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Abstract The stability properties, dynamical processes and factors affecting these are very im-
portant aspects to describing the behaviour of a dynamical system because these play a significant
role in the study of their past evolution. The present article discuss about the existence of collinear
equilibrium points, their computation and stability analysis in the Chermnykh-Like problem under
the influence of perturbations in the form of radiation pressure, oblateness and a disc. In the
presence of the disc, there exists a new collinear equilibrium point in addition to the three points
of the classical problem. We examine the linear stability of the collinear equilibrium points with
respect to disc’s outer radius b instead of mass parameter µ and it is found that all the collinear
equilibrium points are unstable except L3 which is stable for b ∈ (1.3312, 1.5275) provided that
remaining parameters are fixed. Further, we obtain stability regions and perturbed mass ratio in the
case of three main resonances for L3 under appropriate approximations. We analyze the effect of the
perturbations numerically and it is observed that they significantly affect the motion of infinitesimal
mass. The results are limited up to the regular symmetric disc and the radiation effect of the bigger
primary but further it can be extended for more generalized cases.
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1 Introduction

A significant development in the field of nonlinear dynamics and recent advancement in technologies to
observe the solar system have attracted a number of researchers toward the study about dynamics of
the celestial bodies in the form of different celestial problems. Among these, a well known problem is
Chermnykh-like problem which is also known as modified Chermnykh’s problem. Chermnykh problem
was first time studied by [1] hence, the name. This problem consists of the motion of a particle in the
gravity field of a uniform rotating dumbbell. Chermnykh-like problem generalizes two classical problem
of the celestial mechanics known as two fixed center problem and the restricted problem of three body.
Existence of a disc or belt like structure in the problems of celestial mechanics is a common phenomenon.
For example, in the solar system there are asteroid belt and Kuiper belt [2], [3], in the extra- solar
planetary systems the disc of dust [4], [5], [6] and circumbinary rings in case of binary system [7]. The
disc or belt-like structure affects the dynamical evolution of these systems. It can change the location
of equilibrium points and also the orbital behaviors. The influence of the belt for planetary system is
observed by [2], [3] and found that probability of equilibrium points is larger, near the inner part of the
belt than outer one. Different aspects of the problem with and without disc are studied by many authors
as [8], [9], [10], [7], [11], [12], [13], [14], [15], [16] etc., under some assumptions on mass parameter and
angular velocity of the system. They have found that at the mass parameter µ = 0.5, there is a deviation
in classical results [10], whereas in the presence of a belt, there exist new equilibrium points [7], [13],
called Jiang-Yeh points [14], [17], [18]. Moreover, it is also observed that analysis of linear stability is
different [10].

The classical problem has no more existence when the massive bodies interact under the influence of
perturbations in the form of radiation pressure and oblateness of the primaries. In the solar system as
well as in the extra solar planetary system, there are several dynamics problems where it is inadequate to
consider only gravitational field. For example, when a radiating body i.e. star in the space, acts upon an
infinitesimal mass in a cloud of dust or gas then in addition to gravitational force due to star, radiation
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pressure force [19] and drag forces also work there. Thus, problem is modified by superimposing a repulsive
field due to radiation whose source is same as of gravitational field. On the other hand, unlike to classical
problem, it is assumed that masses are not spherically symmetrical in homogeneous layer because there
are several celestial bodies (Saturn, Jupiter, Earth etc.) which are sufficiently oblate. In literature, a
number of researchers as [20], [21], [22], [23], [24], [25], [13], [26], [14] etc. have studied different aspects of
restricted three body problem (RTBP), by taking one or both primary as source of radiation or oblate
spheroid or both and have discussed their effects on the motion of infinitesimal mass. [27] have found
non-linear stability zones around triangular equilibrium point in the RTBP with oblateness. [11], [12] have
studied generalized photogravitational Chermnykh-like problem with P-R drag and found that triangular
points are stable under Routh’s condition but collinear equilibrium points are unstable whereas, [28] have
discussed about linear stability of triangular equilibrium point and resonances. [15] analyze the influence
of radiation pressure on the nature of orbits whereas, [16] discuss the combined effects of oblateness,
radiation and power-law profile.

Authors are interested in the problem due to a number of recent applications in addition to past one,
in different areas such as celestial mechanics, chemistry and extra solar planetary system [29], [4], [5],
[2]. Since, the collinear equilibrium points play a crucial role in space dynamics. For example, collinear
point L1 of the Sun-Earth system is home to the SOHO spacecraft and L2 point is the home of WMAP
Spacecraft and James Wave Space Telescope, moreover, many important missions of NASA are considered
in the basin of these collinear points [30]. Hence, authors are much interested in the analysis of linear
stability of the collinear equilibrium points.

