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Abstract Let X and Y be Banach spaces. We study a Regula-falsi-type method for solving the
generalized equations 0 ∈ f(x) + g(x) + F (x), where f : X → Y is Fréchet differentiable in a
neighborhood of a solution x̄, g : X → Y is Fréchet differentiable at x̄ and F : X ⇒ 2Y is a set
valued mapping with closed graph. Under some suitable assumptions, we prove the existence of any
sequence generated by the Regula-falsi-type method and establish the local convergence results of
the sequence generated by this method. Indeed, we will show that the sequence generated by this
method converges linearly and super-linearly.

Keywords: Generalized equations, Set-valued mapping, Pseudo-Lipschitz continuity, Super-linear
convergence, Divided difference, Local convergence.

1 Introduction

Let X and Y be Banach spaces. We deal with the problem of seeking a point x ∈ X satisfying

0 ∈ f(x) + g(x) + F (x), (1)

where f : X → Y is Fréchet differentiable in a neighborhood of a solution x̄ of (1), g : X → Y is Fréchet
differentiable at x̄ but may be not differentiable in a neighborhood of x̄ and F : X ⇒ 2Y is a set valued
mapping with closed graph.

It is clarified that when F = {0}, (1) is reduced to the classical problem of solving systems of nonlinear
equations:

f(x) + g(x) = 0. (2)

Cătinas [1] proposed the following method for solving (2) by using the combination of Newton’s method
with the secants method when f is differentiable and g is a continuous function admitting first and second
order divided differences:

0 ∈ f(xk) + g(xk) + (∇f(xk) + [xk−1, xk; g])(xk+1 − xk), k = 1, 2, ..., (3)

where ∇f(xk) denotes the Fréchet derivative of f at x and [x, y; g] the first order divided difference of g
on the points x and y. To solve the problem (1), Geoffroy and Piétrus [2] extended the method (3) and
proposed the following method:

0 ∈ f(xk) + g(xk) + (∇f(xk) + [xk−1, xk; g])(xk+1 − xk) + F (xk+1). (4)

Under some assumptions, they proved that the sequence generated by this method converges superlinearly
to the solution of (1). Next time for solving (1), Jean-Alexis and Piétrus [3] presented the following
method:

0 ∈ f(xk) + g(xk) + (∇f(xk) + [2xk+1 − xk, xk; g])(xk+1 − xk) + F (xk+1). (5)
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They proved that the sequence generated by (5) converges superlinearly by considering that ∇f and the
first order divided difference of g are p-Hȯlder continuous around a solution x̄ and that (f + g + F )−1 is
pseudo-Lipschitz around (0, x̄) with F having closed graph. Rashid et al. [4] improved and extended the
result, which has been given by Jean-Alexis and Piétrus [3] and show that if ∇f and the first order divided
difference of g are p-Hȯlder continuous at a solution x̄, then the method (5) converges superlinearly.

It is remarkable that when g = 0, (1) is reduced to the following variational inclusion:

0 ∈ f(x) + F (x). (6)

Here (6) is a very general framework and many problems from applied mathematical areas, such as
variational inequality problems including linear and nonlinear complementary problems, systems of
nonlinear equations, abstract inequality systems and etc, can be cast as problem (6) (see [5,6,7,8,10,11])
and the references therein. In the case g = 0, Geoffroy et al. [12] considered a second degree Taylor
polynomial expansion of f under suitable first and second order differentiability assumptions and showed
that the existence of a sequence cubically converges to the solution of (1). When the single valued functions
involved in (1) are differentiable, Newton-like methods can be considered to solve this problem, such an
approach has been used in many contributions to this subject (see, e.g., [4,8,11,13,14,15]).

Let x ∈ X. The subset of X, denoted by D(x), is defined by

Dx0(x) =
{
d ∈ X : 0 ∈ f(x) + g(x) + (∇f(x) + [x0, x; g])d+ F (x+ d)

}
.

To solve (1), Geoffroy and Piétrus [2, Theorem 3.1] considered two starting points x0 and x1 in a suitable
neighborhood of x∗ and provided super-linear convergence result. In view of computational computations,
this convergence is very slow because in their result, the terms xk and xk−1 are involved in the upper
bound of the relation ‖xk+1 − x∗‖ ≤ C‖xk − x∗‖max

{
‖xk − x∗‖, ‖xk−1 − x∗‖

}
. This drawback motivates

us to consider the following Regula-falsi-type method: Our aim is to prove the existence of a sequence

Algorithm 1 (The Regula-falsi-type Method)
Step 1. Select x0 ∈ X and put k := 0.
Step 2. If 0 ∈ Dx0 (xk), then stop; otherwise, go to Step 3.
Step 3. If 0 /∈ Dx0 (xk), choose dk such that dk ∈ Dx0 (xk).
Step 4. Set xk+1 := xk + dk.
Step 5. Replace k by k + 1 and go to Step 2.

generated by Algorithm 1 which is locally linearly and superlinearly convergent to the solution x̄ of (1).
Geoffroy and Piétrus [2] considered two starting points x0 and x1 in a neighborhood of the solution
to obtain their result, where as in our study we will consider one argument as a starting point x0 in a
neighborhood of the solution of (1).

