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Abstract We establish partial coupled fixed point and coupled fixed point results for mixed
monotone mappings satisfying a generalized contractive condition in ordered partial metric spaces
and ordered metric spaces. Our results generalize some interesting coupled fixed point theorems
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metric spaces and applications”, Nonlinear Anal., vol. 65, pp. 1379–1393, 2006].
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1 Notation

Section 3
�, ≤ order relations;
X non-empty set;
x, y, z, x1, y1, x2, y2 elements of X;
xn, xm elements of sequence in X;
p, ps, d functions on X ×X;
τp topology induced by p;
ε positive real number;
Bp(x, ε) open ball on X;
T self-mapping on X;
F mapping on X ×X to X.

Section 4
inf infimum;
Γ functional term;
m,n, n0 indices;
S, P0, Pn, P0,1, Pm,n, etc symbolic assignments for constructive procedure;
(x∗, y∗), (u∗, v∗) coupled fixed points;
lim sup superior limit operator.

Section 5
v order relation;
D function on X2 ×X2;
θ technical function;
H self-mapping on X2.

2 Introduction

In the last years, fixed points of mappings in partially ordered metric spaces have been investigated
by many researchers [1,2,3,5,6,8,9,10,12,13,14,16,17,21,23,24,26,27]. The first result in this direction was
given by Ran and Reurings [20, Theorem 2.1] who presented its applications to linear and nonlinear metric
spaces. Subsequently, Nieto and Rodríguez-López [16] extended the result of Ran and Reurings [20] for
non-decreasing mappings and applied it to obtain a unique solution for a first order ordinary differential
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equation with periodic boundary conditions. Similar applications based on a version of Theorems 2.1-2.5
[16] for a mixed monotone mapping F : X ×X → X were given by Bhaskar and Lakshmikantham [4].
In [4], the authors introduced the notion of a coupled fixed point and proved some coupled fixed point
theorems for mappings satisfying a mixed monotone property. They discussed the problem of uniqueness
of coupled fixed point and applied their theorems to problems of existence and uniqueness of solution for
a periodic boundary value problem.

In recent years, in the setting of domain theory, attempts were made in order to equip semantics
domain with a notion of distance. In particular, Matthews [11] introduced the notion of a partial metric
space as a part of the study of denotational semantics of data for networks, showing that the contraction
mapping principle of Banach can be generalized to the partial metric context for applications in program
verification. Moreover, the existence of several connections between partial metrics and topological aspects
of domain theory has been lately pointed by some authors as O’Neill [15] and others. Subsequently, several
authors [7,18,19,22,25] have proved fixed point theorems in partial metric spaces.

In this paper, we generalize the results of Bhaskar and Lakshmikantham [4] by considering generalized
contractive conditions for mixed monotone mappings, in the framework of ordered partial metric spaces
and ordered metric spaces, and prove results concerning partial coupled fixed point and coupled fixed
point. We give also an example to illustrate our results.

3 Preliminaries

Let (X,�) be a partially ordered set and T : X → X be a mapping. The mapping T is said to be
non-decreasing if for all x, y ∈ X, x � y implies T (x) � T (y). Similarly, T is said to be non-increasing, if
for all x, y ∈ X, x � y implies T (x) � T (y).

Now, we recall the notions of mixed monotone mapping and coupled fixed point introduced by Bhaskar
and Lakshmikantham [4].

Definition 1. Let (X,�) be a partially ordered set and F : X ×X → X. The mapping F is said to have
the mixed monotone property if F is monotone non-decreasing in its first argument and is monotone
non-increasing in its second argument, that is, for all x1, x2 ∈ X, x1 � x2 implies F (x1, y) � F (x2, y),
for any y ∈ X and for all y1, y2 ∈ X, y1 � y2 implies F (x, y1) � F (x, y2), for any x ∈ X.

Definition 2. An element (x, y) ∈ X ×X is called a coupled fixed point of the mapping F : X ×X → X
if F (x, y) = x and F (y, x) = y.

Now, we recall some definitions and some properties of a partial metric space [7,11,15,18,22,25]. A
partial metric on a nonempty set X is a function p : X ×X → [0,+∞) such that for all x, y, z ∈ X:

(p1) x = y ⇔ p(x, x) = p(x, y) = p(y, y),
(p2) p(x, x) ≤ p(x, y),
(p3) p(x, y) = p(y, x),
(p4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).

