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Abstract Equations of spinning objects are obtained in Absolute Parallelism Geometry [AP], a
special class of non-Riemannian geometry admitting specific types having non-vanishing curvature
and torsion simultaneously. This new set of equations is the counterpart of the Papapetrou equations
in the Riemannian geometry. Applying, the concept of geometerization of physics, it may give rise
to describe the spin tensor as parameterized commutation relation between path and path deviation
equations in both Riemannian and non-Riemannian geometries.
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1 Introduction

The problem of a rotating object in the presence of the gravitational field is essentially practical than
viewing objects as a mere test particles, in order to ignore their intrinsic property due to the Orthodox
General Theory of Relativity. Accordingly, several attempts were done in the last century started by
Mathisson [1], followed by Papapetrou [2] and extended by Dixon [3] to include other non-gravitational
fields e.g. electromagnetic. Also, there is an approach by Dixon-Souriau to include spinning motion,
magnetic moment with charged objects [4]. Such of these detailed equations have been presented only in
Riemannian geometry.

Now, the arising question, is based on the following:

What is the situation of the above mentioned particles in case of Non-Remannain geometries?

In order to find the above enquiry, one must take treat the situation of non-Riemanian geometries as
individual cases: one of its special classes is Riemann-Cartan geometry; which considers a tetrad space \*

1
as two independent vector fields, one may be responsible for general coordinate transformation (GCT),
the holonomic coordinates, labeled by Greek indices and the Latin ones are used to express the Local
Lorentz transformation [LLT], mainly to describe the internal properties of the object [5], labeled by
Latin letters, the anholonomic coordinates. This type of work has encouraged many authors [6-8], to
relate this type of geometry with gauge theories of gravity [9], wherein there is a tetrad space for gauge
translation, and spin connection to represent gauge rotation. [10-12].

Also, another trend of viewing the Non-Riemaniann geometry, is called a Teleparallel geometry- A
geometry with a tetrad building blocks, which may represent a translational gauge with a vanishing
curvature [13] , and treat the annholonomic coordinates as vector number. Such a tendency of neutralizing
the role of annholnomic coordinates, to be a vector number, with an additional property. This may give
rise to define that there are non-vanishing torsion curvatures simultaneously, due to within different types
of absolute derivatives!.

The arising notation of AP-geometry led Wanas et al (1995) to describe three different paths may
act the role of geodesic in Riemanian geometry [17]. The striking features of these paths, have a step %
from one path into other . This gives an impression, that paths in this type of geometry are naturally
quantized. Lately, Wanas(1998) obtained a parameterized absolute parallelism geometry [PAP] obtaining a
spin-torsion interaction, together with defining non-vanishing curvature and torsion tensors simultaneously

! For more details about the underlying geometry and its application in establishing a generalized field theory
see [14-16]
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[18]. The existence of such an interaction has led Wanas et al to detect its presence in terms of revealing
the discrepancy between theory and observation of thermal neutrons [19] and presenting a temporal
model for SN1987A [20].

Accordingly, in the present work we are going to obtain the analogous of the Papapetrou equation
with precession in the context of AP-geometry. This will enable us to examine, the effect of different
absolute derivatives on the interaction with the torsion and spin tensors.

The paper is organized as follows; section 2 discusses the relationship between spin tensor and geodesic
and geodesic deviation vectors in the Riemaniann geometry, section 3 is extending the previous relationship
to become among paths and path deviation vectors with their corresponding spin tensors in AP-geometry.
Section 4 deals with the Lagranagian formalism of the Papapetrou equation in AP-geometry, and finally,
Section 5 presents the results obtained in the previous sections , regarding some recommendations in our
future work of on this approach.

2 Motion in Riemanian Geometry

2.1 Geodesic and Geodesic Deviations : The Bazanski Approach

Equations of geodesic and geodesic deviation equations Riemannian geometry are required to examine
many problems of motion for different test particles in gravitational fields. This encouraged many authors
to derive them by various methods among which one of the most applicable methods is the Bazanski
approach [21] in which from one single Lagrangian one can obtain simultaneously equation of geodesic
and geodesic deviations in the following way:

Dw¥

L = g,ul/U'uiDs 5 (21)

where , g, is the metric tensor, U#, is a unit tangent vector of the path whose parameter is s, and ¥ is
the deviation vector associated to the path (s) L_is the covariant derivative with respect to parameter s.

