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Abstract This paper proposes the robust recursive least-squares (RLS) finite impulse response
(FIR) filtering algorithm using the covariance information and the robust RLS Wiener FIR filtering
algorithm in linear discrete-time stochastic systems with the parameter uncertainties. The observation
and system matrices contain the uncertain parameters. The uncertain parameters cause the degraded
signal. Theorem 2 proposes the robust RLS FIR filter using the covariance information of the state
vector for the degraded signal, the cross-covariance information of the state vector for the signal with
the state vector for the degraded signal, the observation matrices for the signal and the degraded
signal, and the variance of the white observation noise. Here, it is assumed that the signal and the
degraded signal are fitted to the finite-order autoregressive (AR) models. Theorem 3 proposes the
robust RLS Wiener FIR filter. The robust RLS Wiener FIR filtering algorithm uses the system and
observation matrices for the signal and the degraded signal, the variance of the state vector for the
degraded signal, the cross-variance function of the state vector for the signal with the state vector
for the degraded signal, and the variance of the white observation noise.

Keywords: Robust RLS Wiener FIR filter; covariance information; Wiener- Hopf equation; uncer-
tain parameters; degraded signal.

1 Introduction

In comparison with the Kalman filter having the infinite impulse response (IIR) property, the maximum-
likelihood filter [1] with recent finite data is less sensitive to dynamical model errors. The finite impulse
response (FIR) Kalman filter [2]-[5] has robustness property. In [6], the FIR filter for visual object tracking
is proposed by maximizing the likelihood function with superior tracking results in comparison with the
Kalman filter, the particle filter and the H∞ filter. In [7], the robust weighted fusion Kalman estimators
are presented for multi-sensor systems with the multiplicative noises, missing measurements, and the
white noise correlated in the input and the observation. It is assumed that φk(t) 1 ≤ k ≤ q, multiplied by
the multiplicative noise in the state equation, are known.

Recently, the robust recursive least-squares (RLS) Wiener fixed-point smoother and filter, and the
robust RLS estimators using the covariance information [8] are designed for the linear discrete-time
stochastic systems with the uncertain parameters in the system and observation matrices. In [9], the
robust Kalman filter is proposed in linear discrete-time stochastic systems with the uncertain parameters
characterized by the norm-bounded condition [9]. In [10], the RLS Wiener FIR predictor and filter calculate
the least-squares estimates by using the accurate information on the system matrix, the observation matrix
and the variance of the state vector. As is clear from the simulation result in section 5, the drawback
of the robust Kalman filter [9] and the RLS Wiener filter in [10] lie in the point that they compute the
estimates with the degraded estimation accuracies, given the uncertain information on the system and
observation matrices. To compensate this deficiency, this paper develops the robust RLS Wiener FIR
filter based on the innovation theory in linear discrete-time stochastic systems. As the finite interval L
increases, the MSV of the filtering errors by the robust RLS Wiener filter FIR decreases and approaches
the MSV by the robust RLS Wiener filter [8] for each observation noise. This indicates, with the finite
number of observations, that the robust RLS Wiener FIR filter in Theorem 3 could attain almost the
same estimation accuracy with the robust RLS Wiener filter [8]. In addition, the robust RLS FIR filter
using the covariance information is proposed in this paper. Similarly to the robust RLS Wiener estimators
[8], the robust RLS Wiener FIR filter and the robust RLS FIR filter using the covariance information do
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not use the norm-bounded condition [9] posed on the uncertain parameters. It is assumed that the signal
process is fitted to the auto-regressive (AR) model of the finite order. Also, the degraded signal, caused
by the uncertain parameters in the observation and system matrices, is fitted to the AR model of the
finite order. From the AR model, the system and observation matrices are obtained in the state-space
model for the degraded signal. Based on the problem formulation on the robust least-squares FIR filtering
problem, the Wiener-Hopf equation is obtained. From the Wiener-Hopf equation, the robust RLS FIR
filtering algorithm using the covariance information and the robust RLS Wiener FIR filtering algorithm
are derived by the invariant imbedding method. The robust RLS Wiener FIR filtering algorithm uses
the system and observation matrices for the signal and the degraded signal, the variance of the state
vector for the degraded signal, the cross-variance function of the state vector for the signal with the state
vector for the degraded signal, and the variance of the white observation noise. Also, the robust RLS FIR
filter uses the covariance information of the state vector for the degraded signal, the cross-covariance
information of the state vector for the signal with the state vector for the degraded signal, the observation
matrices for the signal and the degraded signal besides the variance of the white observation noise.

In a numerical simulation example, the estimation accuracy of the robust RLS Wiener FIR filter,
proposed in this paper, is compared with the robust RLS Wiener filter [8], the robust Kalman filter [9]
and the RLS Wiener FIR filter [10].

2 Robust Least-Squares FIR Filtering Problem

Let an m-dimensional observation equation and an n-dimensional state equation be described by

y̆(k) = z̆(k) + v(k), z̆(k) = H̄(k)x̄(k), H̄(k) = H +∆H(k),
x̄(k + 1) = Φ̄(k)x̄(k) + Γw(k), Φ̄(k) = Φ+∆Φ(k),
E[v(k)vT (s)] = RδK(k − s), E[w(k)wT (s)] = QδK(k − s),

(1)

in linear discrete-time stochastic systems with the uncertain parameters [8]. ∆H(k) and ∆Φ(k) represent
the uncertain parameters. v(k) denotes the white observation noise with the variance R and w(k) is
the white input noise with the variance Q. Their auto-covariance functions are given in (1) using the
Kronecker delta function δK(k−s). The state equation generating x̄(k+1) includes the uncertain quantity
∆Φ(k) in the system matrix Φ̄(k). Similarly, in the observation equation the observation matrix H̄(k)
contains the uncertain quantity ∆H(k). Hence, z̆(k) is the degraded value against the nominal signal
z(k) generated by the state-space model (2), which does not include the uncertain quantities. In (1), as
the sum of the degraded signal z̆(k) and the observation noise v(k), y̆(k) is measured. The state-space
model without containing the uncertain quantities ∆H(k) and ∆Φ(k) in (1) is expressed by

y(k) = z(k) + v(k), z(k) = Hx(k),
x(k + 1) = Φx(k) + Γw(k). (2)

In (2), z(k) is the signal to be estimated. H is an m by n observation matrix, x(k) is the state vector
and v(k) is the white observation noise with the auto-covariance function in (1). The auto-covariance
function of the input noise w(k) is also given in (1). It is assumed that the processes of the signal and the
observation noise are mutually independent and have zero means. This paper, based on the innovation
theory, designs the robust RLS FIR filter using the covariance information and the robust RLS Wiener
FIR filter estimating the signal z(k) with the measurement data y̆(k) without any knowledge of the
uncertain quantities ∆Φ(k) and ∆H(k).