A partial metric space is a pair (X, p) such that X is a nonempty set and p is a partial metric on X.
It is clear that, if p(x, y) = 0, then from (p1) and (p2) it follows that x = y. But if x = y, p(x, y) may not
be 0. A basic example of a partial metric space is the pair ([0,+∞), p), where p(x, y) = max{x, y} for all
x, y ∈ [0,+∞). Other examples of partial metric spaces which are interesting from a computational point
of view can be found in [11].

Each partial metric p on X generates a T0 topology τp on X which has as a base the family of open
p-balls {Bp(x, ε) : x ∈ X, ε > 0}, where

Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x) + ε},

for all x ∈ X and ε > 0.
If p is a partial metric on X, then the function ps : X ×X → [0,+∞) given by

ps(x, y) = 2p(x, y)− p(x, x)− p(y, y)

184 Journal of Advances in Applied Mathematics, Vol. 1, No. 3, July 2016

JAAM Copyright © 2016 Isaac Scientific Publishing



is a metric on X. Let (X, p) be a partial metric space. Then:
A sequence {xn} in a partial metric space (X, p) converges to a point x ∈ X if and only if p(x, x) =

lim
n→+∞

p(x, xn).
A sequence {xn} in a partial metric space (X, p) is called a Cauchy sequence if there exists (and is

finite) lim
n,m→+∞

p(xn, xm).
A partial metric space (X, p) is said to be complete if every Cauchy sequence {xn} in X converges,

with respect to τp, to a point x ∈ X such that p(x, x) = lim
n,m→+∞

p(xn, xm).
A sequence {xn} in a partial metric space (X, p) is called 0-Cauchy if

lim
n,m→+∞

p(xn, xm) = 0. We say that (X, p) is 0-complete if every 0-Cauchy sequence in X converges, with
respect to τp, to a point x ∈ X such that p(x, x) = 0.

On the other hand, the partial metric space (Q ∩ [0,+∞), p), where Q denotes the set of rational
numbers and the partial metric p is given by p(x, y) = max{x, y}, provides an example of a 0-complete
partial metric space which is not complete.

It is easy to see that, every closed subset of a complete (0-complete) partial metric space is complete
(0-complete).

Lemma 3 ([11,18]). Let (X, p) be a partial metric space.

(a) {xn} is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence in the metric space (X, ps).
(b) A partial metric space (X, p) is complete if and only if the metric space (X, ps) is complete. Further-

more, lim
n→+∞

ps(xn, x) = 0 if and only if

p(x, x) = lim
n→+∞

p(xn, x) = lim
n,m→+∞

p(xn, xm).

Definition 4. Let (X, p) be a partial metric space and F : X ×X → X be a function. An element (x, y)
is called a partial coupled fixed point of F if

p(x, F (x, y)) + p(y, F (y, x)) = p(x, x) + p(y, y).

Note that, if (X, p) is a metric space then (x, y) is a usual coupled fixed point of F .

Example 5. Let X = [0, 1], p(x, y) = |x − y| if x, y ∈ [0, 1) and p(1, y) = 1 for all y ∈ X, and
F : X ×X → X be defined by

F (x, y) =
{

x−y
2 if x ≥ y,

0 if x < y.

The mapping F has the following partial coupled fixed points:

(0, 0), (0, 1), (1, 0), (1, 1).

Note that only (0, 0) is a coupled fixed point for F .

Definition 6. Let X be a nonempty set. Then (X, p,�) is called an ordered partial metric space if (X,�)
is a partially ordered set, and (X, p) is a partial metric space. If p = d is a metric, then (X, d,�) is an
ordered metric space.

4 Main Results

The first main result in this paper is the following partial coupled result which generalizes Theorem 2.2
in [4].

Theorem 7. Let (X, p,�) be a complete ordered partial metric space and F : X ×X → X be a mixed
monotone mapping. Assume that there exists r ∈ [0, 1) such that

p
(
F (x, y), F (u, v)

)
≤ 1

2 max
{
r[p(x, u) + p(y, v)], p(x, x) + p(y, y), p(u, u) + p(v, v)

}
(1)

for all x, y, u, v ∈ X with u � x and y � v. If the following conditions hold:
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(i) if a non-decreasing sequence {xn} is such that xn → x, then xn � x for all n ∈ N,
(ii) if a non-increasing sequence {yn} is such that yn → y, then yn � y for all n ∈ N,
(iii) there exist x0, y0 ∈ X such that x0 � F (x0, y0) and y0 � F (y0, x0).

