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Abstract A mathematical model of a grove infected by citrus greening is established, in which
an impulsive control strategy of removing infected trees and dead trees is adopted and the general
incidence is taken into consideration. By the method of fluctuation, the dynamics behavior is
analyzed. Theoretical results show that if R1 < 1 the disease-free periodic solution is global
attractive and the disease becomes extinct, if R2 > 1, the disease-free periodic solution is unstable
and the disease uniformly persists. By numerical simulation, the theoretical results are illustrated
and sensitivity analysis is given.
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1 Introduction

Citrus Huanglongbing (HLB), previously called citrus greening disease, is one of the most destructive
diseases of citrus worldwide, which is characterized by the development of yellow shoots and stunted
growth of infected trees combined with a decline in quantity and quality of fruit production [1]. Originally
thought to be caused by a virus, it is now known to be caused by unculturable phloem-limited bacteria [2].
HLB is incurable and affects all citrus varieties. HLB bacterium does not pose a threat to humans, pets,
or other plants [3]. Now HLB is present in China, eastern and southern Africa, the Indian subcontinent,
Madagascar, Mauritius, Reunion, the Saudi Arabian peninsula, and southeast Asia [2]. Because of its
impact on many sectors of economy and the implications for the citrus industry nationwide, investigating
HLB has become an important project for researchers.

HLB, unlike some other plant diseases, has a incubation period during which the infected trees do
not show symptoms. The incubation period is one of the most important parameters influencing HLB
within-tree spread [4]. There is ample potential for vectors to acquire the pathogen from trees during
the asymptomatic phase of infection [5]. Healthy citrus acquires the pathogen indirectly from both the
asymptomatic and the symptomatic infected citrus by vectors.

In the past three decades, compartmental epidemiological models have been developed and they have
played an important role in understanding the dynamical behavior of transmission of disease. Recently,
several compartmental models on HLB transmission have been investigated and studied [4,6,7]. Recently,
Chiyaka et al. [4] proposed a model of ordinary differential equations for the HLB transmission dynamics
within a tree. Vilamiu et al. [6,7] presented mathematical models for representing the dynamics of HLB
disease in a citrus orchard, including the disease’s incubation phase in the plants. A HLB model with
periodic environment was studied in [8]. The basic reproduction number was given, and some useful
comments on controlling the transmission of HLB were proposed by numerical simulation.

Roguing infected trees and dead trees is an important method in the control of HLB. In [9], continuously
removing infected and dead trees was considered. In practice, it is an impulsive behavior, and the time
intervals vary with the change of seasons. There are various models for the animal disease with impulsive
control [10]-[15]. For example, Zhang et al.[13] investigated the dynamic behavior of a predator-prey
model with double impulsive control strategy. Xiao et al. [15] made a study of the transmission of West
Nile Virus, incorporating a control strategy of culling mosquitoes and investigating its properties. But,
for the impulsive control of plant disease, especially for citrus HLB, little work has been done.

Motivated by the above works, our main purpose is to analyze the dynamical behavior theoretically
and to study the effects of pulse roguing on the HLB control. To achieve the above goal, we formulate
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impulsive differential equations including susceptible, asymptomatic and symptomatic infected citrus
trees, in which the time intervals and the impulsive intensity vary within a year.

The organization of this paper is as follows. In the next section, we propose an impulsive differential
system under some hypotheses and the biological interpretation. In Section 3 and Section 4, we obtain
the sufficient condition for the global attractivity of the disease-free periodic solution and the permanence
of disease, respectively. An example is given in Section 5 in order to illustrate our theoretical results by
numerical analysis. A brief conclusion is presented in the last section.

2 Model Formulation

Due to the observed delay in the appearance of symptoms of citrus HLB, we subdivide the citrus tree
population into three groups: susceptible trees S, asymptomatic (latent) infected trees E and symptomatic
infected trees I. In this paper, we assume that the susceptible individual population is increased via
replantation at certain rate in the free space of the grove and diminished by infection which may lead to
the increase of group E and I indirectly. Additionally, we consider the disease-associated mortality in the
symptomatic citrus population. Because human exploration efficiency to asymptomatic and symptomatic
group may be different, we assume they are removed at different rate. Now we establish an impulsive
model with general incidence. The system is modeled by the following equations:

dS(t)
dt = α(K − S(t)− E(t)− I(t))− g(t, S,E)− f(t, S, I)− µS(t),

dE(t)
dt = g(t, S,E) + f(t, S, I)− µE(t)− σE(t),

dI(t)
dt = σE(t)− µI(t)− τI(t),


t 6= tk, (k ∈ N),

S(t+) = S(t),

E(t+) = (1− pk)E(t),

I(t+) = (1− θk)I(t),

 t = tk, (k ∈ N).