Present paper is organized as follows: existence and determination of the collinear equilibrium points
are described in section-3 after formulation of the model as in section-2. Analysis of linear stability and
resonance cases, in the vicinity of collinear equilibrium points under the influence of perturbations, are
presented in section-5 and section-4, respectively. All the numerical as well as algebraic computation
have performed with the help of MATHEMATICA [31] software package. For numerical treatment, we
have used following values of parameters: Mass parameter (µ) = 9.53728 × 10−4 of the Sun-Jupiter
system; mass reduction factor (q1) = 0.9985 and oblateness coefficients A2 = 0.03; total mass of the disc
(Mb) = 0.02 [14] which is obtained by taking disc’s inner radius (a) = 1.30 and outer radius (b) = 1.33,
respectively with thickness of the disc (h) = 0.0001 and control factor of density profile (c) = 1910.83 of
the disc, whereas to observed the effects of perturbations, we have taken appropriate parametric values in
the neighborhood of above mentioned values. Finally, paper is concluded in section- 6.

2 Equations of Motion

We consider Chermnykh-like problem under the influence of perturbations in the form of radiation pressure
(first primary), oblateness (second primary) and a disc with power law density profile which is rotating
about the common center of mass of the system. Units of distance and mass are taken as the distance
between both the primaries and sum of their masses, respectively whereas, unit of time is taken as time
period of the rotating frame. Suppose P (x, y, 0), A(−µ, 0, 0) and B(1 − µ, 0, 0) be the co-ordinates of
infinitesimal mass, first primary and second primary respectively, with respect to a rotating frame, where
µ = MP

MS+MP
is the mass parameter (MS and MP are masses of the Sun and the Planet, respectively).

Thus, equations of motion of the infinitesimal mass in xy-plane, are written as in [13]:

ẍ− 2nẏ = Ux, (1)
ÿ + 2nẋ = Uy, (2)

where Ux = n2x− (1− µ)q1(x+ µ)
r3

1
− µ(x+ µ− 1)

r3
2

− 3µA2(x+ µ− 1)
2r5

2
+ x

r
fb(r), (3)

Uy = n2y − (1− µ)q1y

r3
1

− µy

r3
2
− 3µA2y

2r5
2

+ y

r
fb(r), (4)

with r1 =
√

(x+ µ)2 + y2, r2 =
√

(x+ µ− 1)2 + y2, r =
√
x2 + y2. Mean motion of the system n =√

q1 + 3
2A2 − 2fb(r) with mass reduction factor q1 = (1− Fp

Fg
) [19], where Fp and Fg are the radiation
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pressure and gravitational forces of the radiating body, respectively. Oblateness A2 = R2
e−R

2
p

5R2 [32], where
Re and Rp are equatorial and polar radii of oblate body, respectively and R is distance between both the
primary. Gravitational force due to the disc is given as in [10]:

fb(r) = −2
∫
r′

ρ(r′)r′

r

[
E(ξ)
r − r′

+ F (ξ)
r + r′

]
dr′, (5)

where F (ξ) and E(ξ) are elliptic integrals of first and second kind, respectively with ξ = 2
√
rr′

r+r′ and r
′ is

the disc reference radius. It is supposed that the power law density profile of the disc having thickness
h ≈ 10−4, is ρ(r) = c

rp , where p ∈ N, (in particular, we take p = 3) and c is a constant which depends
on total mass of the disc. Series expansion of elliptic integrals F (ξ) and E(ξ) over a ≤ r′ ≤ b with an
appropriate approximation yields

fb(r) = −πch
[

2(b− a)
abr2 +

3 log( ba )
8r3

]
, (6)

where a, b are inner and outer radii of the radially symmetric disc, respectively.

3 Collinear Equilibrium Points

Equilibrium point is a point at which velocity and hence, acceleration of the infinitesimal body vanishes.
Thus, keeping in mind ẋ = 0 = ẏ = ẍ = ÿ, we obtain the equilibrium point of the problem by solving
equations (1-2) i.e. Ux = 0 = Uy, for x and y simultaneously. In other words,

Ux = n2x− q1(1− µ)(x+ µ)
r3

1
−
(

1 + 3A2

2r2
2

)
µ(x+ µ− 1)

r3
2

− πch

[
2(b− a)
abr3 +

3 log( ba )
8r4

]
x = 0, (7)

Uy = n2y − (1− µ)q1y

r3
1

−
(

1 + 3A2

2r2
2

)
µy

r3
2
− πch

[
2(b− a)
abr3 +

3 log( ba )
8r4

]
y = 0. (8)

From equation (8), it is obvious that either y = 0 or remaining factor is equal to zero. If y = 0 then
equilibrium points are called as collinear equilibrium points which lie on the line joining primaries. If
y 6= 0 then these points known as triangular equilibrium points.

