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Abstract. One of the common processes employed in food technology and preparation is the 
extraction of specific components from agro-based materials. Although many methodologies are 
known, continued improvements are still desirable. A recent new development is the use of natural 
deep eutectic solvents (NADES) for extraction. In this work, we studied NADES/water combinations 
and found them to be viable alternatives to conventional solvents for extraction of polar ingredients 
in foods. The NADES/water solvents are eco-friendly, inexpensive, chemically inert, and 
biodegradable. Moreover, we found microwave heating to facilitate the preparation of NADES/water 
solvents. Selected NADES/water systems were characterized with respect to viscosity, refractive 
indices, electrical conductivity, water activity, and NMR. In addition, we utilized the microwave 
process to facilitate the extraction of sugars in a food product with a NADES/water system. The 
microwave process was found to be efficient, save time, and decrease energy usage. Thus, the 
combination of NADES/water/microwave is a versatile method that can provide improved 
extractions in food systems. 
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1   Introduction 

Green chemistry is the design of chemical products and processes that reduce or eliminate the 
generation of hazardous substances [1-3]. This concept has become popular in the current business and 
regulatory climate with the increasing emphasis on safer chemistry, product stewardship, and 
sustainability of natural resources. Whereas green chemistry is helpful in chemical product and processes, 
it takes on even greater significance in food applications, where food safety, human health, chemical 
toxicity, and environmental pollution are critical.  

One of the common processes used in food processing is the extraction of specific substances from 
agro-based raw materials [4, 5]. For example, triglyceride oil from soybean, cottonseed, corn, and rice 
bran can be extracted with hydrocarbon solvents [6-9]. Likewise the essential oils from biological plants 
and flowers can be extracted for use as flavour and fragrance [10-12]. Phytochemicals can be extracted 
from fruits, berries, beans, and other agro-based materials, using (for example) alcohol or alcohol/water 
mixtures [13-15]. In view of the current interest in green chemistry, new or improved extraction 
methodologies that do not involve organic solvents are desirable. A promising recent solvent approach 
involves the natural deep eutectic solvents (NADES) [16-19].  

A NADES solvent contains two or three natural, renewable, and biodegradable natural components, 
which form a eutectic mixture because of self-association and/or specific interactions among the solvent 
components [16-19]. A distinctive feature of the eutectic mixture is the melting point, which is lower 
than the melting points of the individual components; the NADES of interest are liquids from room 
temperature to 100 ºC. Examples of NADES include mixtures of choline chloride/1,2-propanediol, 
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choline chloride/glycerol, citric acid/glucose, malic acid/glucose, and malic acid/beta-alanine. A 
disadvantage of NADES is their high viscosity compared with conventional organic or aqueous solvents. 
For the purpose of food extraction, the high viscosity of NADES would certainly make the process very 
difficult.  

It has been reported that the addition of water can decrease the viscosity of NADES [20, 21]. The aim 
of this study is to explore the addition of water to NADES as solvents for the extraction of polar 
ingredients from agro-based materials. In addition, we have studied the use of microwave, both for the 
preparation of NADES solvents and for extraction, in order to improve the efficiency of NADES-based 
extraction processes. 

2   Materials and Methods 

2.1   Materials 

All compounds used as NADES components in this work were acquired from Sigma Aldrich (St. Louis, 
MO, USA). Deuterated dimethylsulfoxide (d6-DMSO) came from Cambridge Isotope Laboratories, Inc., 
Andover, MA. Green bananas were acquired from a local grocer. 

2.2   Sample Preparation and Evaluation 

Several NADES systems were prepared by heating with constant stirring (at 400 rpm) until a clear 
liquid was formed; water was added until a reasonably workable viscosity was obtained (Table 1). Both 
conventional and microwave heating was used. In addition, the effects of water dilution (0-90%) on 
viscosity, refractive index, density, water activity and electrical conductivity of NADES were evaluated. 
These NADES solvents were stored in sealed bottles at room temperature away from sunlight. They 
remained to be liquid under this condition for at least 4 weeks. 

Table 1. Composition and abbreviations for NADES studied in this work. 