Then, F has a partial coupled fixed point (x∗, y∗). Moreover, if p(x∗, x∗) = p(y∗, y∗) = 0, then (x∗, y∗) is
a coupled fixed point for F .

Proof. Let x0, y0 ∈ X such that x0 � F (x0, y0) and y0 � F (y0, x0). Define x1, y1 ∈ X such that
x1 = F (x0, y0) and y1 = F (y0, x0). Similarly x2 = F (x1, y1) and y2 = F (y1, x1). We construct two
sequences {xn} and {yn} such that,

xn+1 = F (xn, yn), yn+1 = F (yn, xn) for all n ≥ 0.

Let us prove that
xn � xn+1 and yn � yn+1 for all n ≥ 0. (2)

Since
x0 � F (x0, y0) = x1 and y0 � F (y0, x0) = y1,

then (2) holds for n = 0. Suppose that (2) holds for some n ≥ 1. Since F has the mixed monotone
property, then

xn+1 = F (xn, yn) � F (xn+1, yn)

and
F (yn+1, xn) � F (yn, xn) = yn+1.

Also for the same reason we have

xn+2 = F (xn+1, yn+1) � F (xn+1, yn)

and
F (yn+1, xn) � F (yn+1, xn+1) = yn+2.

Observe that from the previous inequalities we can derive xn+1 � xn+2 and yn+1 � yn+2. By the
principle of mathematical induction it follows that (2) holds for all n ≥ 0.

Now, from (1) with x = u and y = v we deduce

p(F (x, y), F (x, y)) ≤ 1
2 [p(x, x) + p(y, y)] for all x, y ∈ X. (3)

Since (3) holds for all x, y ∈ X, then

p(F (y, x), F (y, x)) ≤ 1
2 [p(x, x) + p(y, y)] for all x, y ∈ X (4)

and hence by (3) and (4), we get

p(F (x, y), F (x, y)) + p(F (y, x), F (y, x)) ≤ p(x, x) + p(y, y) for all x, y ∈ X. (5)

By taking x = xn+1 and y = yn+1 in (5), we obtain

p(xn+1, xn+1) + p(yn+1, yn+1) = p(F (xn, yn), F (xn, yn)) + p(F (yn, xn), F (yn, xn))
≤ p(xn, xn) + p(yn, yn),

for all n ≥ 0. Thus {p(xn, xn) + p(yn, yn)}n≥0 is a non-increasing sequence. Put

Pn = p(xn, xn) + p(yn, yn) and Pn,m = p(xn, xm) + p(yn, ym) for all n,m ∈ N,

S : = lim
n→+∞

Pn = inf
n∈N

Pn
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and

Γ = P0 + 1
1− rP0,1.

Let us prove that

Pm,n ≤ 2Γ for given m,n ∈ N. (6)

At first

p(x0, xn) ≤ p(x0, x1) + p(F (x0, y0), F (xn−1, yn−1))

≤ p(x0, x1) + 1
2 max{rP0,n−1, P0, Pn−1}.

Similarly

p(y0, yn) ≤ p(y0, y1) + p(F (y0, x0), F (yn−1, xn−1))

≤ p(y0, y1) + 1
2 max{rP0,n−1, P0, Pn−1},

and so

P0,n ≤ P0,1 + max{rP0,n−1, P0, Pn−1}
≤ P0,1 + max{rP0,n−1, P0, Pn−2}
≤ P0,1 + max{rP0,n−1, rP0,1 + P0, rP0,1 + Pn−2}.

Since,

P0,n−1 ≤ P0,1 + max{rP0,n−2, P0, Pn−2},

from the previous inequality, we get

P0,n ≤ P0,1 + rP0,1 + max{r2P0,n−2, P0, Pn−2}.

By continuing this process, we obtain

P0,n ≤ (1 + r + · · ·+ rn−1)P0,1 + P0

≤ r

1− rP0,1 + P0 = Γ.

Consequently

Pm,n ≤ P0,m + P0,n ≤ 2Γ for all m,n ∈ N,

and (6) holds.
Given any ε > 0, from the definition of S and 0 ≤ r < 1, there exists n0 ∈ N such that Pn0 , 2Γrn0 < S+ε.

