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Abstract Lord and Shulman theory of generalized thermoelasticity is applied to formulate the
field equations governing a two-temperature thermoelastic medium with diffusion. The equations
are reduced for an isotropic case in x-z plane. These equations are solved for general surface
wave solutions. Particular solutions satisfying the required radiations conditions are obtained in
a half-space. Applying suitable boundary conditions at free surface, a secular equation for wave
speed of Rayleigh surface wave is obtained. The wave speed of Rayleigh wave is computed by using
Fortran Program of iteration method for a particular example of the half-space. The effects of
two-temperature parameter, frequency, thermodiffusion parameter and diffusion relaxation time are
observed graphically on the wave speed of Rayleigh wave.
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Nomenclature

ρ is the density of the medium.
λ, µ are the Lame’s constant.
αt is the coefficient of linear thermal expansion.
αc is the coefficient of diffusion expansion.
T is the absolute temperature.
T0 is the temperature of the medium in its natural state.
Φ is conductive temperature.
σij are the components of stress tensor.
eij are the components of strain tensor.
ui are the components of displacement vector.
S is the entropy per unit mass.
P is the chemical potential per unit mass.
C is the mass concentration.
cE is the specific heat at constant strain.
K is the coefficient of thermal conductivity.
D∗ is the thermo-diffusion constant.
τ0 is the thermal relaxation time.
τ is the diffusion relaxation time.
a∗ > 0 is a two temperature parameter.
a, b are constants to measure thermo-diffusion effects and diffusive effects.

1 Introduction

Lord and Shulman [10] and Green and Lindsay [6] formulated theories of generalized thermoelasticity
which remove the shortcomings of classical theory of thermoelasticity developed by Biot [1]. Dhaliwal
and Sherief [5] extended the Lord and Shulman theory for anisotropic case. Hetnarski and Ignaczak [8]
reviewed these theories of generalized thermoelasticity in detail.

Journal of Advances in Applied Mathematics, Vol. 1, No. 3, July 2016 
https://dx.doi.org/10.22606/jaam.2016.13006 195

Copyright © 2016 Isaac Scientific Publishing JAAM



The diffusion phenomenon in solids is of great importance due to its applications in geophysics and
industries. This phenomenon is used for extraction oil more efficiently from oil deposits. The coupling of
temperature, mass diffusion and strain fields is known as thermodiffusion in an elastic solid. Nowacki
[11, 12] developed the coupled theory of thermoelastic diffusion in solids. Sherief et al. [14] developed the
generalized theory of thermoelastic diffusion, which permits finite speed of thermal signals. Later, Singh
[15, 16] showed the existence of three coupled longitudinal waves and a shear wave in a two-dimensional
model of generalized thermoelastic solid with diffusion. He also studied the reflection of P and SV
waves from free surface of a half-space. Thereafter, many researchers studied various problems on wave
propagation in generalized thermoelasticity with diffusion.

The development of a two-temperature theory of thermoelasticity is due to Gurtin and Williams [7],
Chen and Gurtin [2] and Chen et al. [3, 4]. Warren and Chen [18] and Puri and Jordan [13] studied the
propagation of plane waves in two-temperature themoelasticity. Later in 2006, Youssef [19] developed the
theory of two-temperature generalized thermoelasticity. Kumar and Mukhopadhay [9] studied the effects
of thermal relaxations on wave propagation in theory of two-temperature thermoelasticity. Singh [17]
studied the Rayleigh surface wave at a stress free thermally insulated surface of an isotropic, linear, and
homogeneous two-temperature thermoelastic solid half-space in the context of Lord and Shulman theory
of generalized thermoelasticity.

In this paper the propagation of Rayleigh surface wave in a two-temperature thermoelastic solid
with diffusion is studied. The secular equation for wave speed of Rayleigh wave is obtained and solved
numerically to observe the effects of thermo-diffusion parameter, diffusion relxation time, frequency and
two-temperature parameter on the wave speed of Rayleigh wave.

