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Abstract Generalized monotone method together with coupled lower and upper solutions yield
monotone sequences which converge uniformly and monotonically to coupled minimal and maximal
solutions of the nonlinear problem under consideration. In this work, we have developed generalized
monotone method for sequential Caputo fractional boundary value problem with mixed boundary
conditions which are in terms of Caputo fractional derivative. For that purpose, we have obtained
a representation form for the corresponding linear Caputo sequential boundary value problem in
terms of the Green’s function. In addition, we have obtained a linear comparison result for the
linear sequential differential inequalities with linear mixed boundary conditions. The comparison
result is useful in proving the monotonicity of the iterates as well as the uniqueness of the solution
of the nonlinear sequential boundary value problem. Our method yields the integer results as a
special case. Some numerical examples for the linear sequential Caputo fractional boundary value
problems have also been presented.
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1 Introduction

It is well known that fractional dynamic systems represent better mathematical models than its counter
part of dynamic systems with integer derivatives. See [1–7, 9–13, 16–18, 22] and the references therein
for initial and/or for boundary value problems and its applications. Among the different definitions of
fractional derivatives, dynamic systems involving Caputo derivative are closer to integer derivative. The
reason for that is, when the fractional order q is an integer, the Caputo fractional dynamic systems reduces
to a dynamic systems with integer derivative. In addition, the initial conditions and/or the boundary
conditions of Caputo fractional dynamic systems are the same as that of the integer derivative. However,
the solution of the Caputo initial value problem of order nq such that say (n− 1) < nq < n, does not
reduce to the solution of the corresponding integer dynamic systems of order n when q = 1. See section
4.1.3 of [2] where the explicit solution for Caputo initial value problem of order q when n− 1 < q < n,
has been obtained. If q = n, one cannot obtain the corresponding integer result as a special case. The
reason for this is the fact that the Caputo derivative is not sequential, where as the integer derivative is
sequential. In this work, we seek solutions of nonlinear Caputo boundary value problem, when the Caputo
derivative of order 2q is sequential of order q. That is cD2qu(x) = cDq(cDq(u(x))). We assume that both
the left and the right derivatives are sequential for boundary value problem under consideration. The
sequentiality of the Caputo derivative has an added advantage in modeling by using q as a parameter not
only in the dynamic equation but also in the initial, and/or boundary conditions.

In literature most of the existence and uniqueness result for Caputo boundary value problems has
been obtained using some kind of fixed point theorem. See [1, 2, 14,15, 17,19–25]. In this paper, we have
developed generalized monotone iterative technique combined with coupled lower and upper solutions to
obtain the existence of coupled minimal and maximal solutions. For that purpose, consider the nonlinear
sequential Caputo fractional boundary value problem with mixed boundary conditions of the form

−cD2qu(x) = f(x, u, cDqu(x)) + g(x, u, cDqu(x))
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for each x ∈ J := [a, b], with boundary conditions,

α0u(a)− β0
cDqu(a) = b0,

α1u(b) + β1
cDqu(b) = b1,

(1.1)

where f, g ∈ C[J × R× R,R], u ∈ C2[J,R]. However, in this paper, f and g above depends only on x, u,
with suitable conditions αi, βi for i = 1, 2. Furthermore, note that the boundary conditions do involve the
value cDqu(x) on the boundary also. This means q plays a role as a parameter in the boundary condition
as well. Also, generalized monotone method is a choice method when the nonlinear function is the sum of
an increasing and decreasing function in the nonlinear term. Further, it is also a constructive method.
We have obtained the Green’s function with the corresponding homogeneous boundary conditions to
represent the solution of the linear problem in terms of its nonhomogeneous term. We have also developed
a linear comparison result which is useful in proving the monotonicity of the iterates and the uniqueness
of the solution of the linear and nonlinear boundary value problem. In addition, we have presented some
numerical results for the linear sequential Caputo fractional boundary value problem with homogeneous
boundary conditions. All our results yield the known integer results as a special case.

2 Preliminary Results

In this section, we recall some basic definitions which are needed in our main results.

Definition 2.1. The Caputo (left-sided) fractional derivative of u(x) of order q, when n− 1 < q < n, is
given by equation

cDq
a+u(x) = 1

Γ (n− q)

∫ x

a

(x− s)n−q−1u(n)(s)ds, x > a,

and (right-sided) fractional derivative is given by

cDq
b−u(x) = (−1)n

Γ (n− q)

∫ b

x

(s− x)n−q−1u(n)(s)ds, x < b,

where u(n)(t) = dn(u)
dtn

.

In particular, q = n, an integer, then cDqu = u(n)(x) and cDqu = u′(x) if q = 1.

Definition 2.2. The Riemann–Liouville (left-sided) fractional derivative of order q, when (n−1) < q < n
is defined as,

Dq
a+u(x) = 1

Γ (n− q) ( d
dx

)n
∫ x

a

(x− s)n−q−1u(s)ds, x > a,

and (right-sided) is given by

Dq
b−u(x) = − 1

Γ (n− q) ( d
dx

)n
∫ b

x

(s− x)n−q−1u(s)ds, x < b.

The relation between Riemann-Lioville and Caputo fractional derivatives have been established in
Lemma 2.2 of [2], when (n− 1) < q < n. In this paper, we need this relation, for n = 1 and 2 only. Here,
we state the relation between the Liouville and Caputo fractional derivative, when 0 < q < 1, only. If
0 ≤ R(q) < 1 and u(x) ∈ [a, b] then

cDq
a+u(x) = Dq

a+u(x)− 1
Γ (1− q)

u(a)
(x− a)q , (2.1)

cDq
b−u(x) = 1

Γ (1− q)
u(b)

(b− x)q −D
q
b−u(x). (2.2)

This relation will be useful in our linear comparison theorem related to sequential Caputo boundary
value problem. See [2] Corollary 2.2 for more details.
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Next we present the sequential Caputo fractional derivative. See [1] for the definition of Riemann–
Liouville sequential derivative of order q, when q = q1 + q2 + ......qn.

In particular, if q1 = q2 = q3 = ... = q, then

Dnqf(x) = Dq(Dq...Dq(f(x))).