’ Ds
Applying the Euler Lagrange equation , by taking the variation with respect to the deviation tensor?:

d OL oL
—— = — =0 2.2
ds ogr  OUH (22)
to obtain the geodesic equation
bur _ (2.3)
Ds '
and taking the variation with respect the the unit vector U*,
d 0L oL
el ——— =0, 24
ds OU#*  Qxat (24)
to obtain the geodesic deviation equation,
D2y y -
D = Ry, U UPYT, (2.5)

where Rl is Riemann-Christoffel tensor.

2.2 On The Relation Between Spin Tensor and The Deviation Vector: The Riemanian
Case

Equations of spinning motion ,the case of P* = mU® can be related to geodesic if one follows the following

transformation [23]
Dy

Ds

Ur=U"+p8 (2.6)

2 See [22], to get a detailed description for deriving the geodesic and geodesic deviation equations using The
Bazanski Method
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where U? is a unit tangent vector with respect to the parameter such that U® = 92~ 3.

ds
By taking the covariant derivative on both sides one obtains:

DU* D DU* ds
= —(U* —. 2.7
Ds Ds( +5 Ds )dé 27)
From geodesic and geodesic deviation equations one gets
DU~
=0 2.8
Ds (2.8)
and )
D wa (o7 1% g
TSZ - RHVUUHU g; (29)
Substituting equations (2.8) and (2.9) in (2.7) to get
DU~ ds
— (8R> Urprpo) S 2.1
= (BB UM U) S (210)

Sk

Regarding 8 = 2=, where 3 is the angular momentum ratio , s, is the magnitude of the spin tensor S** |
and m is mass of the object.

Let us assume the relationship between the spin tensor and geodesic deviation vector in the following
way

SH = s (UWP — UPw™). (2.11)
Thus, we get -
DU” 1 ds
= —(RS, UFUYY7)— 2.12
Ds 2m(R””"U v )d§ (2.12)
i.e B
DU“ 1 —
— o VOTTI
s —QmRWUS U (2.13)

which is the Papapetrou equation for short.

2.3 Lagrangian Formalism of Spinning Equations

Another way to derive the Papapetrou equation for short is, by applying the action principle on the
following equation [24]:
- Duv 1
L= gl'“’Uuﬁ + %RHVPO_SPUUVQ'/H, (214)
taking the variation with respect to the deviation tensor U* we obtain equation (2.13).
Also, by taking the variation with respect to U® after some manipulations, we get its corresponding
spinning deviation equation

D2

D323

Thus, we can figure out the Euler Lagrange Equations on the Bazanski-like Lagragian give an identical
equation to (2.13) and its corresponding deviation equations.

o 1 _
= Ry U’ + 77 5,5 87°U"),s0° (2.15)

2.4 Spinning and Spinning Deviation Equations Without Precession

The Papapetrou equation of a spinning object with precession [2]is obtained by a modified Bazanski
Lagrangian [25] :
DS*? Dwf 1

+ *RaﬁwsSWSUﬁwa

L = gap(mU* + Up Ds ) Ds 2
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to obtain equation of a spinning object by taking the variation with respect to the deviation vector ¥*

D N DSeP
Ds (mU +U5 Ds

and its deviation equation can be obtained by taking the variation with respect to U® to become:

) = R“ SPv e (2.16)

P

D2y DSv8 DS Dwv
« m v yP ao A )
Dz = = RS, ,U"(mU" + Ug S WP+ g gua(mU™ + Up )VJ—DS
1 v DW v (e} v
+ 5( oS’ + RS \STUMPP + RS\ SYAUFDP). (2.17)

2.5 Spinning and Spinning Deviation Equations with Precession

It is well known that equation of spinning charged objects in the presence of gravitational field have been
studied extensively [26]. This led us to suggest its corresponding Lagrangian formalism , using a modified
Bazanski Lagrangian [27], for a spinning and precessing object and their corresponding deviation equation
in Riemanian geometry in the following way

Db DweB
L=g,sP"—— + 8, F 0% + M,g0°P, 2.1
Jap Ds + Sap —— Ds + + Map (2.18)
where
D5 2.19
pPe = @ . .
=mU" +Ug DS ( )
Taking the variation with respect to ¥* and ¥*¥ simultaneously we obtain
DPH
= FH 2.20
=, (2.20)
and DS
= M" 2.21
a , (221)
where P* is the momentum vector,
fR“pésfﬁUV

and Rj,, is the Riemann curvature is the covariant derivative with respect to a parameter 5,5 is

the spin tensor,

) ﬁ
MW = PrUY — PYUH (2.22)