(1)

The model is derived from the following assumptions:
• There is a maximum plant population size K > 0. Recruitment to the population is by replanting at a
rate α > 0 proportional to the difference between the actual number of plants S + E + I and maximum
population size K.
• µ > 0 denotes the natural death rate of citrus, τ ≥ 0 is the HLB-induced death rate, σ > 0 represents
the transformation rate of infected trees from the latent state to the symptomatic state.
• S(t), E(t) and I(t) are left continuous for [t0,+∞), that is, S(t) = lim

h→0+
S(t− h), E(t) = lim

h→0+
E(t− h)

and I(t) = lim
h→0+

I(t− h).
• tk represent pulse time. There exist a positive integer q and a positive ω such that tk+q = tk + ω for all
k ∈ N.
• pk and θk (0 ≤ θk, pk ≤ 1) are the pulse roguing rates of asymptomatic and symptomatic citrus at
fixed time t = tk, respectively, and θk = θq+k, pk = pq+k for k ∈ N.
• Due to the different infectivity of asymptomatic and symptomatic trees, we assume g(t, S,E) and
f(t, S, I) represent incidence rates about group E and I, respectively. The general nonlinear g(t, S,E) and
f(t, S, I) are piecewise continuous, nonnegative, periodic functions with period ω. The form of g(t, S,E)
and f(t, S, I) is as follows:

g(t, S,E) =


g1(t, S,E), t ∈ (t0 + nω, t1 + nω],

...

gq(t, S,E), t ∈ (tq−1 + nω, tq + nω],

,
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f(t, S, I) =


f1(t, S, I), t ∈ (t0 + nω, t1 + nω],

...

fq(t, S, I), t ∈ (tq−1 + nω, tq + nω],
for all nonnegative integer n, and gi(t, 0, E) = gi(t, S, 0) = 0, fi(t, 0, I) = fi(t, S, 0) = 0 for i = 1, 2, · · · , q.

3 Global Attractivity of the Disease-Free Periodic Solution
From system (1), we know that (αK/(α+ µ), 0, 0) is the disease-free periodic solution. To analyze the
global attractivity of the disease-free periodic solution, we firstly make the following assumption:
(A): There exist two positive, continuous, periodic functions ξi(t), βi(t) with the period ω, that is
ξi(t) = ξi(t+ω), βi(t) = βi(t+ω), for all i = 1, 2, · · · , q, such that gi(t, S,E) ≤ ξi(t)S(t)E(t), fi(t, S, I) ≤
βi(t)S(t)I(t), for t ≥ t0.

Theorem 1. If R1 < 1 and system (1) satisfies the assumption (A), then the disease-free periodic
solution (αK/(α+ µ), 0, 0) is globally attractive, where

R1 =

αK

α+ µ

q∑
i=1

∫ ti

ti−1
i(t)dt

µω −
q∑
i=1

ln(1− ai)
,

and
ai = min{Pi, θi}, i(t) = max{ξi(t), βi(t)}, i = 1, 2, · · · , q. (2)

Proof. Let (S(t), E(t), I(t)) be any solution of system (1). Since R1 < 1, there exists a sufficiently small
number ε1 > 0 such that

Ω , exp
[

q∑
i=1

∫ ti

ti−1

[ i(t)(
αK

α+ µ
+ ε1)]dt+

q∑
i=1

ln(1− ai)− µω
]
< 1. (3)

From the first equation of (1), we have dS(t)
dt ≤ α(K − S(t))− µS(t). By the comparison theorem, for

above mentioned ε1, we can obtain that there exists a positive constant t1(> t0), such that

S(t) < αK

α+ µ
+ ε1, for all t ≥ t1. (4)