2 Basic Equations

Following Sherief et al [14], the governing equations for a linear, isotropic and homogeneous elastic solid
with generalized thermodiffusion at constant temperature T in the absence of body force are:

(i) The displacement-strain relation
eij = 1

2(ui,j + uj,i), (1)

(ii) The energy equation
− qi,i = ρT0Ṡ, (2)

(iii) The modified Fourier’s law
−KijΦ,j = qi + τ0q̇i, (3)

(iv) The equation of motion

µui,jj + (λ+ µ)uj,ij − β1Θ,i − β2C,i = ρüi, (4)

(v) The equation of heat conduction:

ρcE(Θ̇ + τ0Θ̈) + β1T0(ė+ τ0ë) + aT0(Ċ + τ0C̈) = KΦ,ii, (5)

(vii) The equation of mass diffusion:

D∗β2e,ii +D∗aΘ,ii + Ċ + τC̈ −D∗bC,ii = 0, (6)

(viii)Two temperature relation
Φ−Θ = a∗Φ,ii, (7)

(ix)The constitutive equations

σij = 2µeij + δij(λekk − β1Θ − β2C), (8)

ρT0S = ρcEΘ + β1T0ekk + aT0C, (9)
P = −β2ekk + bC − aΘ, (10)

where β1 = (3λ+ 2µ)αt and β2 = (3λ+ 2µ)αc. Θ = T −T0. The dots over variables denote the derivatives
with respect to time.
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3 Formulation of Problem and Solution

We consider a linear, homogeneous and isotropic two-temperature thermoelastic medium with diffusion of
an infinite extent with Cartesian coordinates system (x, y, z). The origin is taken on the plane surface and
z− axis is taken normally into the medium (z ≥ 0). The surface z = 0 is assumed stress free and thermally
insulated. The present study is restricted to x− z plane, with the displacement vector u = (u1, 0, u3),
where

u1 = ∂φ

∂x
− ∂ψ

∂z
, u3 = ∂φ

∂z
+ ∂ψ

∂x
, (11)

With the help of equations (7)and (11), the equations (4) to (6) reduce to

µ(ψ,11 + ψ,33) = ρψ̈, (12)

(λ+ 2µ)(φ,11 + φ,33)− β1Θ − β2C = ρφ̈, (13)

K(Φ,11 + Φ,33) = ρcEτmΘ̇ + β1T0τm
∂

∂t
52 φ+ aT0τmĊ, (14)

D∗β2 52 (φ,11 + φ,33) +D∗a(Θ,11 +Θ,33)−D∗b(C,11 + C,33) + τnĊ = 0 (15)

where τm = 1 + τ0
∂
∂t and τn = 1 + τ ∂∂t .

For propagation of thermoelstic Rayleigh surface waves along x-axis, the potential functions φ, Φ,C,
are taken in the following form:

[φ, Φ,C, ψ] = [ ˆφ(z), ˆΦ(z), ˆ
C(z), ˆψ(z)]eι(ηx−χt) (16)

Substituting ψ from equation (16) in equation (12), we obtain

m4
2

η2 = 1− c2

c22 , (17)

where c2
2 = µ/ρ.

Substituting φ, Φ,C from equation (16) in equations (13) to (15), we obtain a homogeneous system of
three equations in φ, Φ and C and the non-trivial solution of which requires

D6 − LD4 +MD2 −N = 0, (18)

where L,M,N are given in Appendix I.
Therefore, the general solutions of equations (12) to (15) are written as

(z) = [Pexp(−m4z) + P
′
exp(m4z)]eι(ηx−χt), (19)

φ(z) =
3∑
i=1

[Qiexp(−miz) +Qi
′
exp(miz)]eι(ηx−χt), (20)

Φ(z) =
3∑
i=1

[Riexp(−miz) +Ri
′
exp(miz)]eι(ηx−χt), (21)

C(z) =
3∑
i=1

[Siexp(−miz) + Si
′
exp(miz)]eι(ηx−χt), (22)

where P,Qi, Ri, Si, P
′
, Qi

′
, Ri

′
, Si

′
are the arbitrary constants. Here Ri = FiQi, Si = Fi

∗Qi and the
expressions for Fi and Fi∗, (i = 1, 2, 3) are given in the Appendix I. mi

2 are the roots of the equation

x3 − Lx2 +Mx−N = 0. (23)
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In general, the roots mi, (i = 1, 2, 3) are complex, therefore, we assume Re(mi) > 0 for surface wave
solutions. With the following radiation conditions

(z), φ(z), Φ(z), C(z)→ 0 as z →∞, (24)
the solutions (19) to (22) reduce to particular solutions in the half-space z > 0.

