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Abstract The initial mass function for the stars is often modeled by a lognormal distribution. This
paper is devoted to demonstrating the advantage of introducing a left and right truncated lognormal
probability density function, which is characterized by four parameters. Its normalization constant,
mean, the variance, second moment about the origin and distribution function are calculated. The
chi-square test and the Kolmogorov–Smirnov test are performed on four samples of stars.
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1 Introduction

The initial mass function (IMF) for the stars was firstly fitted with a power law by Salpeter, see [1]. He
suggested p(m) ∝ m−α where p(m) represents the probability of having a mass between m and m+ dm
and he found α = 2.35 in the range 10M� > M ≥ 1M�. Secondly the IMF was fitted with three power
laws, see [2,3,4] and four power laws, see [5,6,7]. The piecewise broken inverse power law IMF is

p(m) ∝ m−αi , (1)

each zone being characterized by a different exponent αi and two boundaries mi and mi+1. In order to
have a probability density function (PDF) normalized to unity, one must have∑

i=1,n

∫ mi+1

mi

cim
−αidm = 1 . (2)

The number of parameters to be found from the considered sample for the n-piecewise IMF is 2n − 1
when m1 and mn+1 are the minimum and maximum of the masses of the sample. In the case of n = 4,
which fits also the region of brown dwarfs (BD), see [8], the number of parameters is seven. In the field of
statistical distributions, the PDF is usually defined by two parameters. Examples of two-parameter PDFs
are: the beta, gamma, normal, and lognormal distributions, see [9]. The lognormal distribution is widely
used in order to model the IMF for the stars, see [10,11,12,13]. The lognormal distribution is defined in
the range ofM ∈ (0,∞) whereM is the mass of the star. Nevertheless, the stars have minimum and
maximum values, as an example from the MAIN SEQUENCE, an M8 star hasM = 0.06M� and an O3
star hasM = 120M�, see [14]. The presence of boundaries for the stars makes attractive the analysis of
a left and right truncated lognormal. In Section 2, the structure of the lognormal distribution is reviewed.
In Section 3, the truncated lognormal distribution is derived. In Section 4.2, a comparison between the
lognormal and truncated lognormal is done on four catalogs of stars. In Section 5, we compare the results
of the truncated lognormal distribution with the double Pareto lognormal, the truncated beta, and the
truncated gamma distributions.

2 The Lognormal Distribution

Let X be a random variable defined in [0,∞]; the lognormal PDF, following [9] or formula (14.2)′ in [15],
is

PDF (x;m,σ) = e−
1

2 σ2 (ln( xm ))2

xσ
√

2π
, (3)
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where m is the median and σ the shape parameter. The distribution function (DF) is

DF (x;m,σ) = 1
2 + 1

2 erf
(

1
2

√
2 (− ln (m) + ln (x))

σ

)
, (4)

where erf(x) is the error function, defined as

erf(x) = 2√
π

∫ x

0
e−t

2
dt , (5)

see [16]. The average value or mean, E(X), is

E(X;m,σ) = me 1
2 σ

2
, (6)

the variance, V ar(X), is
V ar = eσ

2
(

eσ
2
− 1
)
m2 , (7)

the second moment about the origin, E2(X), is

E(X2;m,σ) = m2e2σ2
. (8)

The experimental sample consists of the data xi with i varying between 1 and n; the sample mean, x̄, is

x̄ = 1
n

n∑
i=1

xi , (9)

the unbiased sample variance, s2, is

s2 = 1
n− 1

n∑
i=1

(xi − x̄)2 , (10)

and the sample rth moment about the origin, x̄r, is

x̄r = 1
n

n∑
i=1

(xi)r . (11)

The parameter estimation is here obtained in two ways. The matching moments estimator, (MME), is
the first method:

E(X;m,σ) = x̄1 ; E(X2;m,σ) = x̄2 , (12)

and therefore

m̂ = x̄2
1√
x̄2

σ̂ =
√

2

√
ln
(√

x̄2

x̄1

)
. (13)

The second method implements the maximum-likelihood estimation (MLE), see [9].