Therefore, for all m,n ≥ 2n0

p(xm, xn) = p(F (xm−1, ym−1), F (xn−1, yn−1))

≤ 1
2 max{rPm−1,n−1, Pm−1, Pn−1}.

Similarly

p(ym, yn) ≤ 1
2 max{rPm−1,n−1, Pm−1, Pn−1}.

Then, we get

Pm,n ≤ max{rPm−1,n−1, Pm−1, Pn−1} (7)
≤ max{rPm−1,n−1, Pm−2, Pn−2}.
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As

Pm−1,n−1 ≤ max{rPm−2,n−2, Pm−2, Pn−2},

by (7), we deduce that

Pm,n ≤ max{r2Pm−2,n−2, Pm−2, Pn−2}.

By continuing this process, we get

Pm,n ≤ max{rn0Pm−n0,n−n0 , Pm−n0 , Pn−n0}
< S + ε.

Then, S = lim
m,n→+∞

Pm,n. From

lim
m,n→+∞

[ps(xm, xn) + ps(ym, yn)] = lim
m,n→+∞

[2Pm,n − Pm − Pn]

= 2S − S − S = 0,

we deduce that {xn} and {yn} are two Cauchy sequences in (X, ps) and hence in (X, p). Since (X, p) is
complete, then there exist x∗, y∗ ∈ X such that xn → x∗ and yn → y∗, that is,

p(x∗, x∗) = lim
n→+∞

p(x∗, xn) = lim
n→+∞

p(xn, xm),

and
p(y∗, y∗) = lim

n→+∞
p(y∗, yn) = lim

n→+∞
p(yn, ym).

Also from (i) and (ii), we have xn � x∗ and yn � y∗. Hence

p(x∗, F (x∗, y∗)) ≤ p(x∗, xn) + p(xn, F (x∗, y∗))− p(xn, xn).

By taking the limit as n→ +∞ in the above inequality, we get

p(x∗, F (x∗, y∗)) ≤ lim inf
n→+∞

p(xn, F (x∗, y∗))

Similarly
p(y∗, F (y∗, x∗)) ≤ lim inf

n→+∞
p(yn, F (y∗, x∗))

On the other hand, from (1), we have

lim sup
n→+∞

p(xn, F (x∗, y∗))

= lim sup
n→+∞

p(F (xn−1, yn−1), F (x∗, y∗))

≤ lim sup
n→+∞

1
2 max {r[p(xn−1, x

∗) + p(yn−1, y
∗)], Pn−1, p(x∗, x∗) + p(y∗, y∗)}

= 1
2[p(x∗, x∗) + p(y∗, y∗)].

Similarly
lim sup
n→+∞

p(yn, F (y∗, x∗)) ≤ 1
2 [p(x∗, x∗) + p(y∗, y∗)].

Then, we have
p(x∗, F (x∗, y∗)) + p(y∗, F (y∗, x∗)) ≤ p(x∗, x∗) + p(y∗, y∗),

and since
p(x∗, x∗) + p(y∗, y∗) ≤ p(x∗, F (x∗, y∗)) + p(y∗, F (y∗, x∗)),

we obtain
p(x∗, F (x∗, y∗)) + p(y∗, F (y∗, x∗)) = p(x∗, x∗) + p(y∗, y∗).

Hence (x∗, y∗) is a partial coupled fixed point of F . If p(x∗, x∗) = p(y∗, y∗) = 0, then p(x∗, F (x∗, y∗)) =
p(y∗, F (y∗, x∗)) = 0 and thus x∗ = F (x∗, y∗) and y∗ = F (y∗, x∗), that is, (x∗, y∗) is a coupled fixed point
for F .
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From Theorem 7, we deduce the following theorem.

Theorem 8. Let (X, p,�) be a complete ordered partial metric space and F : X ×X → X be a mixed
monotone mapping. Assume that there exists r ∈ [0, 1) such that

p
(
F (x, y), F (u, v)

)
≤ 1

2 max
{
r[p(x, u) + p(y, v)], p(x, x) + p(y, y) + p(u, u) + p(v, v)

2

}
(8)

for all x, y, u, v ∈ X with u � x and y � v. If the following conditions hold:

(i) if a non-decreasing sequence {xn} is such that xn → x, then xn � x for all n ∈ N,
(ii) if a non-increasing sequence {yn} is such that yn → y, then yn � y for all n ∈ N,
(iii) there exist x0, y0 ∈ X such that x0 � F (x0, y0) and y0 � F (y0, x0),

then F has a partial coupled fixed point (x∗, y∗). Moreover, if p(x∗, x∗) = p(y∗, y∗) = 0, then (x∗, y∗) is a
coupled fixed point for F .