(z) = Pexp(−m4z)eι(ηx−χt), (25)

φ(z) =
3∑
i=1

Qiexp(−miz)eι(ηx−χt), (26)

Φ(z) =
3∑
i=1

FiQiexp(−miz)eι(ηx−χt), (27)

C(z) =
3∑
i=1

Fi
∗Qiexp(−miz)eι(ηx−χt) (28)

4 Derivation of Secular Equation
The appropriate boundary conditions at stress free surface z = 0 are

σzz = 0, σzx = 0, ∂P

∂z
= 0, ∂Φ

∂z
= 0. (29)

Making use of the solutions (25) to (28) in boundary conditions (29), we obtain a homogeneous system of
four equations in P,Q1, Q2 and Q3, which has non trivial solution if

4µm4

η
[m1

η
(Y2

m3

η

F3

η2 − Y3
m2

η

F2

η2 )− m2

η
(Y1

m3

η

F3

η2 − Y3
m1

η

F1

η2 ) + m3

η
(Y1

m2

η

F2

η2 − Y2
m1

η

F1

η2 )]

− (m4
2

η2 + 1)[X1(Y2
m3

η

F3

η2 − Y3
m2

η

F2

η2 )−X2(Y1
m3

η

F3

η2 − Y3
m1

η

F1

η2 ) +X3(Y1
m2

η

F2

η2 − Y2
m1

η

F1

η2 )] = 0,

(30)
where
Xi = −λ+ (λ+ 2µ)mi

2

η2 − β1[1− a∗η2(−1 + mi
2

η )]Fi

η2 − β2
Fi
∗

η2 , (i = 1, 2, 3)

Yi = β2(−1 + mi
2

η2 ) + bFi
∗

η2 − a[1− a∗η2(−1 + mi
2

η )]Fi

η2 .

The equation (30) is the secular equation for wave speed of Rayleigh wave at free surface of a two-
temperature thermoelastic solid half-space with diffusion.

5 Particular Cases
(i) In absence of diffusion parameters, the equation (30)reduces to

X1[m2

η

m3

η

F3

η2 −
m3

η

m2

η

F2

η2 ]−X2[m1

η

m3

η

F3

η2 −
m3

η

m1

η

F1

η2 ] +X3[m1

η

m2

η

F2

η2 −
m2

η

m1

η

F1

η2 ] = 0, (31)

where the expressions for Xi, Yi, mi

η ,
Fi

η2 and Fi
∗

η2 reduce accordingly.

(ii)In absence of two-temperature parameter, the equation (30) reduces to

4µm4

η
[m1

η
(Y2

m3

η

F3

η2 − Y3
m2

η

F2

η2 )− m2

η
(Y1

m3

η

F3

η2 − Y3
m1

η

F1

η2 ) + m3

η
(Y1

m2

η

F2

η2 − Y2
m1

η

F1

η2 )]

−(m4
2

η2 + 1)[X1(Y2
m3

η

F3

η2 − Y3
m2

η

F2

η2 )−X2(Y1
m3

η

F3

η2 − Y3
m1

η

F1

η2 ) +X3(Y1
m2

η

F2

η2 − Y2
m1

η

F1

η2 )] = 0,

(32)

where the expression for Xi, Yi, mi

η ,
Fi

η2 and Fi
∗

η2 reduce accordingly.
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6 Numerical Results and Discussion

For computation of non-dimensional wave speed of Rayleigh wave, the following relevant physical constants
for a thermoelastic solid half-space with diffusion and two-temperature are taken at T0 = 300K
λ = 5.775× 1010 N.m−2, µ = 1.89× 1010 N.m−2, ρ = 2.7× 103 Kg.m−3,
cE = 2.361× 102 J.Kg−1.deg−1, K = 0.494× 102 W.m−1.s−1.deg−1,
τ0 = 0.05 s, a = 0.005, b = 0.05.