3 The Truncated Lognormal Distribution

Let X be a random variable defined in [xl, xu]; the truncated lognormal PDF (PDFT ) is

PDFT (x;m,σ, xl, xu) =
√

2e−
1
2

1
σ2 (ln( xm ))2

−
√
πσ
(

erf
(

1
2

√
2
σ ln

(
xl
m

))
− erf

(
1
2

√
2
σ ln

(
xu
m

)))
x

, (14)
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where m is now the scale parameter, σ is the shape parameter, xl denotes the minimal value, and xu
denotes the maximal value. The introduction of the following coefficients allows a compact notation

a1 = 1
2

√
2
(
−σ2 + ln (xl)− ln (m)

)
σ

,

a2 = 1
2

√
2
(
σ2 + ln (m)− ln (xu)

)
σ

,

a3 = 1
2

√
2 (ln (xl)− ln (m))

σ
,

a4 = 1
2

√
2 (− ln (xu) + ln (m))

σ
,

a5 = 1
2

√
2
(
−2σ2 + ln (xl)− ln (m)

)
σ

,

a6 = 1
2

√
2
(
2σ2 + ln (m)− ln (xu)

)
σ

,

a7 = 1
2

√
2
(
−2σ2 + ln (xu)− ln (m)

)
σ

,

a8 = 1
2

√
2 (ln (xu)− ln (m))

σ
.

In the compact notation the PDF is

PDFT (x;m,σ, xl, xu) = −
√

2e−
1
2

1
σ2 (ln( xm ))2

√
πσ (erf (a3)− erf (a8))x

, (15)

the DF is

DFT (x;m,σ, xl, xu) =
−erf

(
1
2

√
2
σ ln

(
x
m

))
+ erf (a3)

erf (a3)− erf (a8) , (16)

the mean, E(X)T , is

ET (X;m,σ, xl, xu) = e 1
2 σ

2
m (erf (a1) + erf (a2))
erf (a3) + erf (a4) , (17)

the variance, V arT (X), is

V arT (X;m,σ, xl, xu) = N

(erf (a3) + erf (a4))2 , (18)

where

N = eσ
2
(

erf(a3)erf(a5)eσ
2

+ erf(a3)erf(a6)eσ
2

+ erf(a4)erf(a5)eσ
2

(19)

+erf(a4)erf(a6)eσ
2
− (erf(a1))2 − 2 erf(a1)erf(a2)− (erf(a2))2

)
m2 , (20)

the second moment about the origin, E2
T (X), is

ET (X2;m,σ, xl, xu) = −e2σ2
m2 (−erf (a5) + erf (a7))
erf (a3) + erf (a4) . (21)

The two parameters xl and xu are the minimal and maximal elements of the sample. The two parameters
m and σ can be found through the MME, first method

ET (X;m,σ, xl, xu) = x̄1 ; ET (X2;m,σ, xl, xu) = x̄2 . (22)

The above system consists in two non-linear functions in two variables and can therefore be solved using
the Powell hybrid method, see subroutine FORTRAN SNSQE in [17]. The second method implements
the MLE in order to find m and σ, see Appendix 6.
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4 Application to the Stars

This section reviews some useful statistical parameters, such as the merit function χ2, the Akaike
information criterion, and the Kolmogorov–Smirnov test. The four samples of stars which test the
truncated lognormal distribution are introduced.

4.1 The Adopted Statistics

The merit function χ2 is computed according to the formula

χ2 =
n∑
i=1

(Ti −Oi)2

Ti
, (23)

where n is the number of bins, Ti is the theoretical value, and Oi is the experimental value represented
by the frequencies. The theoretical frequency distribution is given by

Ti = N∆xip(x) , (24)

where N is the number of elements of the sample, ∆xi is the magnitude of the size interval, and p(x)
is the PDF under examination. The size of the bins, ∆xi, is equal for each bin in the the case of linear
histograms, but different for each bin when logarithmic histograms are considered.

A reduced merit function χ2
red is evaluated by

χ2
red = χ2/NF , (25)

where NF = n− k is the number of degrees of freedom, n is the number of bins, and k is the number of
parameters. The goodness of the fit can be expressed by the probability Q, see equation 15.2.12 in [18],
which involves the degrees of freedom and χ2. According to [18] p. 658, the fit “may be acceptable” if
Q > 0.001.