Next, from (4) and the second equation of system (1), we can get that, for t ∈ (ti−1 + nω, ti + nω](i =
1, 2, · · · , q) and t ≥ t1,

dE(t)
dt + dI(t)

dt = g(t, S,E) + f(t, S, I)− µ(E(t) + I(t))− τI(t)

≤ ξi(t)S(t)E(t) + βi(t)S(t)I(t)− µ(E(t) + I(t))
≤ ψi(t)S(t)(E(t) + I(t))− µ(E(t) + I(t))

≤
[

i(t)(
αK

α+ µ
+ ε1)− µ

]
(E(t) + I(t)),

where i(t) (i = 1, 2, · · · , q) can be seen in (2). Thus,

E(t) + I(t) ≤ (E((ti−1 + nω)+) + I((ti−1 + nω)+)) exp
∫ t

ti−1+nω

[
i(t)(

αK

α+ µ
+ ε1)− µ

]
dt

= [(1− pi−1)E(ti−1 + nω) + (1− θi−1)I(ti−1 + nω)] exp
∫ t

ti−1+nω

[
i(t)(

αK

α+ µ
+ ε1)− µ

]
dt

≤ (1− ai−1)(E(ti−1 + nω) + I(ti−1 + nω)) exp
∫ t

ti−1+nω

[
i(t)(

αK

α+ µ
+ ε1)− µ

]
dt,

(5)
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where ai (i = 1, 2, · · · , q) are defined in (2).
By using the similar method, we can deduce from (5) that for t ∈ (ti−1 + nω, ti + nω]

E(t) + I(t) ≤
i−1∏
j=1

(1− aj)
[
E((t0 + nω)+) + I((t0 + nω)+)

]
× exp

{
( αK

α+ µ
+ ε1)

[∫ t1+nω

t0+nω
ψ1(t)dt+ · · ·+

∫ t

ti−1+nω
i(t)dt

]
− µ(t− t0 − nω)

}
.

(6)

Especially, when t = t0 + (n+ 1)ω, we have

E((t0 + (n+ 1)ω)+) + I((t0 + (n+ 1)ω)+)
≤ (1− aq)(E(tq + nω) + I(tq + nω))

≤
q∏
i=1

(1− ai)
[
E((t0 + nω)+) + I((t0 + nω)+)

]
exp

[
q∑
i=1

∫ ti

ti−1

[ i(t)(
αK

α+ µ
+ ε1)]dt− µ(tq − t0)

]

= [E(t0 + nω) + I(t0 + nω)] exp
[

q∑
i=1

∫ ti

ti−1

[ i(t)(
αK

α+ µ
+ ε1)]dt+

q∑
i=1

ln(1− ai)− µω
]

= Ω [E((t0 + nω)+) + I((t0 + nω)+)] .

Therefore, for any positive integer s, we obtain the following result: E((t0+(n+s)ω)+)+I((t0+(n+s)ω)+) ≤
Ωs [E((t0 + nω)+) + I((t0 + nω)+)], combining with (3), we get

E[(t0 + (n+ s)ω)+] + I[(t0 + (n+ s)ω)+]→ 0, as s→ +∞. (7)

According to (6) and (7), we have

lim
t→+∞

(E(t) + I(t)) = 0, (8)

that is, for above mentioned ε1, there exists t2(> t1), we get E(t) + I(t) < ε1 for all t > t2.
Then, from the first equation of system (1), we know for t > t2,

dS(t)
dt = α(K − S(t)− E(t)− I(t))− g(t, S,E)− f(t, S, I)− µS(t)

≥ α(K − ε1)− (ψ∗ε1 + α+ µ)S(t),
(9)

where ψ∗ = max
1≤i≤q

{ψi(t), t ∈ [t0, t0 + ω]}. Solving the differential inequality, we can obtain

S(t) ≥ α(K − ε1)
ψ∗ε1 + α+ µ

+
[
S(t2)− α(K − ε1)

ψ∗ε1 + α+ µ

]
e−(t−t2)(ψ∗ε1+α+µ) , S̃(t), for t > t2. (10)

It follows from (4) and (10) that

S̃(t) ≤ S(t) ≤ αK

α+ µ
+ ε1, for (t > t2). (11)

Because ε1 is an arbitrary positive number, (10) means that

lim
t→+∞

S(t) = αK

α+ µ
.