Component 1 Component 2 Component 3 Component molar ratio Designation 

Malic acid Glucose Water 1:1:3 MA/Glu 
Malic acid Fructose Water 1:1:3 MA/Fru 
Malic acid b-Alanine Water 1:1:3 MA/BA 
Citric acid Glucose Water 1:1:2 CA/Glu 
Citric acid Fructose Water 1:1:2 CA/Fru 

Urea Glucose Water 1:1:2 U/Glu 
Urea Fructose Water 1:1:2 U/Fru 

Glucose Choline Cl Water 2:3:3 Glu/CC 
Fructose Choline Cl Water 2:3:3 Fru/CC 

The measurement of electrical conductivity was carried out at 25 ºC (± 2 °C) with a S470 
SevenExcellenceTM conductivity meter equipped with an InLab731 ISM sensor (Mettler Toledo, 
Columbus, OH, USA). The refractive index was employed as a measure of the soluble solids content; a 
NADES solvent system was diluted with variable amounts of water, and the refractive index was 
determined at 20 ºC using an Abbe 3L refractometer (Bausch & Lomb, Rochester, NY, USA). Dynamic 
viscosity of a NADES solution was measured at 25 ºC (± 2° C) using an ARES LS-1 control-strain 
rheometer (TA Instruments, New Castle, DE, USA). The determination of the density of NADES was 
conducted at 40 ºC with vibrating tube density meter (Model DMATM 4500 M, Anton Paar, Graz, 
Austria). This device entailed a measurement cell with a U-shaped borosilicate glass tube and two 
integrated Pt 100 platinum thermometers and Peltier elements that controlled and registered the 
temperature. The determination of the water activities of NADES solvents was carried out at 25 ºC (± 
2 °C) with an Aqua-Lab water activity meter (Series 3TE, Decagon Devices Inc., Pullman, WA, USA). 
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2.3   Extraction of Soluble Sugars with NADES Solvents 

Soluble sugars from banana puree were extracted with a microwave system (Ethos 1600 Advance 
Microwave Labstation, Milestone, Sorisole, Italy) using a 100-mL extractor vessel. Banana puree (3 g) 
was weighed into the reactor vessel, and soluble sugars were extracted with 30 g of a NADES system 
(molar ratio of 1:1:3 MA:BA:water), and two solvents (ethanol and water) via microwave-assisted 
extraction. After extraction, samples were centrifuged at 4 °C for 20 min in a Heraeus Multifuge X1R 
centrifuge (Thermo Fisher Scientific, Langenselbold, Germany) at 10,000x g to separate the supernatant 
from the residue. An aliquot of each supernatant obtained was analyzed for total sugar by the phenol-
sulfuric acid method [22]. 

2.4   NMR Characterization 

NMR spectra were acquired on a Bruker DRX 400 spectrometer (Karlsruhe, Germany). Standard 
operating conditions were used with 30º pulse angle and 3 s between pulses. The sample of choline 
chloride/1,2-propanediol/water was run without a deuterated lock solvent. The sample containing 
choline chloride/glycerol had d6-DMSO added as the lock solvent. All chemical shifts were referenced to 
tetramethylsilane at 0 ppm. Spectral assignments were made using chemical shifts of related structures, 
additive shift rules [23], and automated shift prediction software [24]. 

3   Results and Discussion 

3.1   Incorporation of Water in NADES 

As we started to work on NADES systems, we quickly noticed a problem. The NADES tended to be 
rather viscous and difficult to handle. In agreement with the literature [20, 21], we found the 
incorporation of water on NADES solvents to have a significant positive effect. In fact, viscosity showed 
an exponential decrease with an increase in water content (Figure 1). The following trend was observed 
for five NADES systems:  
CA/Glu >>> MA/Glu ~ Glu/CC > U/Glu >> MA/BA 

Although Figure 1 gives only the effects observed for five NADES systems, the same trends observed 
for glucose-NADES samples were also found for fructose-NADES samples. In addition, we found 
microwave heating to be the preferred method of preparing the NADES mixtures. On the basis of past 
work [21], several temperatures and heating times were tested on a few NADES systems. The optimum 
conditions to achieve a clean liquid NADES that were stable for several weeks were found and shown in 
Table 2. In all cases the use of microwave heating produced a decrease in the preparation time relative 
to conventional heating. 

Table 2. Comparison between conventional and microwave heating in NADES preparation. 