For above values of physical parameters, the equation (30) is solved by Fortran Program of iteration
method to obtain the non-dimensional speed c2/c2

2 of Rayleigh wave for different ranges of thermo-diffusion
parameter D∗, frequency χ, two-temperature parameter a∗ and diffusion relaxation time τ .

In Figure 1, the non-dimensional speed c2/c2
2 of Rayleigh wave is plotted against diffusion parameter

D∗ varying from 0.2 to 1.0, when a∗ = 0.1, 0.5 and 0.9, τ = 0.04s and χ = 10 Hz. For a∗ = 0.5, the
value of non-dimensional speed is 1.0360 at D∗ = 0.2. It decreases with the increase in D∗ and attains
its minimum value 0.3691 at D∗ = 1. This variation is shown by black curve in Figure 1. The blue and
red curves represent the variations for a∗ = 0.1 and a∗ = 0.9. The comparison of these three curves
show the effect of two-temperature at different values of thermo-diffusion parameter D∗. The value of
non-dimensional speed drops at each D∗ with the increase in value of two-temperature parameter a∗.

Figure 1. Variation of non-dimensional speed (c2/c2
2) against thermodiffusion parameter D∗, when a∗ = 0.1, 0.5

and 0.9.

The non-dimensional speed c2/c2
2 of Rayleigh wave is plotted in Figure 2 against frequency χ varying

from 1 Hz to 50 Hz, when a∗ = 0.1, 0.5 and 0.9, τ = 0.04 s and D∗ = 0.5. For a∗ = 0.5, the value of
non-dimensional speed is 2.7754 at χ = 1 Hz. It decreases very sharply with the increase in χ and attains
its minimum value 0.1232 at χ = 50 Hz. This variation is shown by black curve in Figure 2. For a∗ = 0.1
and a∗ = 0.9, the variations of non-dimensional speed are shown by blue and red curves, respectively.
The comparison of these three curves in Figure 2 show the effect of two-temperature at different values of
frequency χ.

In Figure 3, the non-dimensional speed c2/c2
2 of Rayleigh wave is plotted against two-temperature

parameter a∗ from 0 to 1, when χ = 5, 10 and 50 Hz, D∗ = 0.5 and τ = 0.04 s. For χ = 10Hz, the value
of non-dimensional speed is 0.6224 at a∗ = 0. It decreases slowly with the increase in a∗ and attains
its minimum value 0.5594 at a∗ = 1. This variation is shown by black curve in Figure 3. The blue and
red curves in Figure 3 represent the variations for chi = 5 and χ = 50 Hz. For χ = 5 Hz, the value of
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Figure 2. Variation of non-dimensional speed (c2/c2
2) against frequency χ, when a∗ = 0.1, 0.5 and 0.9.

Figure 3. Variation of non-dimensional speed (c2/c2
2) against two-temperature parameter a∗, when χ = 5, 10, 50.

non-dimensional speed is 0.9796 at a∗ = 0 and it decreases slowly with increase in value of a∗ and attains
its minimum value 0.8549 at a∗ = 1. For χ = 50 Hz, the minimum value of non-dimensional speed is
0.0930 at a∗ = 0 and it increase slowly to its maximum value 0.1568 at a∗ = 1. The comparison of these
three curves show the effect of frequency at different values of two-temperature parameter a∗.

The non-dimensional speed c2/c2
2 of Rayleigh wave is plotted in Figure 4 against diffusion relaxation

time τ varying from 0 to 0.1 s, when a∗ = 0.1, 0.5 and 0.9, χ = 10 Hz and D∗ = 0.5. For a∗ = 0.5, the
value of non-dimensional speed is 0.4796 at τ = 0.1 s. It increases sharply to its maximum value 0.7685
at τ = 0.1 s. This variation is shown by black curve in Figure 4. For a∗ = 0.1 and a∗ = 0.9, the variations
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Figure 4. Variation of non-dimensional speed (c2/c2
2) against diffusion relaxation time , when a∗ = 0.1, 0.5 and

0.99.

of non-dimensional speed are shown by blue and red curves, respectively. The comparison of these three
curves in Figure 4 show the effect of two-temperature at different values of diffusion relaxation time τ .