By (8) and (11), we get that the disease-free periodic solution (αK/(α+µ), 0, 0) is globally attractive.

4 Permanence

In this section, we mainly obtain the sufficient conditions for the permanence of system (1). We give the
following assumption at first.
(B): There exist two positive, continuous, periodic functions ςi(t), ηi(t) with period ω, such that
gi(t, S,E) ≥ ςi(t)S(t)E(t), fi(t, S, I) ≥ ηi(t)S(t)I(t), for t ≥ t0.
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Theorem 2. If R2 > 1 and assumptions (A) and (B) hold, then system (1) is permanent, where

R2 =

αK

α+ µ

q∑
i=1

∫ ti

ti−1

ϕi(t)dt

(µ+ τ)ω −
q∑
i=1

ln(1− bi)
,

and
bi = max{pi, θi}, ϕi(t) = min{ςi(t), ηi(t)}, i = 1, 2, · · · , q. (12)

Proof. Since R2 > 1, there exists a sufficiently small number ε2 > 0 such that

Σ
.=

q∏
i=1

(1− bi) exp
[(

α(K − ε2)
α+ µ

− ε2
) q∑
i=1

∫ ti

ti−1

ϕi(t)dt− (µ+ τ)ω
]
> 1. (13)

In order to illustrate the conclusion, we firstly prove the disease is uniformly weakly persistent, that is
to say, there exists a positive constant η > 0, such that lim sup

t→+∞
(E(t) + I(t)) ≥ η. By contradiction, for

above given ε2 > 0, there exists a constant t3 > 0 such that E(t) + I(t) < ε2 for all t > t3.
According to assumption (A) and the first equation of system (1), we know

dS(t)
dt = α(K − S(t)− E(t)− I(t))− g(t, S,E)− f(t, S, I)− µS(t)

≥ α(K − ε2)− (ψ∗ε2 + α+ µ)S(t), for all t > t3,

where ψ∗ is defined in (9) . By comparison theorem, we have S(t) ≥ y1(t) and y1(t)→ α(K − ε2)
ψ∗ε2 + α+ µ

as

t→ +∞, where y1(t) is the solution of the following comparison system:

dy1(t)
dt = α(K − ε2)− (ψ∗ε2 + α+ µ)y1(t).

Therefore, for above mentioned ε2, there exists an integer n∗ > 0 such that

S(t) ≥ y1(t) ≥ α(K − ε2)
ψ∗ε2 + α+ µ

− ε2 for all t > t3 + n∗ω. (14)

For above mentioned t3 + n∗ω, we can get that there exists a positive integer N1, such that N1ω ≥
t3 +n∗ω. Hence for all nω+ ti−1 < t < nω+ ti, (n ≥ N1, i = 1, 2, · · · , q), by the second equation of system
(1) and (14), we have

dE(t)
dt + dI(t)

dt = g(t, S,E) + f(t, S, I)− µ(E(t) + I(t))− τI(t)

≥ ςi(t)S(t)E(t) + ηi(t)S(t)I(t)− µ(E(t) + I(t))− τI(t)
≥ ϕi(t)S(t)(E(t) + I(t))− µ(E(t) + I(t))− τ(E(t) + I(t))

≥
[
ϕi(t)

(
α(K − ε2)
ψ∗ε2 + α+ µ

− ε2
)
− µ− τ

]
(E(t) + I(t)),

(15)

where ϕi(t) = min{ςi(t), ηi(t)} (i = 1, 2, · · · , q) are defined in (12). In addition, in view of system (1), we
yield

E(t+) + I(t+) = (1− pi)E(t) + (1− θi)I(t) ≥ (1− bi)((E(t) + I(t)),
where bi = max{pi, θi}, (i = 1, 2, · · · , q) can be seen in (12).
Then we consider impulsive comparison system:

dy2(t)
dt =

[
ϕk(t)

(
α(K − ε2)
ψ∗ε2 + α+ µ

− ε2
)
− (µ+ τ)