Designation Molar ratio Temp (ºC) Conv. Heat Time (min) Microwave Time (min) 
MA/Glu 1:1:3 70 60 5 
MA/Fru 1:1:3 60 60 10 
MA/BA 1:1:3 60 60 5 
CA/Glu 1:1:2 80 120 30 
CA/Fru 1:1:2 75 120 30 
U/Glu 1:1:2 70 60 10 
U/Fru 1:1:2 60 90 20 

Glu/CC 2:3:3 70 120 30 
Fru/CC 2:3:3 70 60 15 

We then proceeded to measure some of the properties of the NADES/water systems. The electrical 
conductivity of NADES without the addition of water decreased in the following sequence: 
MA/BA >>> Fru/CC > Glu/CC >> MA/Fru > MA/Glu >> U/Fru ~ U/Glu ~ CA/Glu ~ CA/Fru. 
Conductivity of NADES increased as a result of the decreased viscosity, due to the dilution caused by 
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the addition of water (Figure 2). Some NADES (Glu/CC, Fru/CC, U/Glu, U/Fru, MA/BA) reached 
their maximum value of electrical conductivity with 60% of added water, and the others (MA/Glu, 
MA/Fru, CA/Glu, CA/Fru) with 80% of added water (Figure 2). In general, higher solvent 
conductivity is beneficial for the extraction of polar compounds. Furthermore, the water activity also 
increased with water addition (Figure 3). Although Figures 2-3 provides the effects observed for five 
NADES systems, the same trends were also observed for fructose-NADES samples. Since higher water 
content enhances the conductivity and water activity, higher water content should furnish better 
efficiencies for the extraction of polar components, and lower water content for less polar components. 

 
Figure 1. Viscosity (µ) of five NADES systems as a function of added water. The same trends for glucose-NADES 
samples were also found for fructose-NADES samples. 

Density and refractive index decreased linearly as the water content increased, following the function, 
y = -ax+b (y: density or refractive index, x: water percentage) (Figure 2, Table 3). Without the 
addition of water, the highest densities were found for NADES prepared with citric acid/sugar or malic 
acid/sugar (densities for CA/Glu=1.442 g·cm-3, CA/Fru=1.428 g·cm-3, MA/Glu=1.406 g·cm-3, 
MA/Fru=1.396 g·cm-3). The lowest values were obtained in samples containing choline chloride 
(Glu/CC=1.246 g·cm-3, Fru/CC=1.249 g·cm-3). Sample of MA/BA and those containing urea showed 
intermediate values (MA/BA=1.340 g·cm-3, U/Fru=1.381 g·cm-3, U/Glu=1.378 g·cm-3). The lowest 
refractive index values were found for NADES prepared with malic acid/β-alanine (MA/BA), and 
highest values were obtained for samples with sugar/choline chloride (Glu/CC and Fru/CC) when no 
dilutions were made to the NADES (Table 3). The fact that the refractive index is higher for samples 
with less quantity of water can be explained by the presence of molecules that are more polarizable than 
water. Therefore, the larger the number of polarizable molecules in the sample, the larger was the value 
of the refractive index. 

From the data in Figure 2, NADES/water systems prepared with choline chloride presented the 
highest conductivities, while NADES with urea showed the lowest values. NADES with choline 
chloride/sugar and urea/sugar had the highest conductivity at 60 % water dilution. Organic acid/sugar 
NADES reached the highest value with 80 % water dilution. Consequently, electrical conductivity of 
NADES, as well as viscosity and density, could be tailored by changing the water content. 
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Figure 2. Conductivity (σ, dashed curves) and density (ρ, solid lines) of five NADES systems as a function of 
added water. Red arrows indicate the highest conductivity values. The same trends for glucose-NADES samples 
were also found for fructose-NADES samples.  

Table 3. Refractive index at 20 ºC of NADES diluted with different amounts of water 

Water content* MA/Glu MA/Fru MA/BA CA/Glu CA/Fru U/ Glu U/Fru Glu/CC Fru/CC 
0 1.483 1.480 1.473 1.499 1.494 1.498 1.497 1.503 1.502 
10 1.464 1.462 1.458 1.477 1.474 1.477 1.477 1.483 1.482 
20 1.446 1.445 1.442 1.458 1.455 1.458 1.457 1.464 1.463 
30 1.429 1.428 1.426 1.440 1.437 1.439 1.439 1.445 1.444 
40 1.413 1.413 1.411 1.422 1.419 1.422 1.421 1.427 1.427 
50 1.398 1.397 1.397 1.405 1.402 1.405 1.405 1.409 1.409 
60 1.384 1.383 1.383 1.389 1.387 1.389 1.388 1.392 1.392 
70 1.370 1.370 1.370 1.374 1.373 1.374 1.374 1.377 1.377 
80 1.357 1.357 1.357 1.359 1.359 1.360 1.359 1.362 1.362 
90 1.345 1.345 1.345 1.346 1.345 1.346 1.346 1.347 1.347 

* Water content = quantity of water added to NADES (%, w/w) 
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Figure 3. Water activity (aw) of five NADES systems as a function of added water. The same trends for glucose-
NADES samples were found for fructose-NADES samples.  