From above discussion, it is observed that the non-dimensional speed of Rayleigh wave depends
on various material parameters. For lower frequency range, it decreases with increase in value of two-
temperature parameter, whereas it increases in higher frequency range. The speed is much higher in low
frequency range as compared to higher frequency range. The value of speed decreases with increase in
value of thermo-diffusion parameter, whereas it increases with increase in value of diffusion relaxation
time.

7 Conclusion

A secular equation for Rayleigh wave in a two-temperature thermoelastic medium with diffusion is obtained.
For a given numerical values of the material constant, of the model, the wave speed of Rayleigh wave is
computed and shown graphically. The theoretically as well as numerical results show the dependence of
wave speed on thermal and diffusion parameters, two-temperature, relaxation times and frequency. Such
type of theoretical problems may be helpful to experimental scientists working in the field of seismology,
geophysics and non-destructive testing.
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Appendix I

The expressions for L,M and N in equation (18) are
L = 3η2 − [(K̄ − a∗)(χ2τn

∗c1
2 −D∗aχ2 − β̄2D

∗β2)−D∗a(c1
2 + ¯β1ε1)

+D∗b(χ2ε2a
∗ − ε2c1

2) +D∗β2β̄2a
∗]/[a∗D∗b(c1

2ε2 + β̄2ε1)
+ (D∗a(a∗ε1β̄1 − c1

2(K̄ − a∗))],

M = 3η4 − 2η2[(K̄ − a∗)(χ2τn
∗c1

2 −D∗aχ2 − β̄2D
∗β2)−D∗a(c1

2 + ¯β1ε1)
+D∗b(χ2ε2a

∗ − ε2c1
2) +D∗β2β̄2a

∗ + τn
∗((K̄ − a∗)χ4 + β1ε1 + c1

2)
− χ2(D∗a+ ε2D

∗b)−D∗β2(β̄2 + β̄1ε2)]/[a∗D∗b(c1
2ε2 + β̄2ε1)

+ (D∗a(a∗ε1β̄1 − c1
2(K̄ − a∗))],

N = η6 − 2η4[(K̄ − a∗)(χ2τn
∗c1

2 −D∗aχ2 − β̄2D
∗β2)−D∗a(c1

2 + ¯β1ε1)
+D∗b(χ2ε2a

∗ − ε2c1
2) +D∗β2β̄2a

∗ + τn
∗((K̄ − a∗)χ4 + β1ε1 + c1

2)
− χ2(D∗a+ ε2D

∗b)−D∗β2(β̄2 + β̄1ε2)]/[a∗D∗b(c1
2ε2 + β̄2ε1)

+ (D∗a(a∗ε1β̄1 − c1
2(K̄ − a∗))]

− η2[τn∗((K̄ − a∗)χ4 + β1ε1 + c1
2)− χ2(D∗a+ ε2D

∗b)
−D∗β2(β̄2 + β̄1ε2)]/[a∗D∗b(c1

2ε2 + β̄2ε1) + (D∗a(a∗ε1β̄1 − c1
2(K̄ − a∗))]

− χ4τn
∗/[a∗D∗b(c1

2ε2 + β̄2ε1) + (D∗a(a∗ε1β̄1 − c1
2(K̄ − a∗))],

and, the expressions for Fi and Fi∗, (i = 1, 2, 3) are

Fi
η2 =

ε2[c1
2(−1 + mi

2

η2 ) + χ2

η2 ] + β̄2ε1(−1 + mi
2

η2 )

ε2β̄1[1− a∗η2(−1 + mi
2

η2 )]− β̄2[K̄η2(−1 + mi
2

η2 ) + (1− a∗η2(−1 + mi
2

η2 ))]
,

Fi
∗

η2 =
D∗β2β̄1(−1 + mi

2

η2 )2 +D∗a(−1 + mi
2

η2 )[c1
2(−1 + mi

2

η2 ) + χ2

η2 ]

β̄1[D∗b(−1 + mi
2

η2 ) + χ2

η2 τ
∗] + β̄2D

∗a(−1 + mi
2

η2 )
.
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