We extend this definition to Caputo fractional derivative of order nq. In general, this need not be true for
Caputo fractional derivative and it is always true for integer derivatives. However, in this work, we seek
solutions of sequential Caputo fractional boundary value problem, so that integer results will be special
cases of our developed results.

The left sequential Caputo fractional derivative of order nq when, (n− 1) < nq < n, is given by,
cDnq

a+f(x) = cDq
a+(cDq

a+(...cDq
a+))f(x),

and the right sequential Caputo fractional derivative of order nq when, (n− 1) < nq < n, is given by
cDnq

b−f(x) = cDq
b−(cDq

b−(...cDq
b−))f(x).

If we do not assume the Caputo derivative to be sequential, then the basis will be 1, (x− a), (x− a)2, (x−
a)3, ....(x− a)n−1. If the Caputo fractional derivative of order, n− 1 < nq < n, is sequential, then the
basis will be 1, (x−a)q, (x−a)2q, ...(x−a)(n−1)q and/or 1, (b−x)q, (b−x)2q, ...(b−x)(n−1)q. For example,
let us consider (x− a)q, then cD2q

a (x− a)q 6= 0, whereas cDq
a(cDq

a(x− a)q) = 0. Throughout this work,
we assume cD2q

a u(x) = cDq
a(cDq

au(x)) and so on for any nq. In this case the basis will be 1, (x − a)q,
etc depending on n. Similar result is true for cD2q

b (b− x)q also. The next two definitions are related to
Riemann-Liouville derivative, when p+ q = 1. It is relatively easy to prove the very basic comparison
results using the Riemann-Liouville derivative. Further using the relation between Caputo derivative and
the Riemann-Liouville derivative, one can obtain the basic comparison result for Caputo derivative also.
For that purpose, we recall the next two definitions.

Definition 2.3. We say that m(x) is a Cap continuous function on [a, b], R if m(x) is continuous on
[(a, b],R] and (x− a)1−qm(x) is continuous on [a, b],R].

Definition 2.4. We say m(x) is a Cbp continuous function on [[a, b, R] if m(x) is continuous on [[a, b),R]
and (b− x)1−qm(x) is continuous on [[a, b],R].

Remark: In this work, we are discussing the solutions of sequential Caputo fractional boundary value
problem which are known to be C2 functions on [a, b]. Hence the solutions we are seeking are automatically
Cp continuous functions. See [1–3] for details. We use this information in our auxiliary result.

3 Auxiliary Results

In this section, we develop some auxiliary results which are useful in our main results. Our first auxiliary
result is a comparison result related to linear sequential Caputo boundary value problem. Consider the
linear sequential boundary value problem

−cD2qu+ p(x)cDqu+ q(x)u = F (x)
α0u(0)− β0

cDqu(0) = b0
α1u(1) + β1

cDqu(1) = b1,
(3.1)

where F (x) ∈ C[[0, 1],R]. Here and throughout this paper, we assume that α0, α1 ≥ 0 and β0, β1 > 0
such that α0β1 + α1β0 6= 0. Our aim is to develop a linear comparison result, in such a way that the
linear sequential Caputo boundary value problem (3.1) has a unique solution. Our linear comparison
result yields the integer comparison result as a special case for q = 1. In the integer derivative, we use the
fact that the left and the right first and the second derivatives are the same at any given point. Similarly,
here and throughout this work, we assume that the left and the right Caputo derivative of order q and 2q
are the same at any given point on [a, b]. That is, for any x1 ∈ [a, b], we assume

cDq
a+f(x)|x=x1 = cDq

b−f(x)|x=x1
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and
cDq

a+(cDq
a+)f(x)|x=x1 = cDq

b−(cDq
b−)f(x)|x=x1 .

This follows from the fact that cDqf(x), and cDq(cDqf(x)) are continuous functions of x on [a, b]. We
need this in order to develop the basic calculus result for fractional derivative at a point of maxima.

We recall the first basic result relative to left Riemann–Liouville derivative.

Lemma 3.1. Let m in Cap (J,R)(J = [a, b]) be such that for some x1 ∈ J , we have m(x1) = 0 and
m(x) ≤ 0 for x ∈ (a, x1]. Then Dq

a+m(x)|x=x1 ≤ 0.

See [8] for detailed proof. Note that this result is true for Caputo left derivative also, using the relation
between the left Riemann–Liouville derivative and the left Caputo derivative of order q.
The next lemma provides a similar result as Lemma 3.1 for the right Riemann–Liouville derivative.
Although the proof is similar to the left Riemann–Liouville derivative, we provide the proof here for
completeness.

Lemma 3.2. Let m ∈ Cbp(J,R)(J = [a, b]) be such that for some x1 ∈ J , we have m(x1) = 0 and
m(x) ≤ 0 for x ∈ [x1, b). Then Dq

b−m(x)|x=x1 ≥ 0.

Proof. Note that the right Riemann–Liouville derivative at any x in (a, b) is given by

Dq
b−m(x) = − 1

Γ (p)
d

dx

∫ b

x

(s− x)−qm(s)ds.

Let H(x) = −
∫ b
x

(s−x)−qm(s)ds. Then, using the fact m(x) ≤ 0 on [x1, b) and (s−x1)−q < (s−x1−h)−q
for h > 0, we get

H(x1 + h)−H(x1) ≥
∫ x1+h

x1

(s− x1)−qm(s)ds.

Note that the function (b− x)pm(x) is uniformly continuous on [a, b], since m(x) is Cbp, continuous on
[a, b). From this it follows that,

|(b− s)pm(s)− (b− x1)pm(x1)| < hεh,

whenever |s− x1| < h. Since m(x1) = 0 and m(s) ≤ 0, we get m(s) > − hεh
(b− s)1−q .

This implies, that ∫ x1+h

x1

(s− x1)−qm(s)ds > −h
2−qεh(b− x1 − h)−p

1− q .

Thus we get
H(x1 + h)−H(x1)

h
>
h1−qεh(b− x1 − h)−p

1− q .

Now taking the limit as h→ 0, we have

Dq
b−m(x)|x=x1 ≥ 0.

Using the relation between the right Riemann–Liouville derivative and the right Caputo derivative of
order q, we get cDq

b−m(x)|x=x1 ≤ 0. This is precisely the next result.