The content of this paper is organized as follows: In section 2, we recall some necessary notations,
notions and preliminary results. In section 3, we consider the Regula-falsi-type method to show the
existence and convergence of the sequence generated by Algorithm 1. In the last section, we give a
summary of the results obtained in this study.

2 Notations and Preliminary Results

Let X and Y be Banach spaces and let F : X ⇒ 2Y be a set valued mapping. The graph of F
is defined by the set gphF := {(x, y) ∈ X × Y : y ∈ F (x)} and the inverse of F is defined by
F−1(y) := {x ∈ X : y ∈ F (x)}. Let x ∈ X and r > 0. By B(r, x), we denote the closed ball centered at x
with radius r, while L(X, Y ) stands for the set of all bounded linear operators from X to Y .

All the norms are denoted by ‖ · ‖. Let B ⊆ X and E ⊆ X. The distance from a point x to a set B is
defined by dist(x,B) := inf{‖x− a‖ : a ∈ B} for each x ∈ X, while the excess from a set E to the set B
is defined by e(E,B) := sup{dist(x,B) : x ∈ E}.

We take the definitions of the first and second divided difference operators from [2]:
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Definition 2.1. An operator belonging to the space L(X, Y ) denoted by [x0, y0; g] is called the first order
divided difference of the operator g : X → Y on the points x0, y0 ∈ X if both of the following properties
hold:
(a) [x0, y0; g](y0 − x0) = g(y0)− g(x0) for x0 6= y0;
(b) If g is Fréchet differentiable at x0 ∈ X then [x0, x0; g] = g′(x0).

Definition 2.2. An operator belonging to the space L(X, L(X, Y )) denoted by [x0, y0, z0; g] is called
the second order divided difference of the operator g : X → Y on the points x0, y0, z0 ∈ X if both of the
following properties hold:
(a) [x0, y0, z0; g](z0 − x0) = [y0, z0; g]− [x0, y0; g] for the distinct points x0, y0 and z0;

(b) If g is twice differentiable at x0 ∈ X then [x0, x0, x0; g] = g′′(x0)
2 .

We recall the definition of pseudo-Lipschitz continuity for set-valued mappings from [11] whose notion
was introduced by Aubin [16] and has been studied extensively; see examples [4,8,13,14] and the references
therein.

Definition 2.3. Let Γ : Y ⇒ 2X be a set-valued mapping and let (ȳ, x̄) ∈ gphΓ . Then Γ is said to be
pseudo-Lipschitz around (ȳ, x̄) if there exist constants rx̄ > 0, rȳ > 0 and M > 0 such that the following
inequality holds:

e(Γ (y1) ∩ B(rx̄, x̄), Γ (y2)) ≤M‖y1 − y2‖ for any y1, y2 ∈ B(rȳ, ȳ). (7)

We finish this section with the following lemma. This lemma is known as Banach fixed point lemma
which has been proved by Dontchev and Hagger in [17]. This fixed-point lemma is the vital mechanism to
prove the existence of any sequence generated by Algorithm 1.

Lemma 2.1. Let Φ : X ⇒ 2X be a set-valued mapping. Let η0 ∈ X, r ∈ (0,∞) and λ ∈ (0, 1) be such
that

dist(η0, Φ(η0)) < r(1− λ) (8)

and
e(Φ(x1) ∩ B(r, η0), Φ(x2)) ≤ λ‖x1 − x2‖ for any x1, x2 ∈ B(r, η0). (9)

Then Φ has a fixed point in B(r, η0), that is, there exists x ∈ B(r, η0) such that x ∈ Φ(x). If Φ is
single-valued, then there exists x ∈ B(r, η0) such that x = Φ(x).

3 Convergence Analysis

Suppose X and Y are Banach spaces. Let x̄ be a solution of (1). This section is devoted to study the local
convergence of the sequence generated by Algorithm 1. Let rx̄ > 0. We suppose that F has closed graph,
f is Fréchet differentiable and its derivative is continuous in a neighborhood of x̄ with a constant ε > 0,
g is differentiable at x̄ and admits a second order divided difference satisfying the following condition:
there exists κ > 0 such that for all x, y, z ∈ B(rx̄, x̄), ‖[x, y, z; g]‖ ≤ κ. To this end, let x ∈ X and let us
define the mapping Qx by

Qx(·) := f(x) +∇f(x)(· − x) + g(·) + F (·).