As we are interested in collinear points, therefore, y = 0 and hence, equation (8) is unimportant. Let
Ux(y = 0) = K(x), then from equation (7), we get

K(x) = n2x− (1− µ)q1(x+ µ)
|x+ µ|3

− µ(x+ µ− 1)
|x+ µ− 1|3 −

3µA2(x+ µ− 1)
2|x+ µ− 1|5

−πch

[
2(b− a)
ab|x|3

+
3 log( ba )

8|x|4

]
x = 0. (9)

Three possible positions (say x), of the infinitesimal mass on the line joining the primaries are as follows:
(1) (1− µ) < x <∞, (2) − µ < x < (1− µ) and (3) −∞ < x < −µ. For the simplicity, we have divided
interval (2) in to two sub intervals: 0 < x < (1 − µ) and −µ < x < 0. Hence, there are four cases to
analyze the collinear equilibrium points.

In case (1), where x ∈ (1− µ, ∞), we have x+ µ− 1 > 0 and x+ µ > 0. Therefore, from equation (9),
we find that limx→(1−µ)+ K(x) < 0, limx→∞− K(x) > 0 (Fig. 1a) and K ′(x) > 0 (Fig. 1b) which shows
that the function K(x) is an increasing function of x having distinct sign in the interval 1− µ < x <∞
this implies that there exists a point xL2 (say), in (1 − µ, ∞) such that K(xL2) = 0. Similarly, in
case (2), when x ∈ (0, 1 − µ), then x + µ − 1 < 0 and x + µ > 0. Thus, from equation (9) we get,
limx→0+ K(x) < 0, limx→(1−µ)− K(x) > 0 (Fig. 2a) and K ′(x) > 0 for all x ∈ (0, 1− µ) (Fig. 2b) and
hence, there exists a point (say) xL1 ∈ (0, 1− µ) such that K(xL1) = 0. Next, when x ∈ (−µ, 0), then
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Figure 1. Collinear equilibrium point L2: (a) K(x) vs x and (b) K′(x) vs x.
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Figure 2. Collinear equilibrium point L1: (a) K(x) vs x and (b) K′(x) vs x.
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Figure 3. Collinear equilibrium point JY 1: (a) K(x) vs x and (b) K′(x) vs x.
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Figure 4. Collinear equilibrium point L3: (a) K(x) vs x and (b) K′(x) vs x.
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Figure 6. Real and imaginary components of the roots of the characteristic equation in space λj − b for collinear
equilibrium points (a) L1 and (b) L3.
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Figure 7. Stability region of collinear equilibrium point L3 in the space µ − A2 and the resonance curves
ω1 − κω2 = 0, κ = 1, 2, 3. (a) without radiation effect and (b) with radiation effect.
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Figure 8. Stability region of collinear equilibrium point L3 in the space µ− ε and the resonance curves ω1−κω2 =
0, κ = 1, 2, 3. (a) without oblateness and (b) with oblateness.

we again have x+ µ− 1 > 0 and x+ µ > 0 but x is negative and less than µ. Therefore, from equation
(9) we have, limx→0− K(x) < 0, limx→−µ− K(x) > 0 (Fig. 3a) and K ′(x) > 0 for all x ∈ (−µ, 0) (Fig.
3b). Hence, there exists a point (say) x = xJY 1 ∈ (−µ, 0) for which K(xJY 1) = 0. Finally, in case (3)
where x ∈ (−∞, −µ), we have x+ µ− 1 < 0 and x+ µ < 0. Thus, again from equation (9), we obtain
limx→−µ− K(x) > 0, limx→−∞+ K(x) < 0 (Fig. 4a) and K ′(x) have different sign for all x ∈ (−∞, −µ)
(Fig. 4b). So, there exists a point (say) xL3 ∈ (−∞, −µ) such that K(xL3) = 0. The numerical values of
the collinear equilibrium points are computed at different values of parameter and results are displayed in
Table 1.

From Table 1, it is clear that the positions of collinear points L1, L2 and L3 have tendency to
move towards origin with increment in the value of b, but when q1 increases, L1 and L3 (except L3 for
a = b = 1.30) move away from the origin, whereas L2 shifts toward origin. Again, when A2 increases L1
and L3 move toward origin but L2 goes away from origin. On the other hand, new collinear point JY 1
depends significantly on the disc’s outer radius b and has tendency to move away from the center of mass
of the system, whereas influence of q1 and A2 on JY 1 is very less. A slight change in the position of JY 1
with q1 is seen after fifth places of the decimal, whereas changes in the position of JY 1 with A2 is not
seen even up to ninth places of the decimal (Table 1). Hence, we can say that the existence of JY 1 is due
to the presence of the disc in the system.