Lemma 3.3. Let m in Cp(J,R) be such that for some x1 ∈ J , we have m(x1) = 0 and m(x) ≤ 0 for
x ∈ (a, b). Then cDqm(x)|x=x1 = 0 and cD2qm(x)|x=x1 ≤ 0.
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Proof. Using the relation between the left(right) Riemann–Liouville derivative and the left(right) Caputo
derivative as in (2.1), (2.2) and the Lemmas 3.1, 3.2, it easily follows that cDq

a+m(x)|x=x1 ≥ 0 and
cDq

b−m(x)|x=x1 ≤ 0. Since, cDq
a+m(x) is a continuous function, we get cDqm(x)|x=x1 = 0. Next we prove

that
cD2qm(x)|x=x1 ≤ 0.

If our claim is not true, then
cD2qm(x)|x=x1 = cDq(cDq)m(x)|x=x1 > 0.

This means that by the definition of the sequential derivative, we have cD2qm(x) = cDq(cDq)m(x) > 0
on x1 − h < x < x1 + h, h > 0. This means by the continuity of the function, that

d

dx

(
cDq

a+m(x)
)
> 0,

on x1 − h < x < x1 + h, for small h > 0.
However, using the Lemma 3.1 and 3.2, we have cDq

a+m(x) ≥ 0 on the interval x1 − h < x < x1, h > 0

and cDq
b−m(x) ≤ 0 on x1 < x < x1 +h, h > 0. Since cDqm(x1) = 0, we can get that d

dx

(
cDq

a+m(x)
)
≤ 0,

on x1 − h < x < x1 + h, h > 0. This leads to a contradiction. This completes the proof.

Next we prove an analogous result of an integer result namely, Corollary 2.1.1 of [4]. This result is the
linear Caputo fractional comparison result for linear boundary value problems. Thus, it is very useful in
our main result.

Lemma 3.4. Let q, r ∈ C[J,R] with r(x) ≥ 0 on J . Suppose further that p ∈ C2[J,R] and

−cD2qp(x) ≤ q(x)|cDqp| − r(x)p,

with
α0p(a)− β0

cDqp(a) ≤ 0
α1p(b) + β1

cDqp(b) ≤ 0.

Then p(x) ≤ 0 on J = [a, b]. If the inequalities are reversed then p(x) ≥ 0 on J , where J = [a, b].

Proof. Initially, we prove the result when all the inequalities in the hypotheses are strict. That is, we
assume

−cD2qp(x)− q(x)|cDqp|+ r(x)p < 0
α0p(a)− β0

cDqp(a) < 0
α1p(b) + β1

cDqp(b) < 0.
(3.2)

Note that α0, α1 ≥ 0 and β0, β1 > 0. In this case, we will prove that p(x) < 0, on [a, b]. If the conclusion
is not true, then there exists an x1 ∈ J such that p(x1) = 0. If x1 = a, then p(a+ h) < 0. This implies
d

dx
(p(x)) ≤ 0, on [a, a + h). This means cDqp(a) ≤ 0. From the boundary conditions at x1 = a, we

get α0p(a)− β0
cDqp(a) ≥ 0, a contradiction. Similarly, we can get a contradiction, if x1 = b, using the

hypotheses α1p(b) + β1
cDqp(b) < 0.

Now, if x1 ∈ (a, b) then using Lemma 3.3, we have cDqp(x1) = 0, and cD2qp(x1) ≤ 0. This implies that,

0 ≤ −cD2qp(x1)− q(x1)|cDqp(x1)|+ r(x1)p(x1) < 0.

This leads to a contradiction. Next we consider the case when the inequalities are not strict. We have

−cD2qp(x)− q(x)|cDqp|+ r(x)p ≤ 0
α0p(a)− β0

cDqp(a) ≤ 0
α1p(b) + β1

cDqp(b) ≤ 0,
(3.3)

with α0, α1 ≥ 0 and β0, β1 > 0. We construct a function m(x) such that

p(x) = m(x)− εEq,1(k(x− a)q),
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for some appropriate k > 0. Here k will be chosen to make the above inequalities strict with the function
m(x) in place of p(x). Then (3.3) becomes,

−cD2qm(x)− q(x)cDqm(x) + r(x)m(x) + εEq,1(k(x− a)q)(k2 + q(x)k − r(x)) ≤ 0.

This implies,

−c D2qm(x)− q(x)cDqm(x) + r(x)m(x) ≤ −εEq,1(k(x− a)q)(k2 + q(x)k − r(x)) < 0, (3.4)

when we choose k such that (k2 + q(x)k − r(x)) > 0.
Note that the above results hold true if k > 0, is replaced by −k, for an appropriate k > 0. Basically, it is
enough to choose k such that (k2 + |q(x)|k − r(x)) > 0.

Initially, we consider the case when α0, α1 6= 0. In this case, replacing k by −k, we get

α0(m(a)− ε))− β0(cDqm(a) + εk) ≤ 0.

This implies,
α0m(a)− β0

cDqm(a) ≤ ε(α0 − β0k) < 0, (3.5)

when we choose k such that k > α0

β0
.

Similarly, at x = b, we get,

α1(m(b)− εEq,1(k(b− a)q)) + β1(cDqm(b) + εkEq,1(k(b− a)q)) ≤ 0.

From this it follows that

α1m(b) + β1
cDqm(b) ≤ εEq,1(k(b− a)q)(α1 − kβ1) < 0, (3.6)

by choosing k such that k > α1

β1
.

When α0 = 0 and α1 6= 0, we choose k > 0 then the boundary conditions in (3.3) simplifies to

−β0(cDqm(a)− εk) ≤ 0.

From this we get
−β0

cDqm(a) ≤ −ε(kβ0) < 0.

Similarly we can prove for
α1m(b) + β1

cDqm(b) < 0,

by choosing the appropriate k.
Using similar proof we can obtain strict inequalities for the function m(x) on the boundary when α0 6= 0,
and α1 = 0.

Now using the strict inequality result, we get m(x) < 0. This implies p(x) < −εEq,1(k(x− a)q)) < 0.
Now taking the limit as ε→ 0, we get p(x) ≤ 0. This completes our proof.