]
y2(t), t 6= tk, k ∈ N,

y2(t+) = (1− bk)y2(t), t = tk, k ∈ N,

y2(t+0 ) = E0 + I0 > 0.
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By solving above impulsive differential equation, we can obtain that for ti−1 +nω < t < ti +nω, (n ≥
N1), i = 1, 2, · · · q,

y2(t) =(E0 + I0)Σn ×

i−1∏
j=1

(1− bj)


× exp

( α(K − ε2)
ψ∗ε2 + α+ µ

− ε2
)i−1∑

j=1

∫ tj

tj−1

ϕj(t)dt+
∫ t

ti−1+nω
ϕj(t)dt

− (µ+ τ)(t− t0 − nω)

 .
(16)

Thus, from (13) and (16), we have

y2(t)→ +∞, as n→ +∞,

that is, as t→ +∞, we have y2(t)→ +∞. By the comparison theorem, we have lim
t→+∞

(E(t) + I(t)) = +∞,
which is a contradiction to 0 < E(t) + I(t) < ε2. Thus the claim is proved.

By the claim, we need to discuss the following two possible cases:
Case 1. E(t) + I(t) > ε2 for all large t;
Case 2. E(t) + I(t) oscillates about ε2 for all large t.

The first case implies that the result holds. Then we will consider the second possibility. At first, set t
and t̄ > t3 be large enough such that

E(t) + I(t) ≥ ε2, E(t̄) + I(t̄) = ε2, and E(t) + I(t) < ε2, for t ∈ (t, t̄).

There are two possible subcases for t.
Subcase (I). If t = ti + nω (n is a nonnegative integer and i = 1, · · · , q), then E(t) + I(t) > ε2 and
(1− bi)ε2 < (1− bi)(E(t) + I(t)) ≤ E(t+) + I(t+) < ε2, where bi is defined in (15). We claim that there
must exist a positive constant m, such that E(t) + I(t) ≥ m, for t ∈ (t, t̄). Then, we will consider two
possibilities in terms of the size of t and t̄.

(i) If t̄− t ≤ n∗ω, where n∗ is defined in (14), then from system (1), we have
dE(t)

dt + dI(t)
dt = g(t, S,E) + f(t, S, I)− µ(E(t) + I(t))− τI(t)

≥ −(µ+ τ)(E(t) + I(t)), t 6= tk,

E(t+) + I(t+) ≥ (1− bk)(E(t) + I(t)), t = tk.

(17)

From (17), we get

E(t) + I(t) ≥
[
q∏
i=1

(1− bi)
]n∗+1

(E(t) + I(t)) exp[−(µ+ τ)(t− t)]

≥

[
q∏
i=1

(1− bi)
]n∗+1

ε2 exp[−(µ+ τ)n∗ω] , m for all t ∈ [t, t̄].

(ii) If t̄ − t ≥ n∗ω, in view of the discussion in (i), we have E(t) + I(t) ≥ m for all t ∈ [t, t + n∗ω].
Next, we show that E(t) + I(t) ≥ m for all t ∈ (t+ n∗ω, t̄]. Otherwise, there exists a constant t∗ > 0 such
that

E(t) + I(t) ≥ m, for all t ∈ [t, t+ t∗ + n∗ω),
E(t+ t∗ + n∗ω) + I(t+ t∗ + n∗ω) ≥ m, and E(t) + I(t) < m, for 0 < t− (t+ t∗ + n∗ω)� 1.

Next, we discuss two possibilities separately:
(a) For all k ∈ N, t+ t∗ + n∗ω 6= tk.
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It is easy to see system (15) holds on [t + n∗ω, t]. So we can choose a proper ρ > 0, such that
E(t + n∗ω + t∗) + I(t + n∗ω + t∗) ≥ ρ(E0 + I0) ≥ m. By the comparison theorem we have 0 <
t− (t+ n∗ω + t∗)� 1,

E(t) + I(t) ≥ (E(t+ t∗ + n∗ω) + I(t+ t∗ + n∗ω))

× exp
[(

α(K − ε2)
ψ∗ε2 + α+ µ

− ε2
)
− (µ+ τ)(t− (t+ n∗ω + t∗))

]
≥ ρ(E0 + I0) exp

[(
α(K − ε2)
ψ∗ε2 + α+ µ

− ε2
)
− (µ+ τ)(t− (t+ n∗ω + t∗))

]
.