The Akaike information criterion (AIC), see [19], is defined by

AIC = 2k − 2ln(L) , (26)

where L is the likelihood function and k the number of free parameters in the model. We assume a
Gaussian distribution for the errors and the likelihood function can be derived from the χ2 statistic
L ∝ exp(−χ

2

2 ) where χ2 has been computed by eqn. (23), see [20], [21]. Now the AIC becomes

AIC = 2k + χ2 . (27)

The Kolmogorov–Smirnov test (K–S), see [22,23,24], does not require binning the data. The K–S test,
as implemented by the FORTRAN subroutine KSONE in [18], finds the maximum distance, D, between
the theoretical and the astronomical DF as well the significance level PKS , see formulas 14.3.5 and 14.3.9
in [18]; if PKS ≥ 0.1, the goodness of the fit is believable.

4.2 The Selected Sample of Stars

The test samples are selected from the Centre de Données astronomiques de Strasbourg (CDS) in order to
ensure that the test can be easily reproduced, the name of the catalog is reported. The first test is performed
on the low-mass IMF in the young cluster NGC 6611, see [25] and CDS catalog J/MNRAS/392/1034.
This massive cluster has an age of 2–3 Myr and contains masses from 1.5M� > M ≥ 0.02M�. Therefore
the brown dwarfs (BD) region, ≈ 0.2M� is covered. Table 1 shows the values of χ2

red, the AIC, the
probability Q, of the fits and the two results of the K–S test: the maximum distance, D, between the
theoretical and the astronomical DF as well the significance level PKS . Figure 1 shows the fit with the
truncated lognormal DF for NGC 6611, and Figure 2 the truncated lognormal PDF.

The second test is performed on NGC 2362 where the 271 stars have a range 1.47M� > M ≥ 0.11M�,
see [26] and CDS catalog J/MNRAS/384/675/table1. This is a very young open cluster with an estimated
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Figure 1. Empirical DF of mass distribution for NGC 6611 cluster data (207 stars + BDs) when the number of
bins, n, is 20 (steps with full line) with a superposition of the truncated lognormal DF (dashed line). Theoretical
parameters as in Table 1, MLE method. The horizontal axis has a logarithmic scale.

Figure 2. Frequencies of mass distribution for NGC 6611 cluster data (steps with full line) with a superposition
of the truncated lognormal PDF (full line). Parameters as in Figure 1. The vertical and horizontal axes have a
logarithmic scale.
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Figure 3. Empirical DF of mass distribution for NGC 2362 cluster data (273 stars + BDs) when the number of
bins, n, is 20 (steps with full line) with a superposition of the truncated lognormal DF (dashed line). Theoretical
parameters as in Table 2, MLE method. The horizontal axis has a logarithmic scale.

Figure 4. Frequencies of mass distribution for NGC 2362 cluster data (steps with full line) with a superposition
of the truncated lognormal PDF (full line). Parameters as in Figure 3. The vertical and horizontal axes have a
logarithmic scale.
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Table 1. Statistical parameters of NGC 6611 (207 stars + BDs). The number of linear bins, n, is 20.

PDF Method parameters AIC χ2
red Q D PKS

lognormal MLE σ=1.029, m=0.284 71.24 3.73 1.3 10−7 0.09366 0.04959
lognormal MME σ=0.676, m=0.339 107.46 5.74 5.1 10−14 0.172 6.7 10−6

truncated lognormal MLE σ=1.499, m=0.478, xl=0.0189, xu=1.46 50.96 2.68 2.8 10−4 0.0654 0.372
truncated lognormal MME σ=0.977, m=0.361, xl=0.0189, xu=1.46 71.30 3.95 1.43 10−7 0.117 0.005

Table 2. Statistical parameters of NGC 2362 (272 stars). The number of linear bins, n, is 20.

PDF Method parameters AIC χ2
red Q D PKS

lognormal MLE σ=0.507, m=0.574 37.64 1.86 0.013 0.072 0.105
lognormal MME σ =0.428, m=0.588 51.66 2.648 1.68 10−4 0.0842 0.039

truncated lognormal MLE σ=0.59, m= 0.625, xl=0.119, xu=1.47 50.498 2.656 3.33 10−4 0.047 0.556
truncated lognormal MME σ=0.521, m=0.612, xl=0.119, xu=1.47 46.05 2.37 1.4 10−3 0.048 0.525

age of 3–9 Myr. Table 2 reports the statistical parameters, Figure 3 shows the fit with the truncated
lognormal DF of NGC 2362 and Figure 4 the fit with the truncated lognormal PDF.