It is assumed that the sequence of the degraded signal z̆(k) is fitted to the AR model of the order N .

z̆(k) = −a1z̆(k − 1)− a2z̆(k − 2) · · · − aN z̆(k −N) + ĕ(k),
E[ĕ(k)ĕT (s)] = Q̆δK(k − s) (3)
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Let z̆(k) be expressed with the state vector x̆(k) by

z̆(k) = H̆x̆(k),

x̆(k) =


x̆1(k)
x̆2(k)

...
x̆N−1(k)
x̆N (k)

 =


z̆(k)

z̆(k + 1)
...

z̆(k +N − 2)
z̆(k +N − 1)

 ,
H̆ =

[
Im×m 0 0 · · · 0 0

]
.

(4)

Accordingly, the state equation for the state vector x̆(k) is given by
x̆1(k + 1)
x̆2(k + 1)

...
x̆N−1(k + 1)
x̆N (k + 1)

 =


0 Im×m 0 · · · 0
0 0 Im×m · · · 0
...

...
... . . . ...

0 0 0 · · · Im×m

−ăN −ăN−1 −ăN−2 · · · −ă1




x̆1(k)
x̆2(k)

...
x̆N−1(k)
x̆N (k)

+


0
0
...
0

Im×m

 ζ(k),

ζ(k) = ĕ(k +N), E[ζ(k)ζT (s)] = Q̆δK(k − s).

(5)

Let K̆(k, s) = K̆(k − s) represent the auto-covariance function of the state vector x̆(k) in wide-sense
stationary stochastic systems [11], and let K̆(k, s) be expressed in the form of the semi-degenerate kernel

K̆(k, s) =
{
A(k)BT (s), 0 ≤ s ≤ k,
B(k)AT (s), 0 ≤ k ≤ s,

A(k) = Φ̆k, BT (s) = Φ̆−sK̆(s, s).
(6)

Here, Φ̆ denotes the system matrix for the state vector x̆(k). From the state equation (5), the system
matrix Φ̆ is given by

Φ̆ =


0 Im×m 0 · · · 0
0 0 Im×m · · · 0
...

...
... . . . ...

0 0 0 · · · Im×m

−ăN −ăN−1 −ăN−2 · · · −ă1

 . (7)

Also, by putting Kz̆(k, s) = Kz̆(k − s) = E
[
z̆(k)z̆T (s)

]
, the auto-variance function K̆(k, k) of the state

vector x̆(k) is described by

K̆(k, k) = E




z̆(k)

z̆(k + 1)
...

z̆(k +N − 2)
z̆(k +N − 1)


×
[
z̆T (k) z̆T (k + 1) · · · z̆T (k +N − 2) z̆T (k +N − 1)

]]

=


Kz̆(0) Kz̆(−1) · · · Kz̆(−N + 2) Kz̆(−N + 1)
Kz̆(1) Kz̆(0) · · · Kz̆(−N + 3) Kz̆(−N + 2)

...
... . . . ...

...
Kz̆(N − 2) Kz̆(N − 3) · · · Kz̆(0) Kz̆(−1)
Kz̆(N − 1) Kz̆(N − 2) · · · Kz̆(1) Kz̆(0)

 .
(8)

By using Kz̆(k − s), the Yule-Walker equation for the AR parameters is given by
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K̂(k, k)


aT

1
aT

2
...

aT
N−1
aT

N

 = −


KT

z̆ (1)
KT

z̆ (2)
...

KT
z̆ (N − 1)
KT

z̆ (N)

 ,

K̂(k, k) =


Kz̆(0) Kz̆(1) · · · Kz̆(N − 2) Kz̆(N − 1)
KT

z̆ (1) Kz̆(0) · · · Kz̆(N − 3) Kz̆(N − 2)
...

... . . . ...
...

KT
z̆ (N − 2) KT

z̆ (N − 3) · · · Kz̆(0) Kz̆(1)
KT

z̆ (N − 1) KT
z̆ (N − 2) · · · KT

z̆ (1) Kz̆(0)

 .
(9)

Let Kxx̆(k, s) = Kxx̆(k − s) = E[x(k)x̆T (s)] represent the cross-covariance function of the state vector
x(k) with x̆(s) in wide-sense stationary stochastic systems. Let Kxx̆(k, s) be expressed in the form of

Kxx̆(k, s) = α(k)βT (s), 0 ≤ s ≤ k,
α(k) = Φk, βT (s) = Φ−sKxx̆(s, s). (10)

From (2), Φ denotes the system matrix for the state vector x(k).
Theorem 1 Let the FIR filtering estimate x̂(k|k − L+ 1) of the state vector x(k) be expressed by

x̂(k|k − L+ 1) =
k∑

i=k−L+1
g(k, i)υ(i),

υ(i) = y̆(i)− H̆Φ̆ˆ̆x(i− 1|i− 1− L+ 1),
(11)

in terms of the innovation process {υ(i), k − L + 1 ≤ i ≤ k}. In (11), g(k, i) represents a time-varying
impulse response function and ˆ̆x(i − 1|i − 1 − L + 1) is the FIR filtering estimate of the state vector
x̆(i− 1). Then the optimal impulse response function g(k, s) satisfies

g(k, s)Λ(s) = Kxx̆(k, s)H̆T −
s−1∑

i=s−1−L+1
g(k, i)Λ(i)gT (s− 1, i)Φ̆T H̆T ,

Kxx̆(k, s)H̆T = Kxz̆(k, s).
(12)

In (12), Kxx̆(k, s)H̆T equals the cross-covariance function of the state vector x(k) with the degraded
signal z̆(s), Kxz̆(k, s).