U*" is the unit tangent vector to the geodesic.
Use the following identity on both equations (20) and (21)

Al — AR = RY

ﬁypAﬂ7 (223)

where A" is an arbitrary vector, and multiply both sides with arbitrary vectors UP¥" as well as using the
following condition [26]
uswr =viu’, (2.24)

where ¥® is its deviation vector associated to the unit vector tangent U®.
Also in a similar way:

SePwr = 2P U, (2.25)
one obtains the corresponding deviation equations [28]
D2y* Y -
Do = =R, ,P'UW + FHUP, (2.26)
and D2
mz
D = = sl “RZUGU‘TW€ + Mwe, (2.27)
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3 DMotion in AP-Geometry

A brief introduction of AP-Space
The structure of this space is defined completely by a set of n-contravariant vector fields \* where
1
i=1,2,3,...,n) denotes the vector number, and pu(= 1,2,3,...,n) denotes )\, of the vectors \*, in the
K3 1
determinant || \*||, is defined such that?
1
NNy = 045,
i
AAw =6y
(2 3
Using these vectors, the following second order symmetric tensors are defined:
ng déf /\# )\V
i i

def
G = Mo
1 3
one can define Christoffel symbols and covariant derivatives using this symbol, in the usual manner. The
following third order tensor, the contortion tensor, can be defined as,

def
a 1€l o
Vo = A Auws
1 (3

which is non-symmetric in its last two indices u, v. It can be shown that 77, is skew-symmetric in its
first two indices.
The AP-Condition

A =0
i+

n
where | + is the absolute +ve derivative, such that it defines Ij,, a non symmetric affine connection, in
which

FEI/ = )\CY ).‘H’V'
(2 K3
The torsion of the space time is defined by
5y = Loy = I

(i)Paths and Path Deviation Equations Subject to I'g

Paths and Path deviations equations are the counterpart of geodesic and geodesic deviation in AP-
geometry. Accordingly, we have different trajectories based on the type of the absolute derivative, with
respect to [ [17].

From this perspective, it has been found out that the Bazanski Lagrangian may be a good candidate

to express these trajectories.
vor

— 1
L=guV S (3.28)
where o o
= reorvy.
VST T dst
Thus,taking the variation with respect to £# and implementing the AP-condition to find that
gue =0 (3.29)

tvt|o

3 for more detail see [13-16]
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one finds out the following path equation
vv#

VSt

Also, its associated deviations can be derived if one applies the following relation

= 0. (3.30)

A, =AY, =ML AT+ AT A“ (3.31)
s [
provided with the following condition:
Us,of =o4,U°, (3.32)
I+ I+

with taking into consideration, the vanishing curvature tensor

M" =0, (3.33)

ovp —

to be substituted in (3.30) to obtain the corresponding deviation equation

VZ@OL
VS2+

= AL VEQUVS. (3.34)
[+

(ii)Paths and Path Deviation Equations subject to I';

Due to the absolute derivative with respect to F(Oév), one can derive its associated path and path deviation
equations using the following Lagrangian [17]:

@n”
L=g,WHt—"o, 3.35
m T 50 ( )
where .
Vn® dn®
- — F WY,
G50 dso
Thus, taking the variation with respect to n*;provided that
ggag = A(’ul,)0-7 (336)
to obtain its corresponding path equation:
VWH# P
vgo = /1 (). Wrwe. (3.37)
Using the following relation
Af, — Al = =Ly, ,A7 + A7, A" (3.38)
100 100
and the condition below
W', =nt, W, (3.39)
(0) (0)
to be substituted in (3.37), provided that its associated curvature,
Lk, #0, (3.40)
is non vanishing, to obtain the corresponding deviation equation
VI L w00 4 L, WOWACT Al WY (S 3.41
@82(0) *2( v ) C =+ Bpo C =+ C ( . )
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(iii)Paths and Path Deviation Equations Subject to I‘;%

Following the same approach as explained the previous items(i) and (ii), one may derive the paths and
path deviations equations subject to I'g. , by introducing the following Lagrangian [17]:

ver
L = UJH,Vi 3.42
Iu T5- ( )
such that _
\Y/&¢ da¢” -
- = Iy _¢crje.
T5- ~das- T Lwt"