Now we consider the Caputo fractional boundary value problem with mixed boundary conditions of
the form

−cD2qu = f(x, u) + g(x, u)
α0u(a)− β0

cDqu(a) = b0
α1u(b) + β1

cDqu(b) = b1,
(3.7)

on J = [a, b], f, g ∈ C[J × R,R], u ∈ C2[J,R], α0, α1 ≥ 0 and β0, β1 > 0 provided α0β1 + α1β0 6= 0.

Definition 3.1. Let v ∈ C2[J,R], w ∈ C2[J,R] be the lower and upper solutions of the boundary value
problem, if

−cD2qv ≤ f(x, v) + g(x, v)
α0v(a)− β0

cDqv(a) ≤ b0
α1v(b) + β1

cDqv(b) ≤ b1,
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on J , and
−cD2qw ≥ f(x,w) + g(x,w)
α0w(a)− β0

cDqw(a) ≥ b0
α1w(b) + β1

cDqw(b) ≥ b1.

on J .

From now onwards, in (3.7) we are assuming f is increasing in u and g is decreasing in u for
x ∈ J = [a, b].

Next we provide the definition of coupled lower and upper solution of Type I of boundary value
problem.

Definition 3.2. Let v0 and w0 ∈ C2[J,R] be the coupled lower and upper solution of the boundary value
problem, if

−cD2qv0 ≤ f(x, v0) + g(x,w0)
α0v(a)− β0

cDqv(a) ≤ b0
α1v(b) + β1

cDqv(b) ≤ b1,

and
−cD2qw0 ≥ f(x,w0) + g(x, v0)

α0w(a)− β0
cDqw(a) ≥ b0

α1w(b) + β1
cDqw(b) ≥ b1.

Next we present the Green’s function representation for a Caputo fractional boundary value problem
with mixed boundary conditions which is used to construct the solution of (3.7).

Consider the Caputo fractional boundary value problem with mixed nonhomogeneous boundary
condition which is given by

−cD2qu = f(x, u) + g(x, u)
α0u(a)− β0

cDqu(a) = b0
α1u(b) + β1

cDqu(b) = b1,
(3.8)

on J = [a, b], f, g ∈ C[J × R,R], u ∈ C2[J,R], α0, α1 ≥ 0 and β0, β1 > 0, provided α0β1 + α1β0 6= 0 and
b0, b1 are constants.

The unique solution of (3.8) in terms of Green’s function is given by

u(x) = C1(x− a)q + C2(b− x)q +
∫ b

a

G(x, s)F (s)ds, (3.9)

where C1 and C2 are constants and which can be found by the boundary conditions of (3.8) to be

C1 = b1(α0(b− a)q − β0(Γ (q + 1))− b0(Γ (q + 1)β1)
α0α1(b− a)2q + 2β0β1(Γ (q + 1))2 − (b− a)qΓ (q + 1)(α0β1 + α1β0)

C2 = b0(α1(b− a)q − Γ (q + 1)β1) + b1β0Γ (q + 1)
α0α1(b− a)2q + 2β0β1(Γ (q + 1))2 − (b− a)qΓ (q + 1)(α0β1 + α1β0) ,

where F (s) = f(s, u(s)) + g(s, u(s)), and G(x, s) is the Green’s function satisfying

−c D2qG(x, s) = δ(x− s). (3.10)

The Green’s function satisfies the related homogeneous boundary conditions,

α0G(a, s)− β0
cDqG(a, s) = 0

α1G(a, s) + β1
cDqG(b, s) = 0, (3.11)

where δ(x − s) = cDqH(x − s), and δ(x − s) is a Dirac delta function, and H(x − s) is the Heavyside
unit step function.
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From (3.9) we have
cD2qu(x) =

∫ b

a

F (s)cD2qG(x, s)ds,

from (3.10) we get, ∫ b

a

F (s)δ(x− s)ds = F (s),

where F (s) = f(s) + g(s) and Green’s function satisfies the related homogeneous boundary conditions,

α0G(a, s)− β0
cDqG(a, s) = 0,

α1G(b, s) + β1
cDqG(b, s) = 0. (3.12)

The Green’s function G(x, s) is given by,

G(x, s) =
{
A(x− a)q +B, x < s
C(b− x)q +D, x > s,

where A,B,C,D are constants. By applying the Green’s function boundary condition (3.12) in the above
equation we get

G(x, s) =
{
A((x− a)q + β0

α0
Γ (q + 1)), x < s

C((b− x)q + β1
α1
Γ (q + 1)), x > s,

(3.13)

The constants A and C can be found by continuity and the jump condition of G(x, s) is as follows:
At x = s, G(x, s) must be continuous, G(s−, s) = G(s+, s), and we have

A((s− a)q + β0

α0
Γ (q + 1)) = C((b− s)q + β0

α0
Γ (q + 1)). (3.14)

By the jump condition of G(x, s) we get
cDqG|x=s+ − cDqG|x=s− = 1,

we have
− CΓ (q + 1)−AΓ (q + 1) = 1. (3.15)

By solving the equations (3.14) and (3.15), we get

C = 1
Γ (q + 1)

[
(s− a)q + β0

α0
Γ (q + 1)

(s− a)q + (b− s)q + β0
α0
Γ (q + 1)− β1

α1
Γ (q + 1)

]
,

and

A = 1
Γ (q + 1)

[
(b− s)q − β1

α1
Γ (q + 1)

(s− a)q + (b− s)q + β0
α0
Γ (q + 1)− β1

α1
Γ (q + 1)

]
.

Hence, we obtain the Green’s function from (3.13) of the form

G(x, s) =


1

Γ (q+1) [
((x−a)q+ β0

α0
Γ (q+1))((b−s)q− β1

α1
Γ (q+1))

((s−a)q+(b−s)q+ β0
α0
Γ (q+1)− β1

α1
Γ (q+1))

] x < s

1
Γ (q+1) [

((s−a)q+ β0
α0
Γ (q+1))((b−x)q+ β1

α1
Γ (q+1))

((s−a)q+(b−s)q+ β0
α0
Γ (q+1)− β1

α1
Γ (q+1))

] x > s.