4 Stability Analysis

In the previous section we have obtained equilibrium points. The next task is to examine the stability
of these points. For this, in general, it is enough to observe the shape of the effective potential and
find out, if the points occur at hills, valley or saddles. However, this criterion fails due to presence of
velocity dependent term in the effective potential. Instead, we must perform a linear stability test in the
neighborhood of each equilibrium point. The motion of infinitesimal body about an equilibrium point is
said to be stable if given a small displacement with a very small velocity to the infinitesimal body then it
should oscillate for considerable time around that equilibrium point. If the infinitesimal body departs from
that point for time t > 0 then the motion is said to be unstable. In other words, to insure the stability,
displacement and velocity should be bounded functions of time in the vicinity of equilibrium point. The
stability analysis of collinear equilibrium points is very important for the space observations. As, one of
the important consideration of NASA missions, is the stability of collinear points, specially L1 andL2
points of the Earth-Sun system. Therefore, we are interested in discussing the collinear equilibrium points
under the frame of Sun-Jupiter system in the presence perturbations.

Since, all collinear equilibrium points are unstable with respect to the mass parameter µ, alike in
classical case i.e. when perturbations are ignored (because of existence of at least one positive real root or
at least one complex root with positive real part of the characteristic equation in the vicinity of collinear
equilibrium points) but the effect of µ in addition to other parameters (q1, A2 and b) on the stability
property, is remains there. In this article, we have analyzed the stability of the points with respect to the
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Table 1. Positions of collinear equilibrium points at different values of parameters q1, A2 and b.

Points q1 A2 b = 1.30 b = 1.32 b = 1.34 b = 1.36

xL2 1.0 0.0 1.06883 1.06354 1.05920 1.05558
0.02 1.10426 1.10080 1.09783 1.09526
0.03 1.11073 1.10742 1.10455 1.10205

0.9985 0.0 1.06886 1.06357 1.05922 1.05560
0.02 1.10430 1.10083 1.09786 1.09528
0.03 1.11076 1.10745 1.10458 1.10207

0.9 0.0 1.07138 1.06552 1.06076 1.05685
0.02 1.10661 1.10278 1.09953 1.09674
0.03 1.11306 1.10942 1.10629 1.10358

xL1 1.0 0.0 0.93237 0.93105 0.92975 0.92846
0.02 0.89435 0.89370 0.89305 0.89241
0.03 0.88646 0.88585 0.88526 0.88469

0.9985 0.0 0.93234 0.93102 0.92971 0.92842
0.02 0.89432 0.89366 0.89301 0.89237
0.03 0.88462 0.88581 0.88522 0.88465

0.9 0.0 0.93005 0.92861 0.92719 0.92579
0.02 0.89177 0.89105 0.89035 0.88966
0.03 0.88368 0.88302 0.88238 0.88176

xL3 1.0 0.0 -1.00040 -0.99450 -0.98909 -0.98411
0.02 -0.99060 -0.98510 -0.98005 -0.97539
0.03 -0.98584 -0.98053 -0.97565 -0.97114

0.9985 0.0 -1.00040 -0.99449 -0.98968 -0.98409
0.02 -0.99058 -0.98508 -0.98002 -0.97536
0.03 -0.98581 -0.98050 -0.97561 -0.97111

0.9 0.0 -1.00041 -0.99388 -0.98792 -0.98247
0.02 -0.98954 -0.98350 -0.97798 -0.97292
0.03 -0.98428 -0.97847 -0.97315 -0.96828

xJY 1 1.0 0.0 — -0.000663038 -0.000720185 -0.000750235
0.02 — -0.000663038 -0.000720185 -0.000750235
0.03 — -0.000663038 -0.000720185 -0.000750235

0.9985 0.0 — -0.000663170 -0.000720303 -0.000753440
0.02 — -0.000663170 -0.000720303 -0.000753440
0.03 — -0.000663170 -0.000720303 -0.000753440

0.9 0.0 — -0.000665215 -0.000728381 -0.000757767
0.02 — -0.000665215 -0.000728381 -0.000757767
0.03 — -0.000665215 -0.000728381 -0.000757767
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disc’s outer radius b and obtained the range of b for which L3 is stable, at fixed values of the remaining
parameters. Moreover, we have also, determined the values of mass parameter (in the form of perturbed
mass ratio: Table 3), at different values of the parameters and at the values of b, for which stability of L3
is maintained.