Accordingly, taking the variation with respect to n* to derive its corresponding path equation, and
provided that [16]

giila — 2/1(“1,)5 (343)
we get ~
VJH 4 oTo
T = AT TP, (3.44)

Also, in order to derive its corresponding path deviation equation, one must take into account the following
relation:

—AF,, = NE, A7+ A‘lij‘”i, (3.45)

together with, the condition
Jr, ¢r=C", I, (3.46)
(=) (=)

to be substituted in (3.44), provided that its associated curvature,
N&,, # 0, (3.47)

is non vanishing curvature.
Thus we derive the corresponding path deviation equation

@27704

Tga= = Voo T I+ A T (3.48)

3.1 On the Relation Between Spin Tensor and The Deviation Vector: The AP-geometry

In this part, we are going to extend the relationship obtained in (2.2) to derive the corresponding spin
equations and their corresponding spin deviation equations.

Spinning equation subject to 1"'5‘,1

Equations of spinning motion ,the case of P} = mV® can be related to geodesic if one follows the following

transformation
Do+

Dst

where V® is a unit tangent vector with respect to the parameter ,such that V* = g% , 5. By taking the
covariant derivative on both sides one obtains:

VE=VF+pB

(3.49)

vve VoL ds

\Y%
- Y yrapgl
Vst Vst (Ve + Vst ) ds’ (3:50)
Substituting equations (3.30) and (3.34) in (3.50) we get
vve ds
— (BAP vpo) 2 .01
var ~ BV, eV (351)
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Let us assume the following. Taking § = =

S = s(Vodl —VFAg) (3.52)
Thus, we get .
T @59
ie B
g‘;‘* B %A ulisw (3:54)

which is the version the Papapetrou equation for absolute derivative subject to I"*", for short.

Spinning equation subject to 1"(%7)

Equations of spinning motion, the case of P(%) = mW® can be related to geodesic if one follows the
following transformation
Vit

WH=WH+ ﬂ =)

(3.55)

where W is a unit tangent vector with respect to the parameter such that We = % , 5. By taking

the covariant derivative on both sides one obtains:

vwe v Vi
- = wH —. 3.56
Vs Vst (W + ﬂVs(O) ) ds (3.56)
Substituting equations (3.37) and (3.41) in (3.56) to get
vwe 1. y o ds
S EO) = (G4 WHWY + 5 G s WOWIn® + AL, W W )4 (3.57)
Now, let us assume that 8 = >, and
S = s(Von? — whn®). (3.58)
Thus, we get
vwe 1 _ ds®
—(Z A TRV T (T " P vo
SEO) (2/1#1, WHEW + [LWUW +A””WM(S)])S (—dg(o)), (3.59)
i.e.
vwe - - _
_— 7/1 CWHWY Fy A8 W, )87, .
vs0) 27 Wi +2 (L “”UW + u|(o))S (3.60)
If we regard
ds(0)
ds®
then, equation (3.57) becomes
vwe 1 _ _
— = A OWHFWY + — (L, W+ AL W, )SY, 3.61
vg(o) 9wy +2 ( puvo + vo M|(0)) ( )

which is the version the Papapetrou equation subject to I'% (By) for short.
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Spinning equation subject to fliaw

Equations of spinning motion ,the case of P* = mJ“ can be related to geodesic if one follows the following
transformation

i
J“*J“+Bv<

(3.62)

where J® is a unit tangent vector with respect to the parameter ,such that J* = g;‘: , 5. By taking the
covariant derivative on both sides one obtains:

vJe v VC¢HE ds
pu— H = —_ . .
vi-) Vs~ (7% + ﬁVs— )dé_ (3.63)

Substituting equations (3.44) and (3.48) in (3.63) to get

g{_ = (A, J"J" + B[NG5 JP T + AL, T J"C"]) (3.64)
S

Let us assume the following Taking 8 = ;> ,and

SH = s(JocP — JP¢?). (3.65)
Thus, we get
vJe 1 ds™
- = (A, I+ —[NpJ" + A0, T o ])S"7 (== ), 3.66
= + N " + 48,0 S () (3.66)
ie. .-
1 - -
V{ =A, aJ“J”+—(NI?VUJ“+AIP,UJ 0)SY7. (3.67)
Vs— 2m n—
If we regard
ds(_)
RO
then, equation (73) becomes
v _ = A J“J”+—(Na J A2 T )57 (3.68)
@57 (pv) om nvo vo mﬁ . .

which is the version the Papapetrou equation subject to FB‘W, for short.