Thus, (3.9) can be written as

u(x) = b1(α0(b− a)q − β0Γ (q + 1))− b0β1Γ (q + 1)
α0α1(b− a)2q + 2β0β1(Γ (q + 1))2 − (b− a)qΓ (q + 1)(α0β1 + α1β0) (x− a)q

+ b0(α1(b− a)q − β1Γ (q + 1)) + b1β0Γ (q + 1)
α0α1(b− a)2q + 2β0β1(Γ (q + 1))2 − (b− a)qΓ (q + 1)(α0β1 + α1β0) (b− x)q

+
∫ b

a

F (s)G(x, s)ds.

(3.16)
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If b1 = 0, b2 = 0, in (3.8) then the unique solution of the boundary value problem is given by

u(x) =
∫ b

a

G(x, s)F (s)ds.

Remark: When q = 1 in (3.16), we obtain the integer result as a special case. Hence, all our results
throughout this paper yields integer result as a special case.

From now on, let us consider the Caputo fractional boundary value problem with mixed boundary
condition in the following form

−cD2qun(x) = Fn(x, un−1)
α0un(a)− β0

cDqun(a) = b0
α1un(b) + β1

cDqun(b) = b1,

on J = [a, b], Fn ∈ C[J × R,R] where Fn = fn + gn.
Now we prove that the sequence {un(x)} is equicontinuous which is useful in our main result.

Lemma 3.5. Let {un(x)} be a family of continuous function on [a, b] for each n > 0,

−cD2qun(x) = Fn(x, un−1(x))
α0un(a)− β0

cDqun(a) = b0
α1un(b) + β1

cDqun(b) = b1,

where Fn(x, un−1(x)) is uniformly bounded on [a, b]. Then {un(x)} is equicontinuous on [a, b].

Proof. Let

vn(x) = A(x− a)q +B(b− x)q +
∫ b

a

G(x, s)F (s, vn−1(s), wn−1(s))ds,

and
wn(x) = A(x− a)q +B(b− x)q +

∫ b

a

G(x, s)F (s, vn−1(s), wn−1(s))ds.

Since F (s) is continuous on a closed bounded set and |vn−1(x)| ≤M1 and |wn−1(x)| ≤M2 are uniformly
bounded, we have F (s, vn−1(s), wn−1(s)) is uniformly bounded. Without loss of generality, we assume
that x2 > x1,

vn(x2)− vn(x1) = A((x2 − a)q − (x1 − a)q) +B((b− x2)q − (b− x1)q)

+
∫ b

a

(G(x2, s)−G(x1, s))F (s, vn−1(s), wn−1(s))ds.

We first need to prove that

|(x2 − a)q − (x1 − a)q| < K1|x2 − x1|q, (3.17)

for some fixed K1 and x1, x2 ∈ [a, b].

Since x2 > x1, x2 − a > x1 − a,

1
x2 − a

<
1

x1 − a
,

1
(x2 − a)p <

1
(x1 − a)p ,

− 1
(x2 − a)p > −

1
(x1 − a)p . (3.18)

By multiplying and dividing the expression (x2 − a)q − (x1 − a)q by (x2 − a)p and (x1 − a)p, we get

(x2 − a)q − (x1 − a)q = (x2 − a)q (x2 − a)p

(x2 − a)p − (x1 − a)q (x1 − a)p

(x1 − a)p .
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Since p+ q = 1, the above expression is reduced to

(x2 − a)q − (x1 − a)q = (x2 − a)
(x2 − a)p −

(x1 − a)
(x1 − a)p .

By the equation (3.18), the above expression is reduced to

(x2 − a)
(x2 − a)p −

(x1 − a)
(x1 − a)p <

(x2 − a)
(x2 − a)p −

(x1 − a)
(x2 − a)p = (x2 − x1)

(x2 − a)p . (3.19)

Let a < x1, (x2 − a) > (x2 − x1), 1
x2 − a

<
1

x2 − x1
1

(x2 − a)p <
1

(x2 − x1)p . (3.20)

Hence, equation (3.19) becomes

(x2 − x1)
(x2 − a)p <

(x2 − x1)
(x2 − x1)p = (x2 − x1)q.

Therefore, |(x2 − a)q − (x1 − a)q| < |x2 − x1|q < ε
K1

.
Next, we need to prove that

|(b− x2)q − (b− x1)q| < K2|x2 − x1|q, (3.21)

for some fixed K2. Since x2 > x1,

b− x2 < b− x1,
1

(b− x2) >
1

(b− x1) ,
1

(b− x2)p >
1

(b− x1)p ,

− 1
(b− x2)p < −

1
(b− x1)p , (3.22)

(b− x2)q − (b− x1)q = (b− x2)q (b− x2)p

(b− x2)p − (b− x1)q (b− x1)p

(b− x1)p ,

b− x2

(b− x2)p −
b− x1

(b− x1)p .

By equation (3.22) we get

b− x2

(b− x2)p −
b− x1

(b− x1)p < −
(b− x2)
(b− x1)p + (b− x1)

(b− x1)p = x2 − x1

(b− x1)p . (3.23)

Let b > x1, b− x1 > x2 − x1,
1

(b− x1)p <
1

(x2 − x1)p . Hence (3.23) becomes

x2 − x1

(b− x1)p <
x2 − x1

(x2 − x1)p = (x2 − x1)q.

Thus, |(b− x2)q − (b− x1)q| < |x2 − x1|q < ε
K2

.
Now we need to prove that∣∣∣∣∣

∫ b

a

(G(x2, s)−G(x1, s))F (s, vn−1(s), wn−1(s)ds

∣∣∣∣∣ < K3|x2 − x1|q.

Let

G(x2, s)−G(x1, s) =
{
c1((x2 − a)q − (x1 − a)q), x < s
c2((b− x2)q − (b− x1)q), x > s,
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where c1 and c2 are constants. From (3.17) and(3.21), we have

G(x2, s)−G(x1, s) =
{
K(x2 − x1)q, x < s
K(x2 − x1)q, x > s,

where K = max {K1,K2}. Now∣∣∣∣∣
∫ b

a

(G(x2, s)−G(x1, s))F (s, vn−1(s), wn−1(s))ds

∣∣∣∣∣
≤
∫ b

a

|(G(x2, s)−G(x1, s))||F (s, vn−1(s), wn−1(s))|ds,

≤ maxs∈[a,b]Fn(s) (b− a)maxs∈[a,b] |G(x2, s)−G(x1, s)| ≤ K3|x2 − x1|q.