Proof. Since

p(x, x) + p(y, y) + p(u, u) + p(v, v)
2 ≤ max

{
p(x, x) + p(y, y), p(u, u) + p(v, v)

}
,

by (8), we have

p
(
F (x, y), F (u, v)

)
≤ 1

2 max
{
r[p(x, u) + p(y, v)], p(x, x) + p(y, y), p(u, u) + p(v, v)

}
,

for all x, y, u, v ∈ X with u � x and y � v. Thus the hypotheses of Theorem 7 are satisfied and therefore
F has a partial coupled fixed point (x∗, y∗), which is a coupled fixed point if p(x∗, x∗) = p(y∗, y∗) = 0.

Corollary 9 (Theorem 2.2 of [4]). Let (X, d,�) be a complete ordered metric space and F : X ×X → X
be a mixed monotone mapping. Assume that there exists r ∈ [0, 1) such that

d
(
F (x, y), F (u, v)

)
≤ r

2 [d(x, u) + d(y, v)] (9)

for all x, y, u, v ∈ X with u � x and y � v. If the following conditions hold:

(i) if a non-decreasing sequence {xn} is such that xn → x, then xn � x for all n ∈ N;
(ii) if a non-increasing sequence {yn} is such that yn → y, then yn � y for all n ∈ N;
(iii) there exist x0, y0 ∈ X such that x0 � F (x0, y0) and y0 � F (y0, x0);

Then F has a coupled fixed point.

Example 10. Let X = [0, 2], d(x, y) = |x− y|, p(x, y) = max{x, y} and F : X ×X → X be defined by

F (x, y) =
{

x−y
2 if x ≥ y,

0 if x < y.

Then F is mixed monotone and satisfies condition (1) but does not satisfy condition (9). Indeed, assume
there exists r ∈ [0, 1), such that (9) holds. This means

|x− y2 − u− v
2 | ≤ r

2 |x− u|+
r

2 |y − v|,

for all x, y, u, v ∈ X with u ≥ x ≥ y ≥ v, by which, for x = u, we get

1
2 |y − v| ≤

r

2 |y − v|,

which for y > v would imply 1 ≤ r, a contradiction.
Now we prove that (1) holds. Consider the following cases:
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(1) u ≥ x ≥ y ≥ v,
(2) u ≥ x, y ≥ v with x < y and u ≥ v,
(3) u ≥ x, y ≥ v with x < y and u < v.

Case 1. Under this assumption, we get that

p(F (x, y), F (u, v)) = p(x− y2 ,
u− v

2 )

= u− v
2 ≤ u+ v

2
= 1

2[p(u, u) + p(v, v)],

and hence (1) holds.
Case 2. In this case

p(F (x, y), F (u, v)) = p(0, u− v2 )

= u− v
2 ≤ 1

2 [p(u, u) + p(v, v)],

and hence (1) holds.
Case 3. In this case p(F (x, y), F (u, v)) = 0 and hence (1) holds.

By Theorem 7, we obtain that F has a partial coupled fixed point (0, 0) that is a coupled fixed point.
Theorem 2.2 of [4] cannot be applied to F in this example.

Theorem 11. Let (X, p,�) be a complete ordered partial metric space and F : X ×X → X be a mixed
monotone mapping. Assume that there exists r ∈ [0, 1) such that

p
(
F (x, y), F (u, v)

)
≤ 1

2 max
{
r[p(x, u) + p(y, v)], p(x, x) + p(y, y), p(u, u) + p(v, v)

}
(10)

for all x, y, u, v ∈ X with u � x and y � v. If the following conditions hold:

(i) F is continuous with respect to τp,
(ii) there exist x0, y0 ∈ X such that x0 � F (x0, y0) and y0 � F (y0, x0),

then F has a coupled fixed point.