Proof
Let us consider the estimation problem, which minimizes the mean-square value (MSV)

J = E[||x(k)− x̂(k|k − L+ 1)||2] (13)

of the FIR filtering errors. From an orthogonal projection lemma [11]

x(k)−
k∑

i=k−L+1
g(k, i)υ(i)⊥υ(s), k − L+ 1 ≤ s ≤ k, (14)

the impulse response function g(k, i) satisfies the Wiener-Hopf equation

E[x(k)υT (s)] =
k∑

i=k−L+1
g(k, i)E[υ(i)υT (s)], k − L+ 1 ≤ s ≤ k. (15)

In (14), ‘⊥’ denotes the notation of the orthogonality. Let the covariance function of the innovation
process satisfy

E[υ(i)υT (s)] = Λ(i)δK(i− s). (16)
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From (15), (16) and the expression for the innovation process υ(s), it follows that

g(k, s)Λ(s) = E[x(k)υT (s)]
= E[x(k)(y̆(s)− H̆Φ̆υ(s− 1|s− 1− L+ 1))T ]
= E[x(k)y̆T (s)]− E[x(k)υT (s− 1|s− 1− L+ 1)]Φ̆T H̆T .

(17)

The term E[x(k)y̆T (s)] in (17) is developed as follows.

E[x(k)y̆T (s)]
= E[x(k)(z̆(s) + v(s))T ]
= E[x(k)z̆T (s)]
= E[x(k)x̆T (s)]H̆T

= Kxx̆(k, s)H̆T .

(18)

From (17) and (18), the optimal impulse response function g(k, s) satisfies (12).

(Q.E.D.)

Based on the preliminary formulation on the RLS FIR filtering problems, the robust RLS FIR filter
using the covariance information and the robust RLS Wiener FIR filter are presented in section 3.

3 Robust RLS FIR Filter Using Covariance Information and Robust RLS
Wiener FIR Filter

Theorem 2 presents the robust RLS FIR filtering algorithm using the covariance information K̆(k, k)
of the state vector x̆(k) for the degraded signal z̆(k) and the cross-variance information Kxx̆(k, k) of
the state vector x(k) for the signal z(k) with the state vector x̆(k) for the degraded signal z̆(k) in the
state-space model (1) including the uncertain parameters.

Theorem 2 Let the state equation and the observation equation, including the uncertain quantities
∆Φ and ∆H respectively, be given by (1). Let Φ and H represent the system and observation matrices
respectively for the signal z(k). Let Φ̆ and H̆ represent the system and observation matrices respectively
for the degraded signal z̆(k), which is fitted to the AR model (3) of the order N . Let the variance K̆(k, k)
of the state vector x̆(k) for the degraded signal z̆(k) and the cross-variance function Kxx̆(k, k) of the state
vector x(k) for the signal z(k) with x̆(k) be given. Let the auto-covariance function of x̆(k) be expressed
by (6) in terms of A(k) and B(s). Let the cross-covariance function of x(k) with x̆(s) be given by (10) in
terms of α(k) and β(s). Let the variance of the white observation noise v(k) be R. Then, the robust RLS
algorithm for the FIR filtering estimate ẑ(k|k − L+ 1) of the signal z(k) consists of (19)-(36) in linear
discrete-time stochastic systems.

FIR filtering estimate of the signal z(k): ẑ(k|k − L+ 1)

ẑ(k|k − L+ 1) = Hx̂(k|k − L+ 1) (19)

FIR filtering estimate of the state vector x(k): x̂(k|k − L+ 1)

x̂(k|k − L+ 1) = α(k)e(k) (20)

Initial condition of x̂(k|k − L+ 1) at k = L: x̂(L|1)

FIR filtering estimate of the state vector x̆(k): ˆ̆x(k|k − L+ 1)

ˆ̆x(k|k − L+ 1) = A(k)e0(k) (21)

Initial condition of ˆ̆x(k|k − L+ 1) at k = L: ˆ̆x(L|1)
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Recursive equation for e(k):

e(k) = e(k − 1) + J(k)(y̆(k)− H̆A(k)e0(k − 1))
−J(k − L)(y̆(k − L)− H̆A(k − L)e0(k − L− 1)) (22)

Initial condition of e(k) at k = L: e(L)
Recursive equation for e0(k):

e0(k) = e0(k − 1) + J0(k)(y̆(k)− H̆A(k)e0(k − 1))
−J0(k − L)(y̆(k − L)− H̆A(k − L)e0(k − L− 1)) (23)

Initial condition of e0(k) at k = L: e0(L)
Equation for J(k):

J(k) = [βT (k)H̆T − r(k − 1)αT (k − 1)Φ̆T H̆T ]Λ−1(k) (24)
Equation for J0(k):

J0(k) = [BT (k)H̆T − r0(k)AT (k)Φ̆T H̆T ]Λ−1(k) (25)
Recursive equation for r0(k):

r0(k) = r0(k − 1) + J0(k)Λ(k)JT
0 (k)

−J0(k − L)Λ(k − L)JT
0 (k − L) (26)

Initial condition of r0(k) at k = L: r0(L)
Equation for Λ(k):

Λ(k) = H̆K̆(k, k)H̆T +R− H̆A(k)r0(k − 1)AT (k)H̆T (27)
Initial condition of FIR filtering estimate x̂(k|k − L+ 1) of x(k) at k = L: x̂(L|1)

x̂(L|1) = α(L)e(L) (28)

Recursive equation for e(L):

e(L) = e(L− 1) + J(L)(y̆(L)− H̆A(L)e0(L− 1)),
e(0) = 0 (29)

Equation for J(L):

J(L) = (βT (L)H̆T − r(L− 1)αT (L− 1)AT (1)H̆T )Λ−1(L) (30)

Recursive equation for r(L):
r(L) = r(L− 1) + J(L)Λ(L)JT (L),
r(0) = 0

(31)