Hence, ∣∣∣∣∣
∫ b

a

(G(x2, s)−G(x1, s))F (s, vn−1(s), wn−1(s))ds

∣∣∣∣∣ < K3|x2 − x1|q <
ε

K3
.

Therefore ε > 0, for any δ > 0, |vn(x2)− vn(x1)| < ε (independent of n) and {vn(x)} is equicontinuous.
By a similar argument, we can prove {wn(x)} is equicontinuous.

In the next section, we state the theorem related to coupled lower and upper solutions and develop a
generalized monotone method.

4 Main Results

In this section, we develop the generalized monotone method with coupled lower and upper solutions
of the Caputo fractional boundary value problem with mixed boundary conditions. We also obtain the
existence and uniqueness of the solution of the boundary value problem. We use the Green’s function
representation to construct the solution for the Caputo fractional boundary value problem with mixed
boundary conditions.

Theorem 4.1. Assume that
(i) v0(x), w0(x) ∈ C2[J,R] are the coupled lower and upper solutions of (3.7) with v0(x) < u(x) <
w0(x) on J .
(ii) f, g ∈ C[J × R,R] and f(x, u) is increasing in u and g(x, u) is decreasing in u on J .
Then there exists a sequence defined by

−cD2qvn+1 = f(x, vn) + g(x,wn)
α0vn+1(a)− β0

cDqvn+1(a) = b0
α1vn+1(b) + β1

cDqvn+1(b) = b1,

and
−cD2qwn+1 = f(x,wn) + g(x, vn)
α0wn+1(a)− β0

cDqwn+1(a) = b0
α1wn+1(b) + β1

cDqwn+1(b) = b1,

such that vn(x) → ρ(x) and wn(x) → r(x) uniformly and monotonically and such that (ρ, r) are
coupled minimal and maximal solution respectively to the solution of (3.7). That is, (ρ, r) satisfies

−cD2qρ = f(x, ρ) + g(x, r)
α0ρ(a)− β0

cDqρ(a) = b0
α1ρ(b) + β1

cDqρ(b) = b1,
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and
−cD2qr = f(x, r) + g(x, ρ)
α0r(a)− β0

cDqr(a) = b0
α1r(b) + β1

cDqr(b) = b1,

such that ρ ≤ r.

Proof. Consider the Caputo fractional boundary value problem of order q, 0 < q < 1,

−cD2qu = f(x, u) + g(x, u),
α0u(a)− β0

cDqu(a) = b0,
α1u(b) + β1

cDqu(b) = b1,
(4.1)

on J = [a, b], f, g ∈ C[J × R,R], u ∈ C2[J,R]. The representation formula for (4.1) is given by

u(x) = A(x− a)q +B(b− x)q +
∫ b

a

G(x, s)F (s)ds,

where F (s) = f(s, u(s)) + g(s, u(s)) and G(x, s) is the Green’s function. Firstly, we prove the uniqueness
of the Caputo fractional boundary value problem (4.1). For this, let u1(x), u2(x) be two solutions of (4.1).
Then, we have

−cD2qu1 = F (x)
α0u1(a)− β0

cDqu1(a) = b0
α1u1(b) + β1

cDqu1(b) = b1,

and
−cD2qu2 = F (x)

α0u2(a)− β0
cDqu2(a) = b0

α1u2(b) + β1
cDqu2(b) = b1,

where F (x) = f(x) + g(x) ∈ C[J × R,R].
Let p(x) = u1 − u2, then

−cD2qp = −cD2qu1 + cD2qu2,

and
α0p(a)− β0

cDqp(a) = 0
α1p(b) + β1

cDqp(b) = 0,
which implies

cD2qp ≤ 0.

By the lemma (3.4), we get p ≤ 0, which implies that u1 ≤ u2. By the similar argument, we can prove
u2 ≤ u1. Hence, u1 ≡ u2.

Now, we define the sequences {vn+1(x)} and {wn+1(x)} by

−cD2qvn+1 = f(x, vn) + g(x,wn)
α0vn+1(a)− β0

cDqvn+1(a) = b0
α1vn+1(b) + β1

cDqvn+1(b) = b1,
(4.2)

and
−cD2qwn+1 = f(x,wn) + g(x, vn)
α0wn+1(a)− β0

cDqwn+1(a) = b0
α1wn+1(b) + β1

cDqwn+1(b) = b1.
(4.3)

The representation formula for vn+1(x) and wn+1(x) is given by

vn+1(x) = A(x− a)q +B(b− x)q +
∫ b

a

G(x, s)F (vn(s), wn(s))ds,

and
wn+1(x) = A(x− a)q +B(b− x)q +

∫ b

a

G(x, s)F (vn(s), wn(s))ds,
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where G(x, s) is the Green’s function.
By the hypotheses, we have v0(x) ≤ u(x) ≤ w0(x). We show that v0(x) ≤ v1(x) ≤ u(x) ≤ w1(x) ≤

w0(x). Since v0 and w0 are the coupled lower and upper solution of (4.1),

−cD2qv0 ≤ f(x, v0) + g(x,w0)
α0v(a)− β0

cDqv(a) ≤ b0
α1v(b) + β1

cDqv(b) ≤ b1,

and
−cD2qw0 ≥ f(x,w0) + g(x, v0)

α0w(a)− β0
cDqw(a) ≥ b0

α1w(b) + β1
cDqw(b) ≥ b1.

When n = 0 in (4.2) we have

−cD2qv1 = f(x, v0) + g(x,w0)
α0v1(a)− β0

cDqv1(a) = b0
α1v1(b) + β1

cDqv1(b) = b1.