To analyze the linear stability of equilibrium points, firstly, we linearize the equations of motion of
the infinitesimal mass as in [33], in the neighborhood of equilibrium point. Let (xe, ye) be the coordinate
of equilibrium point. Consider a small change in this coordinate such as x = xe +X, y = ye + Y , where
X = Peλt, Y = Qeλt are very small quantities and P, Q are constants and λ is parameter to be
determined. Substituting these coordinates into equations (1) and (2). Keeping in mind that displacements
are sufficiently small, we have expanded Ux and Uy by Taylor series neglecting the second and higher
order terms, we get

Ẍ − 2nẎ = XU0
xx + Y U0

xy, (10)
Ÿ + 2nẊ = XU0

yx + Y U0
yy. (11)

These are linearized differential equations of motion in the vicinity of equilibrium point. Superfix 0 denotes
the corresponding values at equilibrium point. The second order partial derivatives of U with respect to
space coordinates are obtained with the help of equations (3) and (4). In order to determine P and Q, we
have substituted X = Peλt and Y = Qeλt into equations (10) and (11) and simplifying them, we have

(λ2 − U0
xx)P + (−2nλ− U0

xy)Q = 0, (12)
(2nλ− U0

yx)P + (λ2 − U0
yy)Q = 0. (13)

Since, for nontrivial solutions of P and Q, determinant of the coefficient matrix of the above linear system
must vanish i.e. we have ∣∣∣∣ λ2 − U0

xx −2nλ− U0
xy

2nλ− U0
yx λ2 − U0

yy

∣∣∣∣ = 0

On simplifying the above determinant, we get a biquadratic equation

λ4 +Aλ2 +B = 0, (14)

where A = 4n2 −
(
U0
xx + U0

yy

)
and (15)

B = U0
xxU

0
yy − (U0

xy)2. (16)

If we take Λ = λ2 then we have

Λ2 +AΛ+B = 0. (17)

The equation (17) is quadratic in Λ and is known as characteristic equation.
Now, for the collinear points y = 0 consequently, Uxy = Uyx = 0; r1 = |x+ µ|, r2 = |x+ µ− 1| and

r = |x|. Thus, we have B = U0
xxU

0
yy where,

U0
xx = n2 + 2F0 +

9chπ log( ba )
8r4

0
, (18)

U0
yy = n2 − F0 −

3chπ log( ba )
8r4

0
(19)

with F0 = q1(1− µ)
r3

1,0
+
(

1 + 3A2

2r2
2,0

)
µ

r3
2,0

+ 2chπ(b− a)
abr3

0
(20)

Subscript 0 indicates the value is at equilibrium point. In order to ensure the stability of the equilibrium
points, small displacements X and Y must be bounded and periodic functions of time. In other words, the
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four roots λi, i = 1, 2, 3, 4 of the equation (14) must be purely imaginary i.e. two roots Λ1,2 of equation
(17) must be of negative sign. Now, from the characteristic equation (17), we have

Λ1,2 = λ2 = [−A±
√
A2 − 4B]
2 (21)

and hence,

λ1,2 = ±

√
[−A−

√
A2 − 4B]
2 , λ3,4 = ±

√
[−A+

√
A2 − 4B]
2 (22)

From equation (21) or (22), it is clear that the sign of B plays a crucial role to decide the nature of
roots of the characteristic equation and hence, the nature of orbits of infinitesimal mass in the vicinity of
collinear equilibrium points. There are two cases.

Case I: When B < 0
Negative sign of B guarantees that there are two real roots of opposite sign (Fig. 5a,b) i.e.

Λ1 = λ2 = α2; Λ2 = λ2 = −β2. (23)

Hence, four roots λ1,2,3,4 can be written as:

λ1,2 = ±α; λ3,4 = ±iβ. (24)

Hence, from equation (24) it is clear that the orbits corresponding to the roots λ1 and λ2 are of the
exponential type however, these are periodicly corresponding to the roots λ3 and λ4 with period 2π

β

(because eiθ = cos θ+ i sin θ). Therefore, the general solution of the equations (10) and (11) can be written
as :

X =
4∑
j=1

Pje
λjt, Y =

4∑
j=1

Qje
λjt, (25)

where Pj and Qj , j = 1, 2, 3, 4 are constants and related by the linear equation (12) or (13) i.e.

Qj =
(
λ2
j − U0

xx

2nλj

)
Pj , (j = 1, 2, 3, 4), (26)

and λ1,2,3,4 are given by (24). If at time t = 0, initial conditions are X = X0, Y = Y0, Ẋ = Ẋ0 and
Ẏ = Ẏ0 then four arbitrary constant Pj and hence, constants Qj are determined from the solution of the
four simultaneous linear equations

4∑
j=1

Pj = X0,
4∑
j=1

Qj = Y0,
4∑
j=1

λjPj = Ẋ0, and
4∑
j=1

λjQj = Ẏ0. (27)

Although, the complete solution of equations (10) and (11) is given by equation (25), because of real
eigen values in case of B < 0, the solution (25) contains exponential terms hence, it becomes unstable.