Initial condition of FIR filtering estimate ˆ̆x(k|k − L+ 1) of x̆(k): at k = L: ˆ̆x(L|1)
ˆ̆x(L|1) = A(L)e0(k) (32)

Recursive equation for e0(L):

e0(L) = e0(L− 1) + J0(L)(y̆(L)− H̆A(L)e0(L− 1)),
e0(0) = 0 (33)

Equation for J0(L):
J0(L) = (BT (L)H̆T − r0(L− 1)AT (L)H̆T )Λ−1(L) (34)

Recursive equation for r0(L):

r0(L) = r0(L− 1) + J0(L)Λ0(L)JT

0 (L),
r0(0) = 0

(35)

Equation for Λ(L):
Λ(L) = H̆K̆(L,L)H̆T +R− H̆A(L)r0(L− 1)AT (L)H̆T (36)
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Proof
By introducing an equation

J(s)Λ(s) = βT (s)H̆T −
s−1∑

i=s−1−L+1
J(i)Λ(i)gT (s− 1, i)Φ̆T H̆T , (37)

from (12) and (37), the optimal impulse response function g(k, s) satisfies

g(k, s) = α(k)J(s). (38)

By substituting (38) into (37), and introducing

r(k) =
k∑

i=k−L+1
J(i)Λ(i)JT (i), (39)

J(k)Λ(k) = βT (k)H̆T − r(k − 1)αT (k − 1)Φ̆T H̆T (40)

is obtained. By subtracting r(k − 1) from r(k), it follows that

r(k)− r(k − 1) = J(k)Λ(k)JT (k)
−J(k − L)Λ(k − L)JT (k − L), r(0) = 0. (41)

By substituting (38) into (11) and introducing e(k), given by

e(k) =
k∑

i=k−L+1
J(i)υ(i), (42)

it follows that
x̂(k|k − L+ 1) = α(k)

k∑
i=k−L+1

J(i)υ(i),

= α(k)e(k).
(43)

By subtracting e(k − 1) from e(k), it follows that

e(k)− e(k − 1) = J(k)(y̆(k)− H̆Φ̆ˆ̆x(k − 1|k − 1− L+ 1))
−J(k − L)(y̆(k − L)− H̆Φ̆ˆ̆x(k − L− 1|k − L− 1− L+ 1)). (44)

Let the FIR filtering estimate ˆ̆x(k|k − L+ 1) of x̆(k) be given by

ˆ̆x(k|k − L+ 1) =
k∑

i=k−L+1
g0(k, i)υ(i),

υ(i) = y̆(i)− H̆Φ̆ˆ̆x(i− 1|i− 1− L+ 1).
(45)

Likewise g(k, s) in (17), it is seen that g0(k, s) satisfies

g0(k, s)Λ0(s) = E[x̆(k)υT (s)]
= E[x̆(k)(y̆(s)− H̆Φ̆ˆ̆x(s− 1|s− 1− L+ 1))T ]

= E[x̆(k)y̆T (s)]−
s−1∑

i=s−L+1
E[x̆(k)υT (i)]gT

0 (s, i)Φ̆T H̆T

= A(k)BT (s)H̆T −
s−1∑

i=s−L+1
g0(k, i)Λ0(i)gT

0 (s− 1, i)Φ̆T H̆T .

(46)

By introducing

J0(s)Λ0(s) = BT (s)H̆T −
s−1∑

i=s−L+1
J0(i)Λ0(i)gT

0 (s− 1, i)Φ̆T H̆T , (47)
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g0(k, s) satisfies
g0(k, s) = A(k)J0(s). (48)

Also, by introducing

r0(k) =
k∑

i=k−L+1
J0(i)Λ0(i)JT

0 (i), (49)

(47) is rewritten as
J0(k)Λ0(k) = BT (k)H̆T − r0(k)AT (k)Φ̆T H̆T . (50)

By subtracting r0(k − 1) from r0(k), it follows that

r0(k)− r0(k − 1) = J0(k)Λ0(k)JT
0 (k)

−J0(k − L)Λ0(k − L)JT
0 (k − L). (51)

By introducing

e0(k) =
k∑

i=k−L+1
J0(i)υ(i), (52)

from (45), the FIR filtering estimate ˆ̆x(k|k − L+ 1) of x̆(k) is given by
ˆ̆x(k|k − L+ 1) = A(k)e0(k). (53)

By subtracting e0(k − 1) from e0(k), it follows that

e0(k)− e0(k − 1) = J0(k)(y̆(k)− H̆A(k)e0(k − 1))
−J0(k − L)(y̆(k − L)− H̆A(k − L)e0(k − L− 1)),
A(k)e0(k − 1) = Φ̆ˆ̆x(k − 1|k − 1− L+ 1),
A(k − L)e0(k − L− 1) = Φ̆ˆ̆x(k − L− 1|k − L− 1− L+ 1).

(54)

From (45), (48) and (49), the variance Λ(k) of the innovation process υ(k) is given by

Λ(k) = E[υ(k)υT (k)]
= E[(y̆(k)− H̆Φ̆ˆ̆x(k − 1|k − 1− L+ 1))(y̆(k)− H̆Φ̆ˆ̆x(k − 1|k − 1− L+ 1))T ]
= H̆K̆(k, k)H̆T +R− H̆Φ̆E[ˆ̆x(k − 1|k − 1− L+ 1)ˆ̆xT (k − 1|k − 1− L+ 1)]
= H̆K̆(k, k)H̆T +R− H̆A(k)r0(k − 1)AT (k)H̆T

(55)

Let the initial condition of the FIR filtering estimate of x(k) at k = L be x̂(L|1).

x̂(L|1) =
L∑

i=1
g(L, i)υ(i),

υ(i) = y̆(i)− H̆Φ̆ˆ̆x(i− 1|1)
(56)

Let the variance of the innovation process υ(L) be Λ(L).

