMSE) and (AMAFE) for the estimation method. From

this table we can see that the values of (AMSE) and (AMAE) when (n =200)are smaller than their

values for the first test function, which were (0.0005306171) and (0.000164242) respectively. While the
values of (AMSE) and (AMAE) are smaller when (n=200) for the second test function were

(0.0001630011) and (0.000343007) respectively. Figures (1) and (3) below show the number of iterations
of Gibbs sampler used in this paper, which was (10000) iterations for the first and second test functions

respectively when (n = 200). While figures (2) and (4) show the density estimates based on (10000)

iterations of aj and o-f for the first and second test functions respectively when (n = 200).

Table 1. Results of the (AMSE) and (AMAE) criterions for Bayesian semiparametric regression model.

Test functions | Sample size AMSE AMAFE
25 0.0035217013 | 0.001642312
50 0.0036214631 | 0.001656452
Y, 100 0.0026621641 | 0.000731483
150 0.0006316071 | 0.000185535
200 0.0005306171 | 0.000164242
25 0.0030001601 | 0.004203166
50 0.0025130211 | 0.002063413
Y, 100 0.0002110123 | 0.001022111
150 0.0002001465 | 0.000406561
200 0.0001630011 | 0.000343007

The model checking approach based on Bayes factors has been tested on simulated examples. These
Bayes factors are given in table (2). From this table, it can be seen that the model corresponding to the
first test function obtains the largest Bayes factor when (n =25) followed by that the second test

function when (n = 25), and the Bayes factor favors H ~with strong evidence with all samples sizes for

two test functions.

Table 2. Values of Bayes factors

JAAM

Test functions | Sample size B (y) Evidence
25 3.116634 x 10 | Strongly favors H,
50 3.028341x 107 | Strongly favors H,
Y, 100 2.765311x 10" | Strongly favors H,
150 2.067733 x 10" | Strongly favors H,
200 3.773121 x 10" | Strongly favors H,
25 5.432133 x10° | Strongly favors H,
50 7.865514 x 10" | Strongly favors H,
Y, 100 6.876765x 10" | Strongly favors H,
150 9.145433 x 10™ | Strongly favors H,
200 4.112464 x 10 | Strongly favors H,
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Figure 1. (10000) iterations of the Gibbs sampler for the first test function when (n = 200) .
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Figure 2. The density estimates based on (10000) iterations of 0: and Gj for the first test function when

(n = 200).
150_ 200
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2000 6000 10000 ) 2000 6000 10000

Figure 3. (10000) iterations of the Gibbs sampler for the second test function when (n = 200).
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Figure 4. The density estimates based on (10000) iterations of 0'5 and (Tj for the second test function when

(n = 200) .

6  Conclusions
The conclusions obtained throughout this paper are as follows:

(1) The joint posterior density of §, y given Y is

25
}/(b/Q)flé‘ag*le ;g p+qg+1 -1/2 n 172
(0, y|Y)oc —m——— 1+4dd, 1+yd
1( | ) (a T b}/)i(a+b)/2 ]l;l[ ( ,,) i:g+2 ( i )

. (n+2a_+2)/2
prasl g2 i §2 )
Qﬂ + i + i
¢ ; 1+ 5d7 i=p+q+2 1+ J/d]

(2) The marginal density of ¥ under model H i =0,1 is:

» ﬂf" ’(T“e*‘]
m(Y | H) = (27)" @F( ta, +D)(B +1(V - X - 2u")) :
and
ﬂa: -1/2 N -1/2
m(Y |H))= F(;g) (27) "/21“[ JI[ (1+dd. )] [i_gﬂ (1+ 7d,:)J 7,(6,7)

1 WZ’V‘:I 2
g+t dody
2 i=1 1 + 5dl i= p+r1+2 ]- 7

(3) In the simulation results, we concluded the following:

(a) The values of (AMSE) and (AMAE) when (n =200)are smaller than their values for the
first test function, which were (0.0005306171) and (0.000164242) respectively.

(b) The values of (AMSE) and (AMAEF) are smaller when (n=200) for the second test
function were (0.0001630011) and (0.000343007) respectively.
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(¢) The model corresponding to the first test function obtains the largest Bayes factor when
(n =25) followed by that the second test function when (n =25).

(d) The Bayes factor favors H, with strong evidence with all samples sizes for two test

functions.
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