Let p(x) = v0 − v1, then (4.1) is reduced to

−cD2qp = −cD2qv0 + cD2qv1,

with
α0p(a)− β0

cDqp(a) = 0
α1p(b) + β1

cDqp(b) = 0,

which implies (f(x, v0) + g(x,w0))− (f(x, v0) + g(x,w0)) ≤ 0. By the lemma (3.4), we have

p(x) ≤ 0,

which implies that v0 ≤ v1. Similarly we can prove w1 ≤ w0. Next we prove v1 ≤ v2.
Let p(x) = v1 − v2, then (4.1) is reduced to

−cD2qp = −cD2qv1 + cD2qv2,

with
α0p(a)− β0

cDqp(a) = 0
α1p(b) + β1

cDqp(b) = 0,

which implies that (f(x, v0) + g(x,w0))− (f(x, v1) + g(x,w1)) ≤ 0. Since f(x) is increasing in u and g(x)
is decreasing in u. By the lemma (3.4) we have

p(x) ≤ 0,

which implies that v1 ≤ v2. Similarly we can prove w2 ≤ w1. Hence, v0 ≤ v1 ≤ v2 and w2 ≤ w1 ≤ w0.
Next we prove that v1 ≤ u, if u is any solution such that v0 ≤ u ≤ w0.

−cD2qv1 = f(x, v0) + g(x,w0)
α0v1(a)− β0

cDqv1(a) = b0
α1v1(b) + β1

cDqv1(b) = b1,

and
−cD2qu = f(x, u) + g(x, u)
α0u(a)− β0

cDqu(a) = b0
α1u(b) + β1

cDqu(b) = b1.

Let p(x) = v1 − u, we have

−cD2qp = −cD2qv1 + cD2qu,
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with
α0p(a)− β0

cDqp(a) = 0
α1p(b) + β1

cDqp(b) = 0,

which implies that (f(x, v0) + g(x,w0))− (f(x, u) + g(x, u)) ≤ 0. Since f(x) is increasing in u and g(x) is
decreasing in u. By the lemma (3.4), we have p ≤ 0, which implies that v1 ≤ u. Similarly we can prove
that u ≤ w1. Hence, v0 ≤ v1 ≤ u ≤ w1 ≤ w0.

Next we need to prove that vn ≤ u ≤ wn, where u is any solution of (4.1) proved by induction. It is
certainly true that v0 ≤ u ≤ w0 by existence theorem.

Let us assume that vk ≤ u ≤ wk, we will prove vk+1 ≤ u ≤ wk+1 for k ≥ 1. From (4.2) and (4.3), we
get

−cD2qvk+1 = f(x, vk) + g(x,wk)
α0vk+1(a)− β0

cDqvk+1(a) = b0
α1vk+1(b) + β1

cDqvk+1(b) = b1,

and
−cD2qwk+1 = f(x,wk) + g(x, vk)
α0wk+1(a)− β0

cDqwk+1(a) = b0
α1wk+1(b) + β1

cDqwk+1(b) = b1.

Let us start with vk+1 ≤ u, and let p(x) = vk+1 − u. Then

−cD2qp = −cD2qvk+1 + cD2qu,

with
α0p(a)− β0

cDqp(a) = 0
α1p(b) + β1

cDqp(b) = 0,

which implies that (f(x, vk) + g(x,wk))− (f(x, u) + g(x, u)) ≤ 0. Since f(x) is increasing in u and g(x) is
decreasing in u. By the lemma (3.4), we have p ≤ 0, which implies that vk+1 ≤ u. Similarly, we can prove
that u ≤ wk+1. Hence vn ≤ u ≤ wn.

Therefore for n ≥ 1,

v0 ≤ v1 ≤ v2 ≤ ... ≤ vn ≤ u ≤ wn ≤ ... ≤ w2 ≤ w1 ≤ w0.

Now we need to prove that the sequence converges uniformly. Using Arzelá-Ascoli theorem, we will
prove that the sequences are uniformly bounded and equicontinuous.

First we will prove uniform boundedness. Since v0 and w0 are bounded on [a,b], there exists M > 0
such that for any x ∈ [a, b], |v0(x)| ≤M, and |w0(x)| ≤M.
Since v0(x) ≤ vn(x) ≤ w0(x) for each n > 0, it follows that

0 ≤ vn(x)− v0(x) ≤ w0(x)− v0(x),

since |w0(x)− v0(x)| are continuous and bounded and hence uniformly bounded.
Let

|vn(x)| = |vn(x)− v0(x) + v0(x)|
≤ |vn(x)− v0(x)|+ |v0(x)|

≤M1 +M2 ≤M.

Hence {vn(x)} is uniformly bounded. Similarly, we can prove {wn(x)} is also uniformly bounded.
Next we need to prove that {vn(x)} and {wn(x)} are equicontinuous on [a, b]. By recalling the lemma

(3.5), we can prove that {vn(x)} and {wn(x)} are equicontinuous on [a, b]. Hence we proved that {vn(x)}
and {wn(x)} are uniformly bounded and equicontinuous. Therefore by the Arzelá-Ascoli theorem there
exist subsequences {vnk(x)} and {wnk(x)} which converge uniformly to ρ(x) and r(x) respectively on J .
Since the sequences are monotone, the entire sequence converges uniformly. By the Lebesgue dominated
convergence theorem, we can prove that the sequences {vn(x)} and {wn(x)} converges to a coupled
minimal and maximal solution of (4.1). Since vn ≤ u ≤ wn, ∀n, we get ρ(x) ≤ u(x) ≤ r(x) on [a, b], which
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implies that ρ, r are coupled minimal and maximal solutions of (4.1) respectively. This completes the proof.

Note that if further f and g satisfy the one-sided Lipschitz condition of the following form:

f(x, u1)− f(x, u2) ≤ L(u1 − u2),whenever u1 ≥ u2, L > 0, for x ∈ [a, b]

and

g(x, u1)− g(x, u2) ≥M(u1 − u2),whenever u1 ≥ u2,M > 0, for x ∈ [a, b],
then we can prove r ≤ ρ on [a, b] in the above result. This can be achieved by setting P (x) = r − ρ, and
using the linear comparison result for sequential Caputo fractional differential inequalities, with linear
boundary conditions.

5 Numerical Examples

In this section, we present the numerical examples for Caputo fractional boundary value problem with
mixed boundary conditions using the Green’s functions representation.