The following result establishes the equivalence relation between (f + g + F )−1 and Q−1
x̄ . This result is

the refinement of the result in [9] or [8].

Lemma 3.1. Let f : X → Y be a function and let (x̄, ȳ) ∈ gph (f + g + F ). Assume that f is Fréchet
differentiable and its derivative is continuous in an open neighborhood Ω of x̄ and g admits a second order
divided difference on Ω. Then the followings are equivalent:

(i) The mapping (f + g + F )−1 is pseudo-Lipschitz at (ȳ, x̄);
(ii) The mapping Q−1

x̄ (·) is pseudo-Lipschitz at (ȳ, x̄).
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Proof. Define a function h : X → Y by

h(x) := −f(x) + f(x̄) +∇f(x̄)(x− x̄).

The proof is similar to that of [9], because the proof does not depend on the property of g.

Define a single valued mapping Zx : X → Y by

Zx(y) :=

 f(x̄)− f(x) + g(y)− g(x) +∇f(x̄)(y − x̄)
−(∇f(x) + [x0, x; g])(y − x), for y 6= x,

f(x̄)− f(x) +∇f(x̄)(y − x̄), for y = x.
(10)

Define a set valued mapping Φx : X ⇒ 2X by

Φx(·) = Qx̄
−1[Zx(·)]. (11)

For every x′, x′′ ∈ X, we have that

‖Zx(x′)− Zx(x′′)‖ = ‖
(
∇f(x̄)−∇f(x)

)
(x′ − x′′) + g(x′)− g(x′′)− [x0, x; g](x′ − x′′)‖

≤ ‖∇f(x̄)−∇f(x)‖‖x′ − x′′‖+ ‖[x′′, x′; g]− [x0, x; g]‖‖x′ − x′′‖

=
(
‖∇f(x̄)−∇f(x)‖+ ‖[x′′, x′; g]− [x0, x; g]‖

)
‖x′ − x′′‖. (12)

3.1 Linear Convergence

The following lemma plays an important role to prove our first main theorem.

Lemma 3.2. Let x̄ be a solution of (1). Suppose that Q−1
x̄ is pseudo-Lipschitz at (0, x̄) with constant M .

Assume that ∇f is continuous in the neighborhood of x̄ with constant ε > 0 and g admits second order
divided difference in the neighborhood of x̄. Then, there exists δ > 0 such that for each x ∈ B(δ, x̄), there
is x̂ ∈ B(δ, x̄) satisfying

0 ∈ f(x) + g(x) + (∇f(x) + [x0, x; g])(x̂− x) + F (x̂) (13)

and
‖x̂− x̄‖ ≤ 1

2‖x− x̄‖. (14)

Proof. The M -pseudo-Lipschitz continuity of Q−1
x̄ around (0, x̄) implies that there exist rx̄ > 0, and

r0 > 0 such that

e(Q−1
x̄ (y1) ∩ B(rx̄, x̄), Q−1

x̄ (y2)) ≤M‖y1 − y2‖ for all y1, y2 ∈ B(r0, 0). (15)

Let ε > 0 and κ > 0 be such that
M(ε+ κ) < 1

6 . (16)

The continuity property of ∇f and the second order divided difference of g imply that there exists r̄ > 0
such that

‖∇f(y)−∇f(x)‖ ≤ ε for all x, y ∈ B(r̄, x̄) (17)

and
‖[x, y, z; g]‖ ≤ κ for all x, y, z ∈ B(r̄, x̄). (18)

Let δ > 0 be such that
δ ≤ min

{
rx̄,

r0

3ε+ 4κ,
2− 3Mε

12Mκ
, 1
}
. (19)

Fix x ∈ X with x 6= x̄, and define
rx := 3M

(
ε+ κ

)
‖x− x̄‖. (20)
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For x ∈ B(δ, x̄) and using (16), we have

rx ≤ 3M(ε+ κ)δ < δ. (21)

We will apply Lemma 2.1 to the map Φx with η0 := x̄ and r := rx and λ := 2
3 to conclude that there

exists a fixed point x̂ ∈ B(rx, x̄) such that x̂ ∈ Φx(x̂), that is, Zx(x̂) ∈ Qx̄(x̂), which implies that

0 ∈ f(x) + g(x) + (∇f(x) + [x0, x; g])(x̂− x) + F (x̂),

i.e. (13) holds. Furthermore, x̂ ∈ B(rx, x̄) ⊆ B(δ, x̄) and so

‖x̂− x̄‖ ≤ rx ≤ 3M(ε+ κ) ≤ 1
2‖x− x̄‖.