4 Spinning and Spinning Deviation Equations in AP-geometry: Lagrangian
Formalism

From the previous results, we can check the reliability of the corresponding Bazanski equation to become
in the following way.

4.1 Spinning and Spinning Deviation Equations Subject 1"5"7

i the case of P = mV

VoH L5 Y pHv
vs+ T vst

Taking the variation with respect to @ and $*” we obtain

L=g,V" + —[ . Ii]SW@“. (4.69)

we_ 1
VSt 2m

A5 SOVVE 4 g*P APV, SV 4.70
pd 7 9 Ao ull (4.70)
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and
5 gas
VST o (4.71)
\%]
Using the commutation relation (3.31) , conditions (3.32) and
SH P = VP, (4.72)
I+ [+

to be substituted in (4.70) and (4.71) in order to derive its corresponding set of deviation equations

v2q§a

— AP VHVYP™
S5 ® AL VRV @i, (4.73)
and D
P -
v = AL, VIDrSeP (4.74)
V52t [+
(ii) the case Py # mV
Let us suggest the following Lagrangian:
vor . VoH 1 - y N ity
L=guwPlggr +Swoer + %gWAgpsépvg@ + Gapgs [PV — PEV o (4.75)
where o
V,V.SH¥
no__ © v
P =mVH"+ ST
Taking the variation with respect to ¢* and ¢*? we obtain
Vpy 1 -
=—A8 SV v PLVO — POVP|pH 4.76
VSt om0V [ + Gupg 5[ + + ] ) ( )
and G
SOL
Vot [PevEe — PPV (4.77)

VSt
Using the commutation relation (3.31) , the conditions (3.32) and (3.32) to be substituted in (4.70)and
(4.71)and (4.72) in order to derive its corresponding set of deviation equations

@2¢a 1 p Qéoy a &
and 2 as
\Y Ca AP ngy aap ay/B By ra )
S = Ap Vo SJ,Jr + [PYVP — PV ]lisﬁ ) (4.79)

From the above results of spinning equations and their corresponding deviation ones, we reach to regard
them as the equivalent set of equations of spinning objects in the presence of Tele-parallel gravity [13].

4.2 Spinning and Spinning Deviation Equations Subject I“(Oé,y)
ii The case of Py = mW

@ “w R ﬁ y13% 1 R
1 T L WS+ AL W R (4.80)
wul.(0

L=g, WH= e
I V.S(0) +ou VSO 2m

Taking the variation with respect to 7® and 7*?, we obtain
vwe

1 a v 1 @ v Qpo «a Quo
W - 5/1(“”) WMW + %L W SP +g MAﬁa.Wul(S)S 5 (481)

vpo
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and

and

(ii) the case Py # mW

L=
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& b
Vo 7/1( o gBluyyv. (4.82)
vS m)
Using the commutation relation (3.38) and conditions (3.39) and
S P =, WP, (4.83)
1(0) 1(0)
to be substituted in (80) and (81) in order to derive its corresponding set of deviation equations
VI o WeWen AL, Wi, + LA W —LC’ WYSP7) o (4.84)
ve20) e " © 2 veo o '
@2,’704,3 P
= gul Lo‘ JVIP AL Wy "Sa 4.85
5520 %p + (4.85)

A5, S°PWY, 0¥ 95905 [Plyy W = P WP
(4.86)

Let us suggest the following Lagrangian
Vit VU 1 1
H mIVGPd o
91 F0) G g0) T gty g Fred ! WS g G
., WDS(
where P(o) =mWH + —zm.
Taking the variation with respect to n® and 7*? we obtain
VPG 1 1 .
(0) .o DM v v o P Sv a
=4, P W wvse — AL SYW 4.87
V5o 2 Lvps 2m” % I (4.87)
, and
vses
- legrilyyy, 4.88
L (4.83)
Using the commutation relation (3.38) , conditions (3.39) and (4.82) to be substituted in (4.82) and (4.83)
in order to derive its corresponding set of deviation equations
VI e i g + A, + Lo w1 WYSr 4 A” RAUCE
Tg20)  weet @ Ploy” ’7(”) 2\t Lypo sa © (‘5)77 7
(4.89)
and
@2<—o¢,3 SulB o] v 7P p n, v aaB . Jaqup § a B B a 1)
Sg- = SMPpN, Y IP + AL, Wy Sg + (A, ST S0+ [P(O)W P(O)W ](55)77 . (4.90)
4.3 Spinning and Spinning Deviation Equations Subject to I'S
(i) the case of P_ = mJ
A/ v/ 1 s
L=g,J'=———+5,,= — N psCH ISP+ AL T S”" H 4.91
9u vS- + ,uvs +2m uptsC + C ( )
by taking the variation with respect to ¢® and (*? we obtain
?Ja = A0 MY + LNe rser 4+ LA s st e + gerAL g, 8v7 (4.92)
VS- 2m= "P? o2m” z VO - ’
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and