Λ(L) = E[υ(L)υT (L)]
= E[(y̆(L)− H̆Φ̆ˆ̆x(L− 1|1))(y̆(k)− H̆Φ̆ˆ̆x(L− 1|1))T ]
= H̆K̆(L,L)H̆T +R− H̆Φ̆E[ˆ̆x(L− 1|1)ˆ̆xT (L− 1|1)]Φ̆T H̆T

= H̆K̆(L,L)H̆T +R− H̆A(L)r0(L− 1)AT (L)H̆T

(57)

Here,

r0(L) =
L∑

i=1
J0(i)Λ(i)JT

0 (i) (58)

is introduced. g(L, s) in (56) satisfies

g(L, s)Λ(s) = Kxx̆(L, s)H̆T −
s−1∑
i=1

g(L, i)Λ(i)gT (s− 1, i)Φ̆T H̆T ,

Kxx̆(L, s)H̆T = Kxz̆(L, s).
(59)
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By introducing

J(s)Λ(s) = βT (s)H̆T −
s−1∑
i=1

J(i)Λ(i)gT (s− 1, i)Φ̆T H̆T , (60)

g(L, s) is given by
g(L, s) = α(L)J(s). (61)

By introducing

r(L) =
L∑

i=1
J(i)Λ(i)JT (i), (62)

(60) is written as
J(L)Λ(L) = βT (L)H̆T − r(L− 1)αT (L− 1)Φ̆T H̆T ,

Φ̆T =AT (1). (63)

By substituting (61) into (56) and introducing

e(L) =
L∑

i=1
J(i)υ(i), (64)

x̂(L|1) = α(L)e(L) (65)

is obtained, By subtracting r(k − 1) from r(k), it follows that

r(k) = r(k − 1) + J(k)Λ(k)JT (k),
r(0) = 0.

(66)

By subtracting e(L− 1) from e(L), it follows that

e(L) = e(L− 1) + J(L)(y̆(L)− H̆Φ̆ˆ̆x(L− 1|1)),
r(0) = 0. (67)

Let the initial condition of the FIR filtering estimate of ˆ̆x(k) at k = L be ˆ̆x(L|1).

ˆ̆x(L|1) =
L∑

i=1
g0(L, i)υ(i),

υ(k) = y̆(k)− H̆Φ̆ˆ̆x(k − 1|1)
(68)

Here, g0(L, s) satisfies

g0(L, s)Λ(s) = K̆(L, s)H̆T −
s−1∑
i=1

g0(L, i)Λ(i)gT
0 (s− 1, i)Φ̆T H̆T . (69)

By introducing

J0(s)Λ(s) = BT (s)H̆T −
s−1∑
i=1

J0(i)Λ(i)gT
0 (s− 1, i)Φ̆T H̆T , (70)

g0(k, s) is given by
g0(L, s) = A(L)J0(s). (71)

From (58),
J0(L)Λ(L) = BT (L)H̆T − r0(L− 1)AT (L)H̆T (72)

is obtained. By subtracting r0(L− 1) from r0(L), it follows that

r0(L) = r0(L− 1) + J0(L)Λ(L)JT

0 (L),
r0(0) = 0.

(73)
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By substituting (71) into (68) and introducing

e0(L) =
L∑

i=1
J0(i)υ(i), (74)

ˆ̆x(L|1) = A(L)e0(L) (75)

is obtained. By subtracting e0(L− 1) from e0(L), it follows that

e0(L) = e0(L− 1) + J0(L)(y̆(L)− H̆A(L)e0(L− 1)),
A(L)e0(L− 1) = Φ̆ˆ̆x(L− 1|1), e0(0) = 0. (76)

(Q.E.D.)

Based on the robust RLS FIR filter in Theorem 2, Theorem 3 proposes the robust RLS Wiener FIR
algorithm for the filtering estimate of the signal z(k).

Theorem 3 Let the state and the observation equations, including the uncertain quantities ∆Φ and
∆H be given by (1). Let Φ and H represent the system and observation matrices respectively for the
signal z(k). Let Φ̆ and H̆ represent the system and observation matrices respectively for the degraded
signal z̆(k), which is fitted to the AR model (3) of the order N . Let the variance K̆(k, k) of the state
vector x̆(k) for the degraded signal z̆(k) and the cross-variance function Kxx̆(k, k) of the state vector x(k)
for the signal z(k) with x̆(k) be given. Let the variance of the white observation noise v(k) be R. Then,
the robust RLS Wiener algorithm for the FIR filtering estimate ẑ(k|k − L+ 1) of the signal z(k) consists
of (77)-(91) in linear discrete-time stochastic systems.

FIR filtering estimate of the signal z(k): ẑ(k|k − L+ 1)

ẑ(k|k − L+ 1) = Hx̂(k|k − L+ 1) (77)

FIR filtering estimate of the state vector x(k): x̂(k|k − L+ 1)

x̂(k|k − L+ 1) = Φx̂(k − 1|k − 1− L+ 1)
+G(k)(y̆(k)− H̆Φ̆ˆ̆x(k − 1|k − 1− L+ 1))
−ΦLG(k − L)(y̆(k − L)− H̆Φ̆ˆ̆x(k − L− 1|k − L− 1− L+ 1))

(78)

Initial condition of x̂(k|k − L+ 1) at k = L: x̂(L|1)

FIR filtering estimate of the state vector x̆(k): ˆ̆x(k|k − L+ 1)

ˆ̆x(k|k − L+ 1) = Φ̆ˆ̆x(k − 1|k − 1− L+ 1)
+G0(k)(y̆(k)− H̆Φ̆ˆ̆x(k − 1|k − 1− L+ 1))
−ΦLG0(k − L)(y̆(k − L)− H̆Φ̆ˆ̆x(k − L− 1|k − L− 1− L+ 1))

(79)

Initial condition of ˆ̆x(k|k − L+ 1) at k = L: ˆ̆x(L|1)

FIR filter gain for x̂(k|k − L+ 1): G(k)

G(k) = [Kxx̆(k, k)H̆T − ΦS(k − 1)Φ̆T H̆T ]Λ−1(k) (80)

FIR filter gain for ˆ̆x(k|k − L+ 1): G0(k)

G0(k) = [K̆(k, k)H̆T − Φ̆S0(k − 1)Φ̆T H̆T ]Λ−1(k) (81)