i.e. (14) holds. Thus, to complete the proof, it is sufficient to show that Lemma 2.1 is applicable for the
map Φx with η0 := x̄ and r := rx and λ := 2

3 . To do this, it remains to prove that both assertions (8)
and (9) of Lemma 2.1 hold. It is obvious that x̄ ∈ Q−1

x̄ (0) ∩ B(rx, x̄). According to the definition of the
excess e, we have

dist
(
x̄, Φx(x̄)

)
≤ e
(
Q−1

x̄ (0) ∩ B(rx, x̄), Φx(x̄)
)

≤ e
(
Q−1

x̄ (0) ∩ B(δ, x̄), Qx̄
−1[Zx(x̄)]

)
≤ e
(
Q−1

x̄ (0) ∩ B(rx̄,x̄), Q−1
x̄ [Zx(x̄)]

)
. (22)

For all u ∈ B(rx, x̄) ⊆ B(δ, x̄) with u 6= x, we have from (10) that

‖Zx(u)‖ = ‖f(x̄)− f(x) + g(u)− g(x)−
(
∇f(x) + [x0, x; g]

)
(u− x)

+ ∇f(x̄)(u− x̄)‖
≤ ‖f(x̄)− f(x)−∇f(x̄)(x̄− x)‖+ ‖

(
∇f(x̄)−∇f(x)

)
(u− x)‖

+ ‖
(
[x, u; g]− [x0, x; g]

)
(u− x)‖. (23)

Since f(x̄) − f(x) − ∇f(x̄)(x̄ − x) =
∫ 1

0 [∇f(x̄ + t(x̄ − x)) − ∇f(x̄)](x̄ − x)dt, by using the continuity
property of ∇f with constant ε, we have that

‖f(x̄)− f(x)−∇f(x̄)(x̄− x)‖ ≤ ε‖x− x̄‖. (24)

Using (24) and the second order divided difference concept with a constant κ, we have from (23) that

‖Zx(u)‖ ≤ ε‖x− x̄‖+ ε‖u− x‖+ ‖[x0, x, u; g]‖‖u− x0‖‖u− x‖
≤ ε(‖x− x̄‖+ ‖u− x‖) + κ‖u− x0‖‖u− x‖
≤ 3εδ + 4κδ2 < 3εδ + 4κδ (25)
= (3ε+ 4κ)δ < r0.

Therefore Zx(u) ∈ B(r0, 0) for all u ∈ B(rx, x̄) with u 6= x. Furthermore, in the case when u = x, we have
from (23) that

‖Zx(x)‖ = ‖f(x̄)− f(x)−∇f(x̄)(x− x̄)‖. (26)

Using (24) and the third assumption from (19) in (26), we obtain

‖Zx(x)‖ ≤ ε‖x− x̄‖ = εδ < r0.

Thus we obtain
Zx(u) ∈ B(r0, 0) for all u ∈ B(rx, x̄). (27)
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On the other hand, letting u = x̄ in (23) and for δ ≤ 1 by (19), we obtain

‖Zx(x̄)‖ ≤ ‖f(x̄)− f(x)−∇f(x)(x− x̄)‖+ ‖
(
[x, x̄; g]− [x0, x; g]

)
(x̄− x)‖

≤ ‖f(x̄)− f(x)−∇f(x)(x− x̄)‖+ ‖[x, x̄; g]− [x0, x; g]‖‖x̄− x)‖
≤ ε‖x− x̄‖+ ‖[x0, x, x̄; g]‖‖x̄− x0‖‖x̄− x‖
≤
(
ε+ κ‖x0 − x̄‖

)
‖x− x̄‖ ≤

(
ε+ κδ

)
‖x− x̄‖

≤
(
ε+ κ

)
‖x− x̄‖.

This together with (15) and (22) (with y1 = 0 and y2 = Zx(x̄)) implies that

dist
(
x̄, Φx(x̄)

)
≤M‖Zx(x̄)‖
≤M

(
ε+ κ

)
‖x− x̄‖

=
(

1− 2
3

)
rx = (1− λ)r.