The third test is performed on a 40′ circular field in the LMC made by 1563 stars in the range
of masses, evaluated assuming an age of 4 Myr, 54M� > M ≥ 5M�, see [27] and CDS catalog
J/ApJ/425/122/table2. Table 3 reports the statistical parameters. Figures 5 and 6 shows the fit with the

Table 3. Statistical parameters of a circular field in the LMC (1563 stars). The number of linear bins, n, is 20.

PDF Method parameters AIC χ2
red Q D PKS

lognormal MLE σ=0.533, m= 13.84 139.32 7.51 5.07 10−20 0.0981 1.38 10−13

lognormal MME σ=0.554, m= 13.80 122.07 6.55 9.6 10−17 0.0884 4.02 10−11

truncated lognormal MLE σ=0.64, m= 12.9, xl=5, xu=54 94.90 5.43 9.25 10−12 0.073 8.24 10−8

truncated lognormal MME σ=0.7, m=12.36, xl=5, xu=54 102.6 5.91 3.51 10−13 0.0895 2.25 10−11

truncated lognormal DF and PDF respectively.
The fourth test is performed on γ Velorum cluster where the 237 stars have a range 1.31M� > M ≥

0.15M�, see [28] and CDS catalog J/A+A/589/A70/table5. This cluster is consists of 5–10 Myr old
premain sequence stars. The statistical parameters are reported in Table 4, Figures 7 and 8 report the
truncated lognormal DF and PDF respectively.

Table 4. Statistical parameters of γ Velorum cluster (237 stars). The number of linear bins, n, is 20.

PDF Method parameters AIC χ2
red Q D PKS

lognormal MLE σ=0.504, m= 0.337 55.13 2.84 5.08 10−5 0.0921 0.0334
lognormal MME σ=0.564, m= 0.331 52.47 2.69 1.2 10−4 0.099 0.017

truncated lognormal MLE σ=0.805, m= 0.227 30.54 1.4 0.126 0.052 0.509
truncated lognormal MME σ=0.504, m= 0.337 38.1 2.38 1.4 10−3 0.131 4.8 10−3

5 Other New Distributions

As an initial astronomical reference, we display a piecewise broken inverse power law PDF, see Figure 9
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Figure 5. Empirical DF of mass distribution for 1563 stars in LMC when the number of bins, n, is 20 (steps with
full line) with a superposition of the truncated lognormal distribution (dashed line). Theoretical parameters as in
Table 3, MLE method. The horizontal axis has a logarithmic scale.

Figure 6. Frequencies of mass distribution for 1563 stars in LMC (steps with full line) with a superposition of
the truncated lognormal PDF (full line). Parameters as in Figure 5. The vertical and horizontal axes have a
logarithmic scale.
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Figure 7. Empirical DF of mass distribution for 237 stars in γ Velorum cluster when the number of bins, n, is 20
(steps with full line) with a superposition of the truncated lognormal DF (dashed line). Theoretical parameters as
in Table 4, MLE method. The horizontal axis has a logarithmic scale.

Figure 8. Frequencies of mass distribution for 237 stars in γ Velorum cluster (steps with full line) with a
superposition of the truncated lognormal PDF (full line). Parameters as in Figure 7. The vertical and horizontal
axes have a logarithmic scale.
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Figure 9. Frequencies of mass distribution for NGC 2362 cluster data (273 stars + BDs) when the number of
bins, n, is 16 (steps with full line) with a superposition of the four piecewise inverse power law PDF (full line).
Theoretical parameters as in Table 5. The vertical and horizontal axes have a logarithmic scale.

We now report three recent PDFs. The first is the double Pareto lognormal distribution which has
PDF

f(x;α, β, µ, σ) = 1
2 αβ (e 1

2 α (ασ2+2µ−2 ln(x))erfc(1
2

(ασ2 + µ− ln(x))
√

2
σ

)

+e 1
2 β (β σ2−2µ+2 ln(x))erfc(1

2
(β σ2 − µ+ ln(x))

√
2

σ
))x−1(α+ β)−1, (28)

where α and β are the Pareto coefficients for the upper and the lower tail, respectively, µ and σ are the
lognormal body parameters, and erfc is the complementary error function, see [29]. The mean ( for α > 1
) can be expressed as

E(α, β, µ, σ) = αβ eµ+ 1
2 σ

2

(α− 1) (β + 1) . (29)

This PDF exhibits a power law behaviour in both tails

f(x) ∼ k1 x
−α−1(x→∞) ; f(x) ∼ k2 x

β−1(x→ 0) , (30)

where k1 and k2 are two constants. Figures 10 and 11 report the double Pareto lognormal DF and PDF
respectively.