Equation for Λ(k):
Λ(k) = R+ H̆K̆(k, k)H̆T − H̆Φ̆S0(k − 1)Φ̆T H̆T (82)
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Recursive equation for S(k):

S(k) = ΦS(k − 1)Φ̆T +G(k)Λ(k)GT (k)
−ΦLG(k − L)Λ(k − L)GT (k − L)(ΦT )L (83)

Initial condition of S(k) at k = L: S(L)
Recursive equation for S0(k):

S0(k) = Φ̆S0(k − 1)Φ̆T +G0(k)Λ(k)GT
0 (k)

−Φ̆LG0(k − L)Λ(k − L)GT
0 (k − L)(Φ̆T )L (84)

Initial condition of S0(k) at k = L: S0(L)
Recursive equation for x̂(L|1):

x̂(L|1) = Φx̂(L− 1|1) +G(L)(y̆(L)− H̆Φ̆ˆ̆x(L− 1|1)),
x̂(0|1) = 0 (85)

Filter gain for x̂(L|1) in (85): G(L)

G(L) = [Kxz̆(L,L)− ΦS(L− 1)Φ̆T H̆T ]Λ−1(L),
Kxz̆(L,L) = Kxx̆(L,L)H̆T

(86)

Recursive equation for ˆ̆x(L|1):

ˆ̆x(L|1) = Φ̆ˆ̆x(L− 1|1) +G0(L)(y̆(L)− H̆Φ̆ˆ̆x(L− 1|1)),
ˆ̆x(0|1) = 0 (87)

Filter gain for x̂(L|1) in (87): G0(L)

G0(L) = [K̆(L,L)H̆T − Φ̆S0(L− 1)Φ̆T H̆T ]Λ−1(L) (88)

Equation for Λ(L):
Λ(L) = R+ H̆K̆(L,L)H̆T − H̆Φ̆S0(L− 1)Φ̆T H̆T (89)

Recursive equation for S(L):

S(L) = ΦS(L− 1)Φ̆T +G(L)Λ(L)GT (L),
S(0) = 0

(90)

Recursive equation for S0(L):

S0(L) = Φ̆S0(L− 1)Φ̆T +G0(L)Λ(L)GT

0 (L),
S0(0) = 0

(91)

Proof
By substituting (44) into (43) and introducing

G(k) = α(k)J(k), (92)

(78) is obtained. By substituting (54) into (53) and introducing

G0(k) = A(k)J0(k), (93)

(79) is obtained. By substituting (40) into (92), using (10) and introducing

S(k) = α(k)r(k)αT (k), (94)
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(80) is obtained. By substituting (50) into (93), using (6) and introducing

S0(k) = A(k)r0(k)AT (k), (95)

(81) is obtained. By substituting (95) into (55) and using A(k) = Φ̆k, (82) is obtained. By substituting
(41) into (94) and using (92) with α(k) = Φk, (83) is obtained. By substituting (51) into (95) and using
(93) with A(k) = Φ̆k, (84) is obtained.

By substituting (67) into (65) and introducing

G(L) = α(L)J(L), (96)

(85) is obtained. By substituting (63) into (96), using (10) and introducing

S(L) = α(L)r(L)αT (L), (97)

(86) is obtained. By substituting (76) into (75) and introducing

G0(L) = A(L)J0(L), (98)

(87) is obtained. By substituting (72) into (98) and introducing

S0(L) = A(L)r0(L)AT (L), (99)

(88) is obtained. By substituting (99) into (57) and using A(k) = Φ̆k, (89) is obtained. By substituting
(66) into (97) and using (96), (90) is obtained. By substituting (73) into (99) and using (98), (91) is
obtained.

(Q.E.D.)

Concerning the stability of the robust RLS Wiener FIR filtering algorithm, the following conditions
are required.

1. All the real parts in the eigenvalues of the matrix Φ are negative.
2. All the real parts in the eigenvalues of the matrix Φ̆−G0(k)H̆Φ̆ are negative.
3. R+ H̆[K̆(k, k)− Φ̆S0(k − 1)Φ̆T ]H̆T > 0
4. All the real parts in the eigenvalues of the matrix Φ̆−G0(k)H̆Φ̆ are negative.
5. R+ H̆[K̆(k, k)− Φ̆S0(k − 1)Φ̆T ]H̆T > 0

In section 4, the existence of the robust RLS Wiener FIR filtering estimate ẑ(k|k − L + 1) of the
signal z(k) is shown.

4 Filtering Error Variance Function of Signal

Let the variance function of the FIR filtering error z(k)− ẑ(k|k − L+ 1) be denoted by P̃z(k). Let the
auto-covariance function K(k, s) of the state vector x(k) be given by

K(k, s) =
{
Ax(k)BT

x (s), 0 ≤ s ≤ k,
Bx(k)AT

x (s), 0 ≤ k ≤ s,
Ax(k) = α(k) = Φk, BT

x (s) = Φ−sK(s, s).
(100)

Then the FIR filtering error variance function P̃z(k) is formulated as

P̃z(k) = H[K(k, k)− E[x̂(k|k − L+ 1)x̂T (k|k − L+ 1)]HT

= H[K(k, k)− E[x(k)x̂T (k|k − L+ 1)]HT .
(101)

By using (39), (43) and (94), (101) is rewritten as

P̃z(k) = H(K(k, k)− α(k)r(k)(αT )k)HT

= H(K(k, k)− S(k))HT .
(102)
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Here, the RLS Wiener FIR filtering error variance function P̃z(k) is calculated by (102) together with
(80) ∼ (84) recursively. Since P̃z(k) is the semi-definite function, the RLS Wiener FIR filtering variance
function of the signal z(k), HE[x̂(k|k − L+ 1)x̂T (k|k − L+ 1)]HT , is upper bounded by HK(k, k)HT

and lower bounded by the zero matrix as
0 ≤ HE[x̂(k|k − L+ 1)x̂T (k|k − L+ 1)]HT ≤ HK(k, k)HT . (103)

This validates the existence of the robust RLS Wiener FIR filtering estimate ẑ(k|k − L+ 1) of the signal
z(k).