This shows that the assertion (8) of Lemma 2.1 is satisfied.
Now, we show that assertion (9) of Lemma 2.1 is also satisfied. Let x′, x′′ ∈ B(rx, x̄). Then by (21),

we have that x′, x′′ ∈ B(rx, x̄) ⊆ B(δ, x̄) and hence Zx(x′), Zx(x′′) ∈ B(r0, 0) by (27). This together with
(15) (with y1 = Zx(x′) and y2 = Zx(x′′)) implies that

e
(
Φx(x′) ∩ B(rx, x̄), Φx(x′′)

)
≤ e
(
Φx(x′) ∩ B(δ, x̄), Φx(x′′)

)
≤ e
(
Q−1

x̄ [Zx(x′)] ∩ B(rx̄, x̄), Q−1
x̄ [Zx(x′′)]

)
≤M‖Zx(x′)− Zx(x′′)‖. (28)

In the case x′ 6= x′′, since g admits second order divided difference, (18) is applicable to concluding that(
‖[x′′, x′; g]− [x0, x; g]‖

)
‖x′ − x′′‖

=
(
‖[x′′, x′; g]− [x, x′′; g] + [x, x′′; g]− [x0, x; g]‖

)
‖x′ − x′′‖

=
(
‖[x, x′′, x′; g](x′ − x) + [x0, x, x

′′; g](x′′ − x0)‖
)
‖x′ − x′′‖

≤
(
‖[x, x′′, x′; g]‖‖x′ − x‖+ ‖[x0, x, x

′′; g]‖‖x′′ − x0‖
)
‖x′ − x′′‖

≤ 4κδ‖x′ − x′′‖.

This, together with (12) and (17), gives that

‖Zx(x′)− Zx(x′′)‖ ≤
(
‖∇f(x̄)−∇f(x)‖+ ‖[x′′, x′; g]− [x0, x; g]‖

)
‖x′ − x′′‖

≤ (ε+ 4δκ)‖x′ − x′′‖.

Combining this with (28) and using the relation 12Mκδ ≤ 2− 3Mε by (19), we obtain that

e
(
Φx(x′) ∩ B(rx, x̄), Φx(x′′)

)
≤M(ε+ 4δκ)‖x′ − x′′‖

≤ 2
3‖x

′ − x′′‖ = λ‖x′ − x′′‖.

This implies that assertion (9) of Lemma 2.1 is satisfied. This completes the proof of the Lemma.

The following theorem shows that the sequence {xn} generated by Algorithm 1 converges linearly.
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Theorem 3.1. Let x̄ be a solution of (1). Suppose that Q−1
x̄ is pseudo-Lipschitz at (0, x̄) with constant

M . Assume that ∇f is continuous in the neighborhood of x̄ with constant ε > 0 and g admits second order
divided difference in the neighborhood of x̄. Then, there exists δ > 0 such that for every starting point
x0 ∈ B(δ, x̄), there is a sequence {xn} generated by Algorithm 1 converges to x̄ and which satisfies that

‖xk+1 − x̄‖ ≤
1
2‖xk − x̄‖ for each k = 0, 1, 2, . . . . (29)

Proof. By Lemma 3.2, there exists δ > 0 such that

for each x ∈ B(δ, x̄) =⇒ there is x̂ ∈ B(δ, x̄) such that (13) and (14) hold. (30)

Let x0 ∈ B(δ, x̄). Then, it follows from (30) that there exists x̂ ∈ B(δ, x̄) such that x̂ ∈ Φx0(x̂). This
implies that Zx0(x̂) ∈ Qx̄(x̂), which translates to

0 ∈ f(x0) + g(x0) + (∇f(x0) + [x0, x0; g])(x̂− x0) + F (x̂) (31)

and
‖x̂− x̄‖ ≤ 1

2‖x0 − x̄‖. (32)

Thus, (31) indicates that Dx0(x0) 6= ∅. Consequently, we can choose d0 ∈ Dx0(x0). By Algorithm 1,
x1 := x0 + d0 is defined. Thus, we obtain from (31) and (32) that

0 ∈ f(x0) + g(x0) + (∇f(x0) + [x0, x0; g])(x1 − x0) + F (x1)

and
‖x1 − x̄‖ ≤

1
2‖x0 − x̄‖

and so (29) holds for k = 0. We will proceed by induction on k. Now we assume that x0, x1, . . . , xk are
generated by Algorithm 1 satisfying (29). Then by (30), we have that Dxk

(xk) 6= ∅. Then by Algorithm 1,
we can select dk ∈ Dx0(xk) such that xk+1 = xk + dk. Then (31) and (32) give that

0 ∈ f(xk) + g(xk) + (∇f(xk) + [x0, xk; g])(xk+1 − xk) + F (xk+1)

and
‖xk+1 − x̄‖ ≤

1
2‖xk − x̄‖,

and so (29) holds for all k. This completes the proof of the Theorem.