Example 1: Consider the Caputo fractional boundary value problem with boundary conditions,

−cD2qu = x2q,
u(0) = 0, cDqu(1) = 0. (5.1)

The Green’s function for (5.1) satisfies

−cD2qG(x, s) = δ(x− s),
G(0, s) = 0, cDqG(1, s) = 0,

and the solution to the (5.1) is given by

u(x) =
∫ 1

0
G(x, s)(−s2q)ds. (5.2)

If x 6= s, cD2qG(x, s) = 0, and G(x, s) is the Green’s function given by

G(x, s) =
{

Axq +B, x < s,
C(1− x)q +D, x > s,

where A,B,C,D are constants and x ∈ (0, 1). Starting with the Green’s function boundary conditions,
we obtain

G(0, s) = 0⇒ B = 0.
cDqG(1, s) = 0⇒ Γ (q + 1)C = 0⇒ C = 0.

Hence, the Green’s function G(x, s) is reduced to

G(x, s) =
{
A(xq), x < s

D, x > s.

From the continuity we have that, at x = s, Asq = D and from the jump condition we have
cDqG(x, s)|b− − cDqG(x, s)|a+ = 1.

Solving the above two equations, we obtain A = −1
Γ (q+1) and D = −sq

Γ (q+1) .
Hence,

G(x, s) =
{

−1
Γ (q+1)x

q, x < s
−sq

Γ (q+1) , x > s,
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Hence, the solution (5.2) becomes,

u(x) =
∫ x

0

−sq

Γ (q + 1)(−s2q)ds+
∫ 1

x

−xq

Γ (q + 1)(−s2q)ds.

By integrating the above expression, we obtain

u(x) = 1
Γ (q + 1)

[
xq

(2q + 1) + x3q+1

(3q + 1) −
x2q+1

(2q + 1)

]
. (5.3)

Below, we will find the numerical result for fractional boundary value problem with simple boundary
conditions when 0 < q ≤ 1 and for integer case.

x

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

u

0
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0.45

0.5

q = 0.5

q = 0.7

q = 0.9

q = 1.0

Integer case

q = 0.7

q = 0.5

q = 1 and Integer caseq = 0.9

Figure 1. −cD2qu = x2q when q = 0.5, 0.7, 0.9, 1.0

The dotted lines in the Figure 1 represents the numerical result for integer derivative. Hence, we
observe that when q = 1, our numerical result for Caputo fractional boundary value problem yields integer
result as a special case.

Example 2: Consider the Caputo fractional boundary value problem with mixed boundary conditions
−cD2qu = xq

u(0)− cDqu(0) = 0,
u(1) + cDqu(1) = 0.

(5.4)

The Green’s function for (5.4) satisfies

−cD2qG(x, s) = δ(x− s)
G(0, s)− cDqG(0, s) = 0
G(1, s) + cDqG(1, s) = 0.

The solution of (5.4) is given by

u(x) =
∫ 1

0
G(x, s)(−sq)ds, (5.5)
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where G(x, s) is the Green’s function which is given by,

G(x, s) =
{

c1x
q + c2, x < s

c3(1− x)q + c4, x > s,

where c1, c2, c3, c4 are constants and x ∈ (0, 1). By applying the Green’s function boundary conditions we
get

G(x, s) =
{

c1x
q + c1(Γ (q + 1)), x < s,

c3(1− x)q + c3(Γ (q + 1)), x > s.

From the continuity and the jump condition, we obtain G(x, s) as follows

G(x, s) =
{

− (1−s)q+Γ (q+1)
sq+(1−s)q+2Γ (q+1)

xq+Γ (q+1)
Γ (q+1) , x < s

− (s)q+Γ (q+1)
sq+(1−s)q+2Γ (q+1)

(1−x)q+Γ (q+1)
Γ (q+1) , x > s.

Hence, the solution (5.5) becomes

u(x) =
∫ x

0

[
− (s)q+Γ (q+1)
sq+(1−s)q+2Γ (q+1)

] [
(1−x)q+Γ (q+1)

Γ (q+1)

]
(−sq)ds

+
∫ 1
x

[
− (1−s)q+Γ (q+1)
sq+(1−s)q+2Γ (q+1)

] [
xq+Γ (q+1)
Γ (q+1)

]
(−sq)ds,

which simplifies to

u(x) =
[

(1−x)q+Γ (q+1)
Γ (q+1)

] ∫ x
0

[
(s)q+Γ (q+1)

sq+(1−s)q+2Γ (q+1)

]
sqds

+
[
xq+Γ (q+1)
Γ (q+1)

] ∫ 1
x

[
(1−s)q+Γ (q+1)

sq+(1−s)q+2Γ (q+1)

]
sqds.

Below we find the numerical result for fractional boundary value problem with mixed boundary
conditions when 0 < q ≤ 1 and for the integer derivative.

x

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

u

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

q = 0.5

q = 0.7

q = 0.9

q = 1

Integer case

q = 0.5

q = 0.7

q = 0.9

q = 1.0 and Integer case

Figure 2. −cD2qu = xq when q = 0.5, 0.7, 0.9, 1.0

The dotted lines in the Figure 2 represents the integer derivative result. Hence we observe that when
q = 1, our numerical result for Caputo fractional boundary value problem with mixed boundary conditions
yields integer result as a special case.
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6 Conclusion

Generalized monotone method is a useful tool for any nonlinear dynamic systems when the forcing function
is the sum of an increasing and decreasing functions in the the nonlinear term. Further, generalized
monotone method is both a theoretical and a constructive method for computing the coupled minimal
and maximal solution of the nonlinear Problem. If further uniqueness condition is satisfied, then the
monotone sequences converge to the unique solution of the nonlinear problem. In this work, we have
developed generalized monotone iterative technique together with coupled lower and upper solutions for
the nonlinear Caputo fractional boundary value problem with mixed boundary conditions. Using the
Green’s function as a tool, a representation form for the solution of the nonhomogeneous linear Caputo
fractional boundary value problem has been developed. We have developed a linear comparison result
which has been beneficial in proving the monotonicity and also the uniqueness of the solution of the linear
Caputo fractional boundary value problem. Under uniqueness condition we could prove that the coupled
maximal and minimal boundary value problem converges to the unique solution of the nonlinear Caputo
fractional boundary value problem. Numerical results are presented for the linear sequential Caputo
boundary value problem with mixed boundary conditions. All our results yield the integer results as a
special cases. In future, we plan to develop a code to solve linear sequential Caputo fractional boundary
value problem for a general nonhomogeneous term. This will be a useful tool to solve the nonlinear
sequential Caputo fractional boundary value problem numerically with greater accuracy.
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