5 A Numerical Simulation Example
Let a scalar observation equation and the state equation for x(k) be described by

y(k) = z(k) + v(k), z(k) = Hx(k), H =
[

1 0
]
, x(k) =

[
x1(k)
x2(k)

]
,

x(k + 1) = Φx(k) + Γw(k), Φ =
[

0 1
−a2 −a1

]
, a1 = −0.1, a2 = −0.8, Γ =

[
0
1

]
,

E[v(k)v(s)] = RδK(k − s), E[w(k)w(s)] = QδK(k − s), Q = 0.52.

(104)

It should be noted that the signal z(k) is generated by the second-order AR model. The purpose of the
simulation example is to estimate the signal z(k) in terms of the observed value y̆(k), generated by the
state-space model (105) with the uncertain quantities ∆H(k) and ∆Φ(k).

y̆(k) = z̆(k) + v(k), z̆(k) = H̄(k)x̄(k), x̄(k) =
[
x̄1(k)
x̄2(k)

]
,

H̄(k) = H +∆H(k) =
[

1 +∆3(k) 0
]
, ∆H(k) =

[
∆3(k) 0

]
, ∆3(k) = 0.1,

x̄(k + 1) = Φ̄(k)x̄(k) + Γw(k), Φ̄(k) = Φ+∆Φ(k), ∆Φ(k) =
[

0 0
∆2(k) ∆1(k)

]
,

∆1(k) = 0.01, ∆2(k) = −0.1

(105)

Without using a priori knowledge on ∆H(k) and ∆Φ(k), the robust RLS Wiener FIR filter estimates the
signal z(k) recursively. In particular, the scalar degraded signal z̆(k) is fitted to the AR model of the
N -th order.

z̆(k) = −ă1z̆(k − 1)− ă2z̆(k − 2)− · · · − ăN z̆(k −N) + ĕ(k),
E[ĕ(k)ĕ(s)] = Q̆δK(k − s) (106)

From (4) and (105), z̆(k) is expressed as (107) with the 1 by N observation vector H̆.
z̆(k) = H̆x̆(k), H̆ =

[
1 0 0 · · · 0 0

]
. (107)

In the simulation example, the state equation for x̆(k) in (5) corresponds to the case of m = 1. K̆(k, s) =
K̆(k−s) represents the auto-covariance function of the state vector x̆(k) in wide-sense stationary stochastic
systems. K̆(k, s) is expressed in the form of the semi-degenerate function (6). Φ̆ in (6) represents the
system matrix for the state vector x̆(k). Also, from the auto-covariance function Kz̆(k− s) = Kz̆(s− k) =
E[z̆(k)z̆(s)] of the degraded signal z̆(k), the auto-variance function K̆(k, k) of the state vector x̆(k) is
expressed as

K̆(k, k) = E




z̆(k)

z̆(k + 1)
...

z̆(k +N − 2)
z̆(k +N − 1)




×
[
z̆(k) z̆(k + 1) · · · z̆(k +N − 2) z̆(k +N − 1)

]

=


Kz̆(0) Kz̆(1) · · · Kz̆(N − 2) Kz̆(N − 1)
Kz̆(1) Kz̆(0) · · · Kz̆(N − 3) Kz̆(N − 2)

...
... . . . ...

...
Kz̆(N − 2) Kz̆(N − 3) · · · Kz̆(0) Kz̆(1)
Kz̆(N − 1) Kz̆(N − 2) · · · Kz̆(1) Kz̆(0)

 .
(108)
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Let Kzz̆(k, s) = E[z(k)z̆(s)] represent the cross-covariance function of the signal z(k) with the degraded
signal z̆(s). From (4) and (104), the cross-covariance function Kxx̆(k, s) is expressed as

Kxx̆(k, s) = Φk−sKxx̆(s, s), 0 ≤ s ≤ k,

Kxx̆(k, k) = E

[[
x1(k)
x2(k)

] [
z̆(k) z̆(k + 1) · · · z̆(k +N − 2) z̆(k +N − 1)

]]
=
[
E[x1(k)z̆(k)] E[x1(k)z̆(k + 1) · · · E[x1(k)z̆(k +N − 2)] E[x1(k)z̆(k +N − 1)]
E[x2(k)z̆(k)] E[x2(k)z̆(k + 1) · · · E[x2(k)z̆(k +N − 2)] E[x2(k)z̆(k +N − 1)]

]
=
[

E[z(k)z̆(k)] E[z(k)z̆(k + 1)
E[z(k + 1)z̆(k)] E[z(k + 1)z̆(k + 1)

· · · E[z(k)z̆(k +N − 2)] E[z(k)z̆(k +N − 1)]
· · · E[z(k + 1)z̆(k +N − 2)] E[z(k + 1)z̆(k +N − 1)]

]
=
[

Kzz̆(k, k) Kzz̆(k, k + 1) · · · Kzz̆(k, k +N − 2) Kzz̆(k, k +N − 1)
Kzz̆(k + 1, k) Kzz̆(k + 1, k + 1) · · · Kzz̆(k + 1, k +N − 2) Kzz̆(k + 1, k +N − 1)

]
.

(109)

The AR parameters ă1, ă2, · · · , ăN−1, ăN in (106) are calculated by


Kz̆(0) Kz̆(1) · · · Kz̆(N − 2) Kz̆(N − 1)
Kz̆(1) Kz̆(0) · · · Kz̆(N − 3) Kz̆(N − 2)

...
... . . . ...

...
Kz̆(N − 2) Kz̆(N − 3) · · · Kz̆(0) Kz̆(1)
Kz̆(N − 1) Kz̆(N − 2) · · · Kz̆(1) Kz̆(0)




ă1
ă2
...

ăN−1
ăN

 = −


Kz̆(1)
Kz̆(2)

...
Kz̆(N − 1)
Kz̆(N)

 .