The second is the left truncated beta with scale PDF which is

fT (x; a, b, α, β) = K xα−1 (b− x)β−1
, (31)

where the constant is
K = −αΓ (α+ β)

bβ−1H aαΓ (α+ β)− bβ−1+αΓ (1 + α)Γ (β) , (32)

and
H = 2F1(α,−β + 1; 1 + α; a

b
) , (33)

where 2F1(a, b; c; z) is the regularized hypergeometric function [30], see [8]. Figure 12 reports the DF
and Figure 13 the PDF.
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Figure 10. Empirical DF of mass distribution for NGC 2362 cluster data (273 stars + BDs) when the number of
bins, n, is 16 (steps with full line) with a superposition of the double Pareto lognormal DF (full line). Theoretical
parameters as in Table 5. The horizontal axis has a logarithmic scale.

Figure 11. Frequencies of mass distribution for NGC 2362 cluster data (273 stars + BDs) when the number of
bins, n, is 16 (steps with full line) with a superposition of the double Pareto lognormal PDF (full line). Theoretical
parameters as in Table 5. The vertical and horizontal axes have a logarithmic scale.
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Figure 12. Empirical DF of mass distribution for NGC 2362 cluster data (273 stars + BDs) when the number
of bins, n, is 20 (steps at full line) with a superposition of the left truncated beta DF (full line). Theoretical
parameters as in Table 5. The horizontal axis has a logarithmic scale.

Figure 13. Frequencies for mass distribution in NGC 2362 cluster with (full line steps) and left truncated beta
PDF. Parameters as in Figure 12. The vertical and horizontal axes have a logarithmic scale.
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The third is the truncated gamma (TG) PDF which is

f(x; b, c, xl, xu) = k
(x
b

)c−1
e− xb (34)

where the constant k is

k = c

bΓ
(
1 + c, xlb

)
− bΓ

(
1 + c, xub

)
+ e− xub b−c+1xuc − e−

xl
b b−c+1xlc

, (35)

where
Γ (a, z) =

∫ ∞
z

ta−1e−tdt, (36)

is the upper incomplete gamma function, see [31].

Figure 14. Empirical DF of mass distribution for NGC 2362 cluster data (273 stars + BDs) when the number
of bins, n, is 18 (steps at full line) with a superposition of the truncated gamma DF (full line). Theoretical
parameters as in Table 5. The horizontal axis has a logarithmic scale.

Figure 14 reports the truncated gamma DF and Figure 15 the truncated gamma PDF. Table 5 reports
the parameters of these three new PDFs as well as the parameters of the truncated lognormal in the case
of NGC 2362. can be found Figure 16 displays all the PDFs here analysed.

Table 5. Statistical parameters of NGC 2362 (272 stars) for different distributions

PDF parameters D PKS

truncated lognormal σ=0.59, m= 0.625, xl=0.119, xu=1.47 0.047 0.556
truncated gamma b = 0.159, c = 4, xl=0.12, xu=1.47 0.067 0.158

double Pareto-lognormal α=5, β=2, σ=0.207, µLN =-0.25 0.05 0.471
left truncated beta a = 0.12, b =1.47, α = 2.18, β=2.93 0.048 0.53
four inverse power law m1 = 0.11, m2 = 0.22, m3 = 0.41, m4 = 0.78, m5 = 1.47 0.081 0.052

α1 = −1.2 , α2 = −1.98, α3 = 0.12, α4 = 4.57
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Figure 15. Frequencies of mass distribution for NGC 2362 cluster data (273 stars + BDs) when the number
of bins, n, is 18 (steps at full line) with a superposition of the truncated gamma PDF (full line). Theoretical
parameters as in Table 5. The vertical and horizontal axes have a logarithmic scale.