Proof. Proceeding exactly as in Theorem 7, we have that {xn} and {yn} are Cauchy sequences in the
complete partial metric space (X, p). Then there exist x∗, y∗ ∈ X such that xn → x∗ and yn → y∗. Since
F is continuous, then we have

x∗ = lim
n→+∞

xn = lim
n→+∞

F (xn−1, yn−1) = F (x∗, y∗).

Similarly
y∗ = F (y∗, x∗).

That is, (x∗, y∗) is a coupled fixed point of F .

Similarly, one can obtain the following theorem.

Theorem 12. Let (X, p,�) be a complete ordered partial metric space and F : X ×X → X be a mixed
monotone mapping. Assume that there exists r ∈ [0, 1) such that

p
(
F (x, y), F (u, v)

)
≤ 1

2 max
{
r[p(x, u) + p(y, v)], p(x, x) + p(y, y) + p(u, u) + p(v, v)

2

}
for all x, y, u, v ∈ X with u � x and y � v. If the following conditions hold:

(i) F is continuous with respect to τp,
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(ii) there exist x0, y0 ∈ X such that x0 � F (x0, y0) and y0 � F (y0, x0).

Then, F has a coupled fixed point. Moreover, if (x∗, y∗) and (u∗, v∗) are two coupled fixed points for F ,
then x∗ = u∗ and y∗ = v∗ if and only if x∗ is comparable with u∗ and y∗ is comparable with v∗.

Proof. Proceeding exactly as in Theorem 8, we deduce that the hypotheses of Theorem 11 are satisfied
and therefore F has a coupled fixed point (x∗, y∗).

Now, we assume that (x∗, y∗) and (u∗, v∗) are two coupled fixed points of F and that x∗ is comparable
with u∗ and y∗ is comparable with v∗. If u∗ � x∗ and y∗ � v∗, using (8), we deduce that

p(x∗, u∗) = p(F (x∗, y∗), F (u∗, v∗)) ≤ p(x∗, x∗) + p(y∗, y∗) + p(u∗, u∗) + p(v∗, v∗)
4 .

Similarly, we deduce that

p(y∗, v∗) = p(F (y∗, x∗), F (v∗, u∗)) ≤ p(x∗, x∗) + p(y∗, y∗) + p(u∗, u∗) + p(v∗, v∗)
4 .

By summing up the two inequalities above, we get

p(x∗, u∗) + p(y∗, v∗) ≤ p(x∗, x∗) + p(y∗, y∗) + p(u∗, u∗) + p(v∗, v∗)
2 ,

that is, ps(x∗, u∗) + ps(y∗, v∗) = 0 and hence x∗ = u∗ and y∗ = v∗. The same conclusion holds if u∗ � x∗
and v∗ � y∗, x∗ � u∗ and y∗ � v∗ or x∗ � u∗ and v∗ � y∗.

5 Coupled Fixed Point under Suzuki-Type Condition

Remark 13. Let (X, d) be a metric space. Define D : X2 ×X2 → [0,+∞) by

D((x, y), (u, v)) = d(x, u) + d(y, v), for all (x, y), (u, v) ∈ X2.

It is simple to check that D is a metric on X2 and that (X2, D) is a complete metric space if (X, d) is
complete.

Remark 14. If (X,�) is a partially ordered set and if a relation v is defined on X2 by:

(x, y) v (u, v)⇔ x � u y � v,

then (X2,v) is also partially ordered.

The next theorem is one of the main results in [19].

Theorem 15 (Paesano and Vetro [19]). Let (X,�) be a partially ordered set and suppose that there
exists a metric d on X such that the metric space (X, d) is complete. Let T : X → X be an increasing
mapping with respect to �. Define a non-increasing function θ from [0, 1) onto (1/2, 1] by

θ(r) =


1 if 0 ≤ r ≤ (

√
5− 1)/2,

(1− r)r−2 if (
√

5− 1)/2 < r < 2−1/2,
(1 + r)−1 if 2−1/2 ≤ r < 1.

Assume that there exists r ∈ [0, 1) such that

θ(r)d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤ rd(x, y), (11)

for all comparable x, y ∈ X. If the following conditions hold:

(i) there exists x0 ∈ X such that x0 � Tx0,
(ii) for an increasing sequence {xn} ⊂ X converging to x ∈ X we have xn ≺ x for all n,
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(iii) for two nondecreasing sequence {xn}, {yn} ⊂ X such that xn � yn, xn → x and yn → y we have
x � y,

then T has a fixed point in X. Moreover, the fixed point of T is unique if:

(iv) for all x, y ∈ X that are not comparable there exists v ∈ X comparable with x and y.