V;g a_ﬂ = A 87, (4.93)

Using the commutation relation (44), conditions (48) and

Scr=¢ (4.94)

to be substituted in (4.91)and (4.92) in order to derive its corresponding set of deviation equations

ﬁzca « v 14 O( « v 1 (03 1 ag (o8
T 520 =Ng,,J"J CP+AZVJ“J + (A, *T'W +2—NDWJ SP )‘_C (4.95)
and -
\ale -
B = 5B o0l Jver 4 AP TV SOP. 4.96
VSZ(_) P vp C + g C |£ ( )
(ii) the case P_ # mJ
Let us suggest the following Lagrangian:
VEE s VE v &ps &8p Th v 5 ps v
L=g,P'=—— S +8, =—— S +5— ,Wp(;gw SP +2—g A58 PJ’ig +GupGus[ PP T — P2 JPICH, (4.97)
where - -
J,VSH
noo_ i v
P(o) mWH 4 DS
by taking the variation with respect to (¢ and (*? we obtain
VP 1 1 1 -
— = =ZA PtV 4+ —N% JVGrT 4 — AP SOV g% 4.98
S- 2 24 + 2m vpo 2'm 3% £ ( )
and = G
VST Ay teseel gy, (4.99)
VS-

Using commutation relation (3.44) and the conditions (3.48) and (4.93) to be substituted in (4.97) and
(4.98) in order to derive its corresponding set of deviation equations

@24&

1 ~
. = NPTV CP + A7, PECVGE + (A ""‘P“J”+2—L‘j‘ng”S"” AQGS‘;"J"‘)‘ 5C°, (4.100)
and
vies B -nra] v v Gaf [a Gub] 5 o 78 B8 a1 6
S5 = SHPpNE TV JP + AL JECVSST + (A SRS ‘54; +[P*JP — PPJ*],¢°. (4.101)

5 Discussion and Concluding Remarks

The present work is related to extending the concept of geometerization of physics to explain spinning
objects in a gravitational field. It has been developed the modified Bazanski Lagrangian in general
relativity for spinning objects to be expressed in AP-geometry. Due to the wealth of geometric quantities,
one must regard that the existence of spin tensors associated for each path is defined by a specific type of
absolute derivative. Also, we have emphasized the relationship between geodesic and geodesic deviation
with spinning tensors, to be viable for any type of geometries, by testing its reliability in both Riemannian
and AP-geometry. Moreover, the spin tensor has been defined geometrically as a commutation relation

Copyright © 2018 Isaac Scientific Publishing AdAp



148 Advances in Astrophysics, Vol. 3, No. 3, August 2018

between formula between geodesic and geodesic deviation in Riemannian geometry and their counterparts
in AP-geometry.

Accordingly, we have obtained three different spinning equations different from its counterpart in
Riemannian geometry. One of them, can be used to describe the spinning equations and their deviation
in Tele-parallel gravity, i.e. these sets of spinning equations are representing the Papapetrou equation of
Hayshi-Shirifugi New General Relativity [13], while the other two paths may describe, hypnotically, a set
of spinning particles subject to a class of non vanishing curvature and torsion simultaneously. This may
require an efficient field theory feasible to give a physical interpretation of S# and S#*, which is still an
open question.

Nevertheless, equations (4.70) and (4.71) can be applied to examine the motion of neutron stars in
teleparallel gravity, as taken into account their associated field equations as given in [29].

Yet, this study has also clarified the viability interaction between torsion tensor and spin deviation
equations, as mentioned previously in case of Gauge theories of gravity [26].

Nevertheless, these sets of spinning equations can also be applied in PAP-geometry, to give new results.
Owing to revisit, the bi-metric theories of gravity using the tetrad formalism, one may find out some
promising results able to reveal the mystery of several anomalies such as dark matter and dark energy in
our nature, which will be studied in our future work.
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