As a specific example consider the stability of the L1 = 0.88552 at b = 1.33 and for other parametric
values mentioned earlier. If we take small displacements X0 = Y0 = 10−5 and initial velocity Ẋ0 = Ẏ0 = 0
as in [33] then the resulting eigen values are λ1,2 = ±3.33 and λ3,4 = ±2.08i, which indicate that this
point is unstable due to a positive real eigen value. After, solving for Pj and Qj , we have obtained the
orbits of infinitesimal mass in the vicinity of L1 which are given as:

X(t) = 10−6 (5.41e3.33t + 6.77e−3.33t − 2.18 cos 2.08t+ 2.16 sin 2.08t
)

(28)
Y (t) = 10−6 (−2.60e3.33t + 3.25e−3.33t + 9.31 cos 2.08t+ 9.40 sin 2.08t

)
(29)
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The second term in each of these equations eventually dominate which result in exponential growth in X
and Y . The e-folding time scale for growth is 1

λ+
= 1

3.33 orbital periods of the mass µ = 9.53728× 10−4.
We have plotted the nonzero values of real and imaginary parts of the roots of the equation (14) for
b ∈ (1, 2). In this case, roots are always of the form ±α and ±iβ, where α and β are real numbers (Fig.
6a). A similar observation is obtained for other points i.e. for L2, L3 and JY1 for b ∈ (1, 2) whereas,
L3 shows different nature for b ∈ (1.3312, 1.5275) (Fig. 6b). Thus, we have noticed that all collinear
equilibrium points are unstable except L3 which is stable for b ∈ (1.3312, 1.5275).

We can understand the occurrence of the unstable collinear points by considering changes in the
gravitational attraction as well as centrifugal force at different points along x-axis. If we move away from
both the massive bodies, gravity drops off and the centrifugal acceleration increases. In other words, there
are two equilibrium points outside of both the primaries on the line joining them and two equilibrium
point are in between them. The force on infinitesimal mass is directed away along the x-axis from these
equilibrium points and hence, all collinear points are unstable. However, with special conditions it is
possible to find stable solution i.e. periodic orbits in the basin of the collinear equilibrium points [34].

Case II: When B > 0
From equation (21), it is seen that when B is positive then two roots Λ1,2 have negative signs (Fig.

5a,b), i.e.

Λ1 = λ2 = −α2; Λ2 = λ2 = −β2. (30)

Hence, four roots λ1,2,3,4 must be pure imaginary i.e.

λ1,2 = ±iα; λ3,4 = ±iβ, (31)

where, α and β are real quantities. Hence, from equation (31), it is clear that the orbits corresponding to
two different roots iα and iβ are of periodic type with periods Tα = 2π

α and Tβ = 2π
β . In other words,

resulting motion of infinitesimal mass is composed from two different motions, one is known as short
periodic motion with period 2π

α which is very close to orbital period of mass µ = 9.53728× 10−4 and the
other is long periodic motion with period 2π

β known as liberation about the equilibrium point. The resulting
motion of infinitesimal mass is given by the equation (25) together with (26), where λj , j = 1, 2, 3, 4 are
given by (31). The amplitudes of the motion are obtained by evaluating the constant Pj and Qj , with the
help of initial conditions. Thus, we can think of the motion of infinitesimal mass as a long-period motion
of an epicenter around the equilibrium point with the execution of a short-period motion of infinitesimal
mass around the epicenter.

For example, we have considered the stability of the L3 = −0.97801 point for b = 1.4 ∈ (1.3312, 1.5275).
We have taken initial displacements and velocities as in case-I i.e. when B < 0 and obtained the four
roots ±αi = ±0.42i and ±βi = ±1.03i, respectively which are pure imaginary and hence, L3 is linearly
stable for b ∈ (1.3312, 1.5275). The solution for perturbed motion in the vicinity of L3 is given as:

X(t) = 10−6 (5.78 cosω1t− 2.24 sinω1t+ 4.22 cosω2t+ 0.92 sinω2t) (32)
Y (t) = 10−6 (8.18 cosω1t+ 21.10 sinω1t+ 1.89 cosω2t− 8.61 sinω2t) , (33)

where, characteristic frequencies ω1,2 at different values of perturbing parameters q1, A2 at b = 1.4 are
given in Table 2.