3.2 Superlinear Convergence

This section is devoted to study the superlinear convergence of the sequence generated by Algorithm 1.
Let r > 0 and we assume that ∇f is Lipschitz continuous in a neighborhood B(r, x̄) of the solution x̄ of
(1), that is, there exists L > 0 such that

‖∇f(y)−∇f(x)‖ ≤ L‖x− y‖, for all x, y ∈ B(r̄, x̄) (33)

and g admits second order divided difference, that is, there exists κ > 0 such that

‖[x, y, z; g]‖ ≤ κ for all x, y, z ∈ B(r̄, x̄). (34)

We assume that L and κ are related in such a way that

L <
1− 4Mκ

7M . (35)

Set
γ := 7M(L+ 4κ)

4 . (36)

It follows from (35) that γ < 1
4 < 1.

The following lemma is an analogue of Lemma 3.2. However, the proof technique is slightly different.
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Lemma 3.3. Let x̄ be a solution of (1). Assume that Q−1
x̄ is pseudo-Lipschitz at (0, x̄) with constant

M . Suppose that ∇f is Lipschitz continuous in the neighborhood of x̄ with constant L > 0 and g admits
second order divided difference in the neighborhood of x̄ with constant κ > 0. Let γ be defined by (36).
Then, there exists δ > 0 such that for each x ∈ B(δ, x̄), there is x̂ ∈ B(δ, x̄) satisfying

0 ∈ f(x) + g(x) + (∇f(x) + [x0, x; g])(x̂− x) + F (x̂) (37)

and
‖x̂− x̄‖ ≤ γ‖x− x̄‖max

{
‖x− x̄‖, ‖x0 − x̄‖

}
. (38)

Proof. By the assumed pseudo-Lipschitz property of Q−1
x̄ with constant M > 0 around (0, x̄) implies

that there exist rx̄ > 0, and r0 > 0 such that

e(Q−1
x̄ (y1) ∩ B(rx̄, x̄), Q−1

x̄ (y2)) ≤M‖y1 − y2‖ for all y1, y2 ∈ B(r0, 0). (39)

Let δ > 0 be such that

δ ≤ min
{
rx̄,
( 2r0

5L+ 8κ

)1
2 , 1

7M(L+ 4κ) , 1
}
. (40)

Fix x ∈ X with x 6= x̄, and define

rx := γ‖x− x̄‖max
{
‖x− x̄‖, ‖x0 − x̄‖

}
. (41)

It follows for x ∈ B(δ, x̄) that

rx ≤
7M(L+ 4κ)

4 δ max {δ, δ} = 7M(L+ 4κ)δ2

4 .

This, together with the relation 7M(L+ 4κ)δ ≤ 1 in (40), implies that

rx ≤
7M(L+ 4κ)δ

4 δ ≤ δ. (42)

The proof will be completed if we can apply Lemma 2.1 to the map Φx with η0 := x̄ and r := rx and
λ := 1

7 to show that there exists a fixed point x̂ ∈ B(rx, x̄) such that x̂ ∈ Φx(x̂), that is, Zx(x̂) ∈ Qx̄(x̂).
This implies that

0 ∈ f(x) + g(x) + (∇f(x) + [x0, x; g])(x̂− x) + F (x̂),

i.e. Dx0(x) 6= ∅ and hence (37) holds. Furthermore, x̂ ∈ B(rx, x̄) ⊆ B(δ, x̄) and so

‖x̂− x̄‖ ≤ rx = γ‖x− x̄‖max
{
‖x− x̄‖, ‖x0 − x̄‖

}
.

i.e. (38) holds. Thus, to finish the proof, it is sufficient to show that Lemma 2.1 is applicable for the map
Φx with η0 := x̄ and r := rx and λ := 1

7 . To do this, it remains to prove that both assertions (8) and (9)
of Lemma 2.1 hold. It is obvious that x̄ ∈ Q−1

x̄ (0) ∩ B(rx, x̄). According to the definition of the excess e,
we have

dist
(
x̄, Φx(x̄)

)
≤ e
(
Q−1

x̄ (0) ∩ B(rx, x̄), Φx(x̄)
)

≤ e
(
Q−1

x̄ (0) ∩ B(δ, x̄), Qx̄
−1[Zx(x̄)]

)
≤ e
(
Q−1

x̄ (0) ∩ B(rx̄,x̄), Q−1
x̄ [Zx(x̄)]

)
. (43)
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For all u ∈ B(rx, x̄) ⊆ B(δ, x̄) with u 6= x, we have from (10) that

‖Zx(u)‖ = ‖f(x̄)− f(x) + g(u)− g(x)−
(
∇f(x) + [x0, x; g]

)
(u− x)

+ ∇f(x̄)(u− x̄)‖
≤ ‖f(x̄)− f(x)−∇f(x̄)(x̄− x)‖+ ‖

(
∇f(x̄)−∇f(x)

)
(u− x)‖

+ ‖
(
[x, u; g]− [x0, x; g]