3.2   NMR Characterization 

In order to understand the interactions of water with the other components of NADES, we studied two 
selected NADES/water systems with NMR.  
3.2.1   Choline chloride/1,2-propanediol/water (1:1:1) mixture 

Choline chloride and 1,2-propanediol are known to form a NADES system, and the addition of water 
can decrease the viscosity [21]. The 1H NMR spectrum of this mixture is shown in Figure 4. To help 
assign the spectrum, we used the two-dimensional (2D) NMR techniques, particularly 1H correlation 
spectroscopy (COSY) (Figure 5a) and heteronuclear single quantum coherence spectroscopy (HSQC) 
(Figure 5b). Through 2D HSQC, all the 1H and the 13C peaks were correlated and assigned (Table 4). 
To confirm our assignments, we did the 2D COSY experiment (Figure 5a). From the 2D plot, it is clear 
that our assigned peaks for P-2 (3.6 ppm) and P-3 (1.05 ppm) are correlated, thereby verifying our 
assignments. Previously, Dai et al [21] studied this solvent system and provided NMR assignments. Our 
assignments agreed with those of Dai et al [21] with one exception. The paper in Dai et al [21] (Table S-
1) reversed the assignments of P-1 and P-2. 

Table 4. NMR chemical shifts and correlations for 1:1:1 (molar) choline chloride/1,2-propanediol/water mixture 

Code 1H shift (ppm) 13C shift (ppm) ROESY 
correlations HOESY correlations 

P-OH1 
P-OH2 4.85  C-OH, H2O  

P-1 3.35 67   
P-2 3.60 67.5   
P-3 1.05 20   
C-OH 5.40  P-OH, H2O, C-1, C-3  
C-1 3.95 55 C-OH C-2 
C-2 3.55 67.2  C-1 
C-3 3.25 53.8 C-OH  
H2O 4.40  C-OH, P-OH1, P-OH2  

structure: HO -CH2 - CH (OH) - CH3   HO- CH2 -CH2 – N+(CH3)3 
codes:    P-OH1 P-1  P-2  P-OH2  P-3    C-OH  C-1  C-2      C-3 
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Figure 4. 1H NMR spectrum of choline chloride/1,2-propanediol/water mixture. 

 
Figure 5. 2D NMR spectra of choline chloride/1,2-propanediol/water mixture: a) COSY, b) HSQC, c) ROESY, d) 
HOESY. The letter w refers to the water peak. 
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Figure 6. 1H NMR spectra: a) choline chloride/glycerol mixture, b) choline chloride/glycerol with 25% water, c) NOESY 
plot of choline chloride/glycerol with 25% water 

structure:  HO – CH2 –CH (OH) – CH2 –OH  HO– CH2 –CH2 –N+(CH3)3 
codes:   G-OH1  G-1  G-2  G-OH2         C-OH  C-1  C-2    C-3 
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In order to find more about the molecular interactions of the NADES components, we carried out the 
2D ROESY and 2D HOESY experiments. The 2D ROESY (Rotating-frame Overhauser SpectroscoPY) 
experiment is a good method to obtain nuclear Overhauser effect (NOE) information among 1H nuclei in 
a molecule. The 2D Heteronuclear NOESY (HOESY) experiment allows us to detect heteronuclear 
through-space NOE connectivities between 1H and 13C nuclei. The ROESY plot (Figure 5c) shows the 
correlation of water molecules (at 4.4 ppm) with C-OH, P-OH1 and P-OH2 (at 5.4, 4.85, and 4.85 ppm, 
respectively), probably due to chemical exchange and interactions among them. In addition, C-OH and 
C-1 are correlated due to proximity of those protons; C-OH and C-3 seem to be weakly correlated 
probably due to interactions between them. The HOESY data (Figure 5d) is similar to the HSQC plot 
(Figure 5b) because not much NOEs was observed between the nuclei. The only correlation that may be 
of interest is between 13C of C-1 and 1H of C-2, due to the proximity of these nuclei. 
3.2.2   Choline chloride/glycerol/water mixture 

The NMR spectra of this system were previously studied by Hadj-Kali et al [25]. The 1H NMR spectra 
of 1:3 (molar ratio) choline chloride/glycerol (no added water) and 1:3 choline chloride/glycerol with 25 
weight % water are given in Figures 6a and 6b, respectively. Our assignments are similar to those of 
Hadj-Kali et al [25], except that our water (HOD) signal (in d6-DMSO) occurs at about 3.30 – 3.42 ppm, 
showing slight downfield shifts with increasing water, whereas larger downfield shifts were reported by 
Hadj-Kali et al [25]. The 2