The above solution is of the oscillatory type with fundamental periods 2π
ω1

and 2π
ω2
. Figure (6a,b)

shows, how the nature of the roots varies with the disc’s outer radius b. In case of point L3, it is noticed
that the roots are purely imaginary for b ∈ (1.3312, 1.5275), whereas these are real and imaginary for
1.3 < b < 1.3312 and b > 1.5275. Thus, the motion of infinitesimal mass in the vicinity of L3 is stable for
specific range of disc outer radius provided that other parameters are fixed as in earlier case. From, Table
2, it is noticed that frequencies ω1 and ω2 both, are increasing functions of A2, whereas ω1 and ω2 are
decreasing and increasing function of functions of q1, respectively.
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Table 2. Characteristic frequencies ω1,2 at b = 1.4 and different values of parameters q1 and A2.

frequency A2 q1 = 1 q1 = 0.9985 q1 = 0.9 q1 = 0.8

ω1 0.00 0.15495 0.15597 0.21742 0.27712
0.01 0.25018 0.25091 0.29958 0.35417
0.02 0.31538 0.31603 0.36131 0.41572
0.03 0.36671 0.36733 0.41154 0.46735
0.04 0.40926 0.40987 0.45381 0.51147
0.05 0.44546 0.44606 0.48996 0.54937
0.06 0.47669 0.47729 0.52112 0.58182
0.09 0.54855 0.54913 0.59156 0.65174

ω2 0.00 1.14941 1.14787 1.04453 0.93377
0.01 1.16332 1.16163 1.05522 0.93949
0.02 1.17833 1.17672 1.06743 0.94678
0.03 1.19480 1.19315 1.08125 0.95590
0.04 1.21261 1.21090 1.09674 0.96710
0.05 1.23173 1.23003 1.11392 0.98062
0.06 1.25214 1.25042 1.13280 0.99662
0.09 1.32039 1.31864 1.19891 1.05953

5 Resonance Cases

Since, four roots of the characteristic equation (14) are

λ1,2,3,4 = ±

√
−A±

√
A2 − 4B
2 = ±iω1,2 (34)

which are purely imaginary for the values of b lying in the range (1.3312, 1.5275) and provides two
frequencies ω1 and ω2. Consequently, question about resonance phenomenon arises. Since, three main
resonances described in [35], [27] and [28] are obtained as:

ω1

ω2
= κ, κ = 1, 2, 3. (35)

Equation (35) with the help of equation (34) gives

A2 −BK = 0, K =
(
κ2 + 1
κ

)
, (36)

where symbols have there usual meaning. Substituting the values of A and B and simplifying resulting
equation under some appropriate approximation in context of the order of parameters, one can obtain a
quadratic equation in µ which gives the perturbed mass ratio 0 < µκ <

1
2 for these three main resonance

cases in the vicinity of collinear point L3 = −0.96306 for the values of b = 1.4 ∈ (1.3312, 1.5275). Since,
q1 ∈ (0, 1], therefore, let q1 = 1− ε, ε << 1 and A2 << 1. Substituting these values and using Taylor,s
series expansion up to second order terms in µ and then simplifying, we have resulting quadratic equation

B1µ
2 +B2µ+B3 = 0, (37)

where

B1 = −0.98105 + 2.22434ε+ 0.10218A2 − 1.96209K − 0.11583εA2 + 0.20435A2K

+4.44868εK − 0.23167εA2K, (38)
B2 = −2.18401 + 4.21348ε− 5.82914A2 + 3.67945K + 6.64668εA2 − 1.67732A2K

−7.62942εK + 1.86438εA2K, (39)
B3 = −1.21551 + 1.93409ε− 6.61501A2 − 0.17055K + 5.26284εA2 + 5.36025A2K

+0.59773εK − 4.68429εA2K. (40)
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Table 3. Perturbed mass ratio µκ(A2, q1) at b = 1.4 and different values of parameters q1 and A2.

q1 κ µκ(0.0, q1) µκ(0.01, q1) µκ(0.02, q1) µκ(0.03, q1) µκ(0.04, q1) µκ(0.05, q1)

1.0 1 0.17233 0.15896 0.14558 0.13221 0.111883 0.10546
2 0.11857 0.10444 0.09030 0.07617 0.06204 0.04791
3 0.08459 0.06999 0.05538 0.04078 0.02617 0.01157

0.9985 1 0.17227 0.15887 0.14548 0.13209 0.11868 0.10529
2 0.18489 0.10433 0.09018 0.07602 0.06187 0.04771
3 0.08450 0.06987 0.05524 0.04061 0.02598 0.01135

0.9 1 0.16826 0.15336 0.13847 0.12358 0.10869 0.09380
2 0.11326 0.09752 0.08179 0.06605 0.050316 0.03458
3 0.07848 0.06221 0.04595 0.02968 0.01342 —–

0.8 1 0.16418 0.14777 0.13136 0.11495 0.09854 0.08213
2 0.10795 0.09061 0.07327 0.05593 0.03859 0.02125
3 0.07236 0.05444 0.03652 0.01859 0.00067 —–