)
(u− x)‖

≤ ‖f(x̄)− f(x)−∇f(x̄)(x̄− x)‖+ ‖∇f(x̄)−∇f(x)‖‖u− x‖
+ ‖[x, u; g]− [x0, x; g]‖‖u− x‖. (44)

Note by (33) that

‖f(x̄)− f(x)−∇f(x̄)(x̄− x)‖

= ‖
∫ 1

0
[∇f(x̄+ t(x̄− x))−∇f(x̄)](x̄− x)dt‖

≤
∫ 1

0
‖∇f(x̄+ t(x̄− x))−∇f(x̄)‖‖x̄− x‖dt

≤ L
∫ 1

0
t‖x̄− x‖2dt = L

2 ‖x̄− x‖
2. (45)

This together with the relation (5L+ 8κ)δ2 ≤ 2r0 by (40) and notion of second order divided difference
with a constant κ, we have from (44) that

‖Zx(u)‖ ≤ L

2 ‖x− x̄‖
2 + L‖x̄− x‖‖u− x‖+ ‖[x0, x, u; g]‖‖u− x0‖‖u− x‖

≤
(L

2 + 2L+ 4κ
)
δ2 = 5L+ 8κ

2 δ2

< r0. (46)

It follows that for all u ∈ B(rx, x̄) with u 6= x, Zx(u) ∈ B(r0, 0). Furthermore, in the case when u = x, we
have from (44) that

‖Zx(x)‖ = ‖f(x̄)− f(x)−∇f(x̄)(x− x̄)‖. (47)
Using (45) and the third relation from (40) in (47), we obtain

‖Zx(x)‖ ≤ L

2 ‖x− x̄‖
2 = Lδ2

2 < r0.

This implies that Zx(u) ∈ B(r0, 0), for all u ∈ B(rx, x̄).
On the other hand, letting u = x̄ in (44) and for δ ≤ 1 by (40), we obtain

‖Zx(x̄)‖ ≤ ‖f(x̄)− f(x)−∇f(x̄)(x̄− x)‖+ ‖∇f(x̄)−∇f(x)‖‖x̄− x‖
+ ‖[x, x̄; g]− [x0, x; g]‖‖x̄− x‖

≤ L

2 ‖x− x̄‖
2 + L‖x̄− x‖2 + ‖[x0, x, x̄; g]‖‖x̄− x0‖‖x̄− x‖

≤ 3L
2 ‖x− x̄‖

2 + κ‖x0 − x̄‖‖x− x̄‖

≤ (3L+ 2κ)
2 ‖x− x̄‖max

{
‖x− x̄‖, ‖x0 − x̄‖

}
<

3(L+ 4κ)
2 ‖x− x̄‖max

{
‖x− x̄‖, ‖x0 − x̄‖

}
.

This together with (39) and (43) (with y1 = 0 and y2 = Zx(x̄)) implies that

dist
(
x̄, Φx(x̄)

)
≤M‖Zx(x̄)‖

≤ 3M(L+ 4κ)
2 ‖x− x̄‖max

{
‖‖x− x̄‖, |x0 − x̄‖

}
=
(

1− 1
7

)
rx = (1− λ)r.

Journal of Advances in Applied Mathematics, Vol. 2, No. 3, July 2017 123

Copyright © 2017 Isaac Scientific Publishing JAAM



This shows that the assertion (8) of Lemma 2.1 is satisfied.
Now, we verify that assertion (9) of Lemma 2.1 is also satisfied. Let x′, x′′ ∈ B(rx, x̄). Then by (42),

we have that x′, x′′ ∈ B(rx, x̄) ⊆ B(δ, x̄) and hence Zx(x′), Zx(x′′) ∈ B(r0, 0) by (46). This together with
(39) (with y1 = Zx(x′) and y2 = Zx(x′′)) implies that

e
(
Φx(x′) ∩ B(rx, x̄), Φx(x′′)

)
≤ e
(
Φx(x′) ∩ B(δ, x̄), Φx(x′′)

)
≤ e
(
Q−1

x̄ [Zx(x′)] ∩ B(rx̄, x̄), Q−1
x̄ [Zx(x′′)]

)
≤M‖Zx(x′)− Zx(x′′)‖. (48)

In the case x′ 6= x′′, since g admits second order divided difference, (34) is applicable to concluding that(
‖[x′′, x′; g]− [x0, x; g]‖

)
‖x′ − x′′‖

=
(
‖[x′′, x′; g]− [x, x′′; g] + [x, x′′; g]− [x0, x; g]‖

)
‖x′ − x′′‖

=
(
‖[x, x′′, x′; g](x′ − x) + [x0, x, x

′′; g](x′′ − x0)‖
)
‖x′ − x′′‖

≤
(
‖[x, x′′, x′; g]‖‖x′ − x‖+ ‖[x0, x, x

′′; g]‖‖x′′ − x0‖
)
‖x′ − x′′‖

≤ 4κδ‖x′ − x′′‖.