In addition, (13) implies that

exp
[(

α(K − ε2)
ψ∗ε2 + α+ µ

− ε2
)
− (µ+ τ)(t− (t+ n∗ω + t∗))

]
≥ 1,

then we obtain that

E(t) + I(t) ≥ ρ(E0 + I0) exp
[(

α(K − ε2)
ψ∗ε2 + α+ µ

− ε2
)
− (µ+ τ)(t− (t+ n∗ω + t∗))

]
≥ ρ(E0 + I0) ≥ m.

Then E(t)+I(t) ≥ m, for 0 < t−(t+t∗+n∗ω)� 1, which is a contradiction. Therefore, E(t)+I(t) ≥ m
for any t ∈ [t, t̄].

(b) There exists a k ∈ N such that t+ t∗ + n∗ω = tk. The proof of (b) is similar to (a), so we omit it.
Subcase (II). If for all k ∈ N, t 6= tk, then E(t) + I(t) = ε2. Using the same methods of Subcase (I), we
can easily get a positive constant m, such that E(t) + I(t) ≥ m, for all t ∈ [t, t̄].

Thus, we see that E(t) + I(t) ≥ m for any t ∈ [t, t̄]. Since this kind of interval [t, t̄] is chosen in an
arbitrary way, we conclude that E(t) + I(t) ≥ m for all large t.

According to our above discussion, the choice of m is independent of the positive solution of system
(1), and we have proved that any solution of system (1) satisfies E(t) + I(t) ≥ m for sufficiently large
t, that is, lim inf

t→+∞
E(t) + I(t) ≥ m. It is easy to obtain that, there exist positive constants S∗ such that

lim inf
t→+∞

S(t) ≥ S∗. Therefore, the permanence of system (1) is proved.

5 Numerical Simulations
In this section, we will give an example for bilinear periodic incidence function to show the usefulness of
the results. Rewriting the original system (1):

dS(t)
dt = α(K − S(t)− E(t)− I(t))− dk(t)S(t)E(t)− ck(t)S(t)I(t)− µS(t),

dE(t)
dt = dk(t)S(t)E(t) + ck(t)S(t)I(t)− µE(t)− σE(t),

dI(t)
dt = σE(t)− µI(t)− τI(t),


t 6= tk,

S(t+) = S(t),

E(t+) = (1− pk)E(t),

I(t+) = (1− θk)I(t),

 t = tk,

(18)

where α,K, µ, σ and τ are positive constants. Because symptomatic trees may be more attractive for the
vectors than the asymptomatic trees [16], then we assume that dk(t) ≤ ck(t). According to Theorem 1
and Theorem 2, we get R1 and R2 corresponding to system (18) as follows:

R1 =

αK

α+ µ

q∑
i=1

∫ ti

ti−1

ci(t)dt

µω −
q∑
i=1

ln(1− ai)
, R2 =

αK

α+ µ

q∑
i=1

∫ ti

ti−1

di(t)dt

(µ+ τ)ω −
q∑
i=1

ln(1− bi)
.
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Here, we give numerical simulations of system (18) by using Matlab to illustrate the previous results.
First we fix the parameters as in Table 1. In addition, from the first and second rows of data of Table 2,

Table 1. Parameters and initial data chosen for the simulation.

Variable and parameter Description Initial or parameter values

Variables
S Susceptible population 0.7
E asymptomatic population 0.15
I symptomatic population 0.05
Parameters
K Maximum plant population size 1
α Replant rate 0.03
µ The natural death rate of citrus 0.04
σ The transformation rate of infected trees from E to I 0.02
τ The HLB-induced death rate 0.025
ω pulse period 12
q pulse times in a period 4
c1(t) - 0.1 + 0.03sin((πt)/6)
c2(t) - 0.05 + 0.02sin((πt)/6)
c3(t) - 0.3 + 0.05sin((πt)/6)
c4(t) - 0.25 + 0.05sin((πt)/6)
d1(t) - 0.05 + 0.03sin((πt)/6)
d2(t) - 0.025 + 0.02sin((πt)/6)
d3(t) - 0.15 + 0.05sin((πt)/6)
d4(t) - 0.125 + 0.05sin((πt)/6)

we can compute the value of R1 or R2 and obtain the effect of parameters θk, pk on the extinction and
permanence of the disease.