By substituting H, H̆, Φ, Φ̆, Kxx̆(k, k), K̆(k, k) = K̆(L,L) and R into the robust RLS Wiener FIR
filtering algorithm of Theorem 3, the filtering estimates are calculated recursively. In evaluating Φ̆ in (7),
K̆(k, k) in (108) and Kxx̆(k, k) in (109), the 2,000 number of signal and degraded signal data are used.
Fig. 1 illustrates the signal z(k) and its degraded signal z̆(k) caused by the uncertain parameters in the
observation vector and the system matrix in (105) vs. k, 1 ≤ k ≤ 500, for the white Gaussian observation
noise N(0, 0.32). Fig. 2 illustrates the signal z(k) and the robust RLS Wiener filtering estimate ẑ(k|1)
vs. k, 1 ≤ k ≤ 200, for the white Gaussian observation noise N(0, 0.32) in the case of the AR model
order N = 5. Here, ẑ(k|1) is computed by (85)-(91) recursively. It is noted that (85)-(91) constitute the
robust RLS Wiener filtering algorithm in [8]. Fig. 3 illustrates the signal z(k) and the RLS Wiener FIR
filtering estimate ẑ(k|k − L+ 1), L = 200, vs. k, 201 ≤ k ≤ 500, for the white Gaussian observation noise
N(0, 0.32) in the case of the AR model order N = 5. Fig. 4 compares the MSVs of the FIR filtering errors
z(k)− ẑ(k|k − L+ 1), L ≤ k ≤ 1000 + L, by the robust RLS Wiener FIR filter in Theorem 3 with the
robust RLS Wiener filter [8], the robust Kalman filter [9] and the RLS Wiener FIR filter [10] vs. the finite
interval L for the white Gaussian observation noises N(0, 0.12), N(0, 0.32), N(0, 0.52) and N(0, 0.72). In
the robust RLS Wiener FIR filter and the robust RLS Wiener filter [8], the AR model order is N = 5.
Here, the MSVs by the robust RLS Wiener filter [8] and the robust Kalman filter are calculated with the
filtering errors z(k)− ẑ(k|k), L ≤ k ≤ 1000 + L. From Fig. 4, the proposed robust RLS Wiener FIR filter
is preferable in estimation accuracy to the robust Kalman filter [9] and the RLS Wiener FIR filter [10].
As the finite interval L increases, the MSV of the filtering errors by the robust RLS Wiener filter FIR
decreases and approaches the MSV by the robust RLS Wiener filter [8] for each observation noise. This
indicates, with the finite number of observations, that the robust RLS Wiener FIR filter in Theorem 3
could attain almost the same estimation accuracy with the robust RLS Wiener filter [8]. Fig. 5 illustrates
the MSVs of the FIR filtering errors z(k)− ẑ(k|k − L+ 1), L ≤ k ≤ 1000 + L, by the robust RLS Wiener
FIR filter in Theorem 3 vs. the finite interval L for the white Gaussian observation noises N(0, 0.12),
N(0, 0.32), N(0, 0.52) and N(0, 0.72) in the case of the AR model order N = 10. From Fig. 4 and Fig.
5, the MSVs of the RLS Wiener FIR filtering errors for the AR model order N = 5 are slightly smaller
than those for the AR model order N = 10. Here, the MSVs of the FIR filtering errors are evaluated by
1000+L∑

k=L

(z(k)− ẑ(k|k − L+ 1))2/1001.
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Figure 1. Signal z(k) and degraded signal z̆(k) caused by the uncertain parameters for the white Gaussian
observation noise N(0, 0.32).

6 Conclusions

This paper, in Theorem 2, has proposed the robust RLS FIR filter using the covariance information of
the state vector for the degraded signal, the cross-covariance information of the state vector for the signal
with the state vector for the degraded signal, the observation matrices for the signal and the degraded
signal, and the variance of the white observation noise. Here, it is assumed that the signal and the
degraded signal are fitted to the finite-order AR models. In Theorem 3 the robust RLS Wiener FIR filter
has been proposed. The robust RLS Wiener FIR filtering algorithm uses the system and observation
matrices for the signal and the degraded signal, the variance of the state vector for the degraded signal,
the cross-variance function of the state vector for the signal with the state vector for the degraded signal,
and the variance of the white observation noise.

In the numerical simulation example, for the signal process expressed by the second-order AR model,
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Figure 3. Signal z(k) and RLS Wiener FIR filtering estimate ẑ(k|k − L+ 1) of the signal z(k) vs. k, 201 ≤ k ≤
500, for the fixed interval L = 200 and the white Gaussian observation noise N(0, 0.32) in the case of the AR
model order N = 5.
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(a) RLS Wiener FIR filter in [10] for N(0,0.01).

(b) RLS Wiener FIR filter in [10] for N(0,0.09).
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(n) Robust Kalman filter [9] for N(0,0.09).
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Figure 4. Comparison of MSV of the FIR filtering errors z(k)− ẑ(k|k − L+ 1), L ≤ k ≤ 100 + L, by the robust
RLS Wiener FIR filter in Theorem 3, with MSVs of filtering errors by the robust RLS Wiener filter [8], the robust
Kalman filter [9] and the RLS Wiener FIR filter [10] vs. the finite interval L for the white Gaussian observation
noises N(0, 0.12), N(0, 0.32), N(0, 0.52) and N(0, 0.72).
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(a) FIR filter for N(0,0.01).

(b) FIR filter for N(0,0.09).

(c) FIR filter for N(0,0.25).

(d) FIR filter for N(0,0.49).

Figure 5. MSVs of the FIR filtering errors z(k) − ẑ(k|k − L + 1), L ≤ k ≤ 100 + L, by the robust RLS Wiener
FIR filter, proposed in this paper, vs. the finite interval L for the white Gaussian observation noises N(0, 0.12),
N(0, 0.32), N(0, 0.52) and N(0, 0.72) in the case of the AR model order N = 10.Figure 5. MSVs of the FIR filtering errors z(k)− ẑ(k|k − L + 1), L ≤ k ≤ 100 + L, by the robust RLS Wiener

FIR filter, proposed in this paper, vs. the finite interval L for the white Gaussian observation noises N(0, 0.12),
N(0, 0.32), N(0, 0.52) and N(0, 0.72) in the case of the AR model order N = 10.
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