This, together with (12) and (33), gives that

‖Zx(x′)− Zx(x′′)‖ ≤
(
‖∇f(x̄)−∇f(x)‖+ ‖[x′′, x′; g]− [x0, x; g]‖

)
‖x′ − x′′‖

≤
(
L‖x̄− x‖+ 4κδ

)
‖x′ − x′′‖

≤ (L+ 4κ)δ‖x′ − x′′‖.

Combining this with (48) and using the relation 7M(L+ 4κ)δ ≤ 1 by (40), we obtain that

e
(
Φx(x′) ∩ B(rx, x̄), Φx(x′′)

)
≤M(L+ 4κ)δ‖x′ − x′′‖

≤ 1
7‖x

′ − x′′‖ = λ‖x′ − x′′‖.

This implies that assertion (9) of Lemma 2.1 is satisfied. This completes the proof of the Lemma.

Theorem 3.2. Let x̄ be a solution of (1). Assume that Q−1
x̄ is pseudo-Lipschitz at (0, x̄) with constant

M . Suppose that ∇f is Lipschitz continuous in the neighborhood of x̄ with constant L > 0 and g admits
second order divided difference in the neighborhood of x̄. Let γ be defined by (36). Then, there exists
δ > 0 such that for every starting point x0 ∈ B(δ, x̄), there is a sequence {xn} generated by Algorithm 1
converges to x̄ and which satisfies that

‖xk+1 − x̄‖ ≤ γ‖xk − x̄‖ max
{
‖xk − x̄‖, ‖x0 − x̄‖

}
for each k = 0, 1, 2, . . . . (49)

Proof. By Lemma 3.3, there exists δ > 0 such that

for each x ∈ B(δ, x̄) =⇒ there is x̂ ∈ B(δ, x̄) such that (37) and (38) hold. (50)

Let x0 ∈ B(δ, x̄). Then, it follows from (50) that there exists x̂ ∈ B(δ, x̄) such that x̂ ∈ Φx0(x̂). This
implies that Zx0(x̂) ∈ Qx̄(x̂), which translates to

0 ∈ f(x0) + g(x0) + (∇f(x0) + [x0, x0; g])(x̂− x0) + F (x̂) (51)

and
‖x̂− x̄‖ ≤ γ‖x0 − x̄‖ max

{
‖x0 − x̄‖, ‖x0 − x̄‖

}
. (52)

124 Journal of Advances in Applied Mathematics, Vol. 2, No. 3, July 2017

JAAM Copyright © 2017 Isaac Scientific Publishing



Thus, (51) indicates that Dx0(x0) 6= ∅. Consequently, we can choose d0 ∈ Dx0(x0). By Algorithm 1,
x1 := x0 + d0 is defined. Thus, we obtain from (51) and (52) that

0 ∈ f(x0) + g(x0) + (∇f(x0) + [x0, x0; g])(x1 − x0) + F (x1)

and
‖x1 − x̄‖ ≤ γ‖x0 − x̄‖ max

{
‖x0 − x̄‖, ‖x0 − x̄‖

}
.

and so (49) holds for k = 0. We will proceed by induction on k. Now we assume that x0, x1, . . . , xk are
generated by Algorithm 1 satisfying (49). Then by (50), we have that Dxk

(xk) 6= ∅. Then by Algorithm 1,
we can select dk ∈ Dx0(xk) such that xk+1 = xk + dk. Then (51) and (52) give that

0 ∈ f(xk) + g(xk) + (∇f(xk) + [x0, xk; g])(xk+1 − xk) + F (xk+1)

and
‖xk+1 − x̄‖ ≤ γ‖xk − x̄‖ max

{
‖xk − x̄‖, ‖x0 − x̄‖

}
.

and so (49) holds for all k. This completes the proof of the Theorem.

4 Concluding Remarks

We have established local convergence results for Regula-falsi-type method for solving the generalized
equation (1) under some suitable assumptions. When Q−1

x̄ is pseudo-Lipschitz continuous,∇f is continuous
and, g admits second order divided difference, we have shown that the sequence generated by Algorithm
1 converges linearly. However, when Q−1

x̄ is pseudo-Lipschitz continuous, ∇f is Lipschitz continuous
and, g admits second order divided difference, we have presented super-linear convergence results of
the Regula-falsi-type method defined by Algorithm 1. This study extends and improves the results
corresponding to [2].
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