Table 2. The effect of pulse control strength on the extinction and permanence of the disease.

parameter θ1 θ2 θ3 θ4 p1 p2 p3 p4 R1(R2) disease

value 0.15 0.52 0.53 0.2 0.12 0.52 0.53 0.2 R1 = 0.9965 extinction

value 0.15 0.14 0.15 0.2 0.12 0.12 0.13 0.2 R2 = 1.0045 permanence

Fig. 1 and Fig. 2 show the the disease will die out when R1 < 1 and will be endemic when R2 > 1,
respectively.

Next, we use controlling variables method to study the impact of parameter α and τ on R1 and R2,
respectively. Let α vary in [0, 1] with the other parameters unchanged, we get the graph for R1 to α (see
Fig. 3). It shows that R1 increases as α increases from 0 to 1, and R1 is more sensitive when α < 0.1. If we
vary τ in [0, 1] in (18), R2 decreases as τ increases from 0 to 1, and R2 is more sensitive when τ < 0.3 (see
Fig. 4). If we take parameters as θ1 = 0.15, θ2 = 0.38, θ3 = 0.42, θ4 = 0.2, p1 = 0.12, p2 = 0.33, p3 = 0.38,
p4 = 0.2, with the other parameters unchanged as previously defined, numerical calculations indicate that
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Figure 1. This figure shows the movement path of I and E, as functions of time t, where θ1 = 0.15, θ2 = 0.52,
θ3 = 0.53, θ4 = 0.2, p1 = 0.12, p2 = 0.52, p3 = 0.53, p4 = 0.2. The disease will be extinct eventually
(R1 = 0.9965 < 1).

Figure 2. This figure shows the movement path of I and E, as functions of time t, where θ1 = 0.15, θ2 = 0.14,
θ3 = 0.15, θ4 = 0.2, p1 = 0.12, p2 = 0.12, p3 = 0.13, p4 = 0.2. the disease is permanent (R2 = 1.0045 > 1).

the the disease will fade out (see Fig. 5), whereas we can compute R1 = 1.3943 > 1. Moreover, if we take
θ1 = 0.15, θ2 = 0.3, θ3 = 0.2, θ4 = 0.2, p1 = 0.12, p2 = 0.25, p3 = 0.1, p4 = 0.2, numerical calculations
indicate that the the disease will persist (see Fig. 6), whereas R2 = 0.8007 < 1. Thus, the conditions of
Theorem 1 and Theorem 2 are only sufficient, not necessary. That is to say, using R1(R2) as the extinction
(permanence) threshold of the disease will overestimate or underestimate the disease transmission risk.
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Figure 3. The graph of R1 versus α.

Figure 4. The graph of R2 versus τ .

6 Conclusion

In this paper, the model developed describes the population dynamics for citrus HLB with general
incidence, in which varying multi-pulse within an environmental period is considered. We show that when
R1 < 1, the disease-free periodic solution is globally attractive, whereas when R2 > 1, the disease is
uniformly persistent. The simulation indicates that: (i) pulse roguing infected citrus trees is an effective
method for HLB control, (ii) increasing the replanting rate is bad for HLB control, (iii) increasing HLB-
induced death rate is benefit for HLB control. However, our results can not solve the critical threshold
value which determines the extinction and the uniform persistence of disease. Additionally, our model
may be simple, the vector population (citrus psyllid) is not considered, which indicates that our model
and results have a lot of room to improve.
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Table 3. The effect of pulse control strength on the extinction and permanence of the disease.

parameter θ1 θ2 θ3 θ4 p1 p2 p3 p4 R1(R2) disease

value 0.15 0.38 0.42 0.2 0.12 0.33 0.38 0.2 R1 = 1.3943 extinct

value 0.15 0.3 0.2 0.2 0.12 0.25 0.1 0.2 R2 = 0.8007 persistent

Figure 5. This figure shows the movement path of I and E, as functions of time t. R1 = 1.3943 > 1.

Figure 6. This figure shows the movement path of I and E, as functions of time t. R2 = 0.8007 < 1.
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