Theorem 16. Let (X,�) be a partially ordered set and suppose that there exists a metric d on X such
that the metric space (X, d) is complete. Let F : X × X → X be a mixed monotone mapping. Define
θ : [0, 1)→ (1/2, 1] as in Theorem 15 and assume that there exists r ∈ [0, 1) such that

θ(r)[d(x, F (x, y)) + d(y, F (y, x))] ≤ d(x, u) + d(y, v)

implies

d(F (x, y), F (u, v)) + d(F (y, x), F (v, u))) ≤ r[d(x, u) + d(y, v)]

for all x, y, u, v ∈ X, with x � u, y � v. If the following conditions hold:

(a) if a non-decreasing sequence {xn} converges to x, then xn � x, for all n ≥ 0,
(b) if a non-increasing sequence {yn} converges to y, then y � yn, for all n ≥ 0,
(c) for two monotone sequences {xn}, {yn} ⊂ X such that xn � yn, xn → x and yn → y we have x � y,
(d) there exist x0, y0 ∈ X such that x0 � F (x0, y0) and y0 � F (y0, x0),

then F has a coupled fixed point in X. Moreover, the coupled fixed point of F is unique if:

(e) for all (x, y), (u, v) ∈ X2 that are not comparable with respect to v, there exists (z, w) ∈ X2 v-
comparable with (x, y) and (u, v), where v is as in Remark 14.

Proof. In the complete ordered metric space (X,D,v), where D is the metric on X2 defined in Remark
13 and v is the relation defined in Remark 14, at first, define H(·, ·) : X2 → X2 by

H(x, y) = (F (x, y), F (y, x)) for all (x, y) ∈ X2.

If for some (x, y), (u, v) ∈ X2, we have θ(r)D((x, y), H(x, y)) ≤ D((x, y), (u, v)), by Remark 13, then

θ(r)[d(x, F (x, y)) + d(y, F (y, x))] ≤ [d(x, u) + d(y, v)].

This implies

d(F (x, y), F (u, v)) + d(F (y, x), F (v, u))) ≤ r[d(x, u) + d(y, v)],

and hence, by Remark 13, we get

D(H(x, y), H(u, v)) ≤ rD((x, y), (u, v)),

that is, H satisfies condition (11) of Theorem 15. Clearly, by condition (d), there exists (x0, y0) ∈ X2

such that (x0, y0) v H(x0, y0). If (xn, yn) is a non-decreasing sequence in X2 with respect to v such
that (xn, yn)→ (x, y), that is, such that xn → x and yn → y. Then {xn} is a non-decreasing sequence
with respect to � and {yn} a non-increasing sequence with respect to �. Now, by (a) and (b), we have
xn � x and y � yn, and hence (xn, yn) v (x, y). Thus (ii) of Theorem 15 holds. Similarly, by (c), (iii) of
Theorem 15 holds.

Let (x, y) v (u, v) then x � u and v � y. Since F has the mixed monotone property, then F (x, y) �
F (u, y) and F (u, y) � F (u, v) and so F (x, y) � F (u, v). Again, F (v, u) � F (v, x) and F (v, x) � F (y, x)
and hence F (v, u) � F (y, x). This implies that H(x, y) v H(u, v). i.e., H is a non-decreasing mapping
with respect to v. Now, the hypotheses of Theorem 15 (that hold also if T is non-decreasing) are satisfied
and hence H has a fixed point in X2, say (x∗, y∗). Then

(F (x∗, y∗), F (y∗, x∗)) = H(x∗, y∗) = (x∗, y∗)
i.e.,

F (x∗, y∗) = x∗ and F (y∗, x∗) = y∗.

Now, if condition (e) holds, then the coupled fixed point of F is unique.
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6 Conclusions

Fixed point theory in partially ordered metric spaces is largely investigated due to its applications in pure
and applied mathematics. Here, we established some results of existence and uniqueness of coupled fixed
point, by using generalized contractive conditions in ordered partial metric spaces and ordered metric
spaces. This kind of result is helpful to extend and complement existing theorems in the literature. An
example illustrates the new theory.
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