Figure 16. Histogram (black step-diagram) of mass distribution as given by NGC 2362 cluster data (273 stars
+BDs ) with a superposition of the truncated gamma PDF (full red line), the lognormal PDF (dashed green line ),
the truncated lognormal PDF (dot-dash-dot-dash blue line), the truncated beta PDF (dotted cyan line) and the
double Pareto lognormal PDF (dash-dot-dot-dot magenta line). Vertical and horizontal axes have logarithmic
scales.
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6 Conclusions

The truncated lognormal distribution gives better results, i.e. higher PKS , than the lognormal distribution,
see Tables 1, 2, 3 and 4. for the samples here considered. The lower and upper boundaries in mass are
connected with the physical theories on the minimum and maximum mass for the stars. Fisher’s conjecture
(see [32]) that statistical parameters are better inferred through the maximum likelihood estimator (MLE)
than through the matching of moments estimator (MME) is also tested: in eight cases out of eight, the
MLE produces better results, see Tables 1, 2, 3 and 4. The comparison of the truncated lognormal DF
with other DFs assigns the best results to the truncated lognormal, i.e. higher PKS , even if the difference
from the double Pareto lognormal is small, see Table 5.

The number of free parameters of the truncated lognormal PDF is two once the lower and upper
boundary are associated with the minimum and maximum mass of the considered sample, see 6 for the
MLE method. In contrast, the number of parameters of the widely used four-piecewise broken inverse
power law IMF is seven.

Appendix: The Parameters of the Truncated Lognormal

The parameters of the truncated lognormal distribution can be obtained from empirical data by the
maximum likelihood estimators (MLE) and by the evaluation of the minimum and maximum elements
of the sample. Consider a sample X = x1, x2, . . . , xn and let x(1) ≥ x(2) ≥ · · · ≥ x(n) denote their order
statistics, so that x(1) = max(x1, x2, . . . , xn), x(n) = min(x1, x2, . . . , xn). The first two parameters xl and
xu are

xl = x(n), xu = x(1) . (37)

The MLE is obtained by maximizing

Λ =
n∑
i

ln(TL(xi;m,σ, xl, xu)). (38)

The two derivatives ∂Λ
∂m = 0 and ∂Λ

∂σ = 0 generate two non-linear equations in m and σ which can be
solved numerically, we used FORTRAN subroutine SNSQE in [17],

∂Λ

∂m
= (erf(1

2

√
2(ln(xl)− ln(m))

σ
)− erf(1

2

√
2(ln(xu)− ln(m))

σ
))

(n
√

2σ e−
1
2

(ln(xl)−ln(m))2

σ2 − n
√

2σ e−
1
2

(ln(xu)−ln(m))2

σ2

−
√
π(erf(1

2

√
2(ln(xl)− ln(m))

σ
)

−erf(1
2

√
2(ln(xu)− ln(m))

σ
))(n ln(m)−

n∑
i=1

ln(xi))) = 0 , (39)

and

∂Λ

∂σ
= N

D
= 0, (40)
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where

N = ln (xu)
√

2e−
1
2

(ln(xu)−ln(m))2

σ2 nσ − ln(xl)
√

2e−
1
2

(ln(xl)−ln(m))2

σ2 nσ

+
√

2e−1/2 (ln(xl)−ln(m))2

σ2 ln(m)nσ −
√

2e−
1
2

(ln(xu)−ln(m))2

σ2 ln(m)nσ

+n(ln(m))2√πerf(1
2

√
2(ln(xu)− ln(m))

σ
)

−nσ2√πerf(1
2

√
2(ln(xu)− ln(m))

σ
)

−n(ln(m))2√πerf(1
2

√
2(ln(xl)− ln(m))

σ
)

+nσ2√πerf(1
2

√
2(ln(xl)− ln(m))

σ
)

+
n∑
i=1

ln(xi)(ln(xi)− 2 ln(m))
√
πerf(1

2

√
2(ln(xu)− ln(m))

σ
)

−
n∑
i=1

ln(xi)(ln(xi)− 2 ln(m))
√
πerf(1

2

√
2(ln(xl)− ln(m))

σ
) , (41)

D =
√
π

(
− erf

(
1
2

√
2(ln(xl)− ln(m))

σ

)

+erf
(

1
2

√
2(ln(xu)− ln(m))

σ

))
σ3 . (42)
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