Solving equations (37-40), for µ ∈ (0, 1
2 ], we have perturbed mass ratio µκ, κ = 1, 2, 3 for three main

resonances, which are given as

µ1 = 0.17233− 0.04073ε− 1.33738A2 − 1.51858εA2, (41)
µ2 = 0.11857− 0.05307ε− 1.41308A2 − 1.60483εA2, (42)
µ3 = 0.08459− 0.06115ε− 1.46051A2 − 1.65895εA2, (43)

Obviously, perturbed mass ratio depend significantly on parameter q1 = (1− ε) and A2. These expressions
of the perturbed mass ratio have similar form to that of [36], [37], [38], [39] and [28], obtained in case
of triangular equilibrium points under specific assumptions. Numerically, the perturbed mass ratio are
obtained at different values of q1 and A2 (Table 3). It is observed that these are decreasing functions of
A2 and κ whereas, increasing functions of q1. Stability region at different values of q1 and A2 are obtained
with the help of equations (41-43). Figures (7-8) show the stability region at b = 1.4 corresponding to
three main resonance curves in the spaces µ−A2 and µ− q1 with 0 ≤ A2 ≤ 0.1 and 0 ≤ ε = (1− q1) ≤ 0.4,
respectively. From these figures, it is clear that in the absence of radiation pressure (Fig. 7a), stability
region decreases with the increment in the values of oblateness whereas in the presence of radiation effect
(Fig. 7b), stability region decreases more for all κ = 1, 2, 3. In the absence as well as in the presence of
oblateness (Fig. 8a,b), stability region decreases with the increment in the value of ε = 1− q1 but extent
of decrement is greater in later case. In other words, stability region increases with radiation pressure for
all cases κ = 1, 2, 3.

As per, numerical as well as graphical observations, it is noticed that perturbations i.e. radiation
pressure, oblateness and disc, affects the motion of small object as asteroid, satellite or spacecraft in the Sun-
planet system. Since, presence of the disc with a specific range of disc’s outer radius 1.3312 < b < 1.5275
make the collinear equilibrium point L3 stable. The opposing nature of radiation pressure relative to
gravitational force of the Sun, minimizes the strength of its gravity field which results that there is an
increment in the stability region for the motion of infinitesimal mass. The oblateness increases gravity
field due to equatorial bulge which implies that stability region get contracted.

6 Conclusion

We have studied Chermnykh-like problem in the context of collinear equilibrium points and its linear
stability, under the influence of perturbations in the form of radiation pressure, oblateness and a disc
which is rotating around the common center of mass of the system. In the presence of the disc, there
exists a new collinear equilibrium point JY 1 [7] in addition to three points L1, L2 and L3 of the classical
problem. The dependence of JY 1 on the radiation pressure and oblateness is of negligible order in compare
to the disc outer radius (Table 1).
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We have analyzed linear stability of the collinear equilibrium points with respect to the mass parameter
µ and it is found that similar to the classical problem, all the collinear points are unstable due to existence
of at least one root with positive real part (contents are not given so as to minimize the length of the
article) but the effect of other parameters on the stability property can not be ignored i.e. a slight influence
of all the parameters is obvious.

Moreover, presence of the disc in system, may change the number as well as stability property of
the equilibrium points [10]. Therefore, linear stability of the collinear points are studied with respect
to the disc’s outer radius b and noticed that all the points are, generally unstable but L3 is stable for
certain range of disc’s outer radius 1.3312 < b < 1.5275 provided that other parameters are fixed. For
this specific range of b, frequencies of infinitesimal mass at L3 is obtained (Table 2) and it is notice that
ω1,2 increase with oblateness, whereas radiation pressure has different effect (ω1 increases with radiation
pressure but ω2 decreases).

Again, perturbed mass ratio of the problem is obtained for three main resonances cases on the similar
basis of triangular equilibrium points [27], [28] and it is observed that perturbed mass ratio is decreasing
function of oblateness A2, κ and radiation pressure (Table 3). Moreover, stability region of the infinitesimal
mass are found for fixed value of disc’s outer radius.

As per, analysis of numerical results as well as graphical observations, it is concluded that in the
presence of perturbations, motion of infinitesimal mass in the vicinity of collinear point L3 is affected
significantly. Moreover, presence of the disc like structure in the system may change the scenario of the
motion. Due to radiation pressure, strength of gravity field of the Sun reduces and hence, stability region
increases. On the other hand, oblateness of the secondary increases its gravity field due to equatorial bulge
and hence, stability region decreases. The results are important to study the motion of infinitesimal mass
under the influence of perturbations in a more generalized dynamical system. In future, these analysis
would also be helpful to describe the proposed model in presence of Poyinting- Roberston drag, solar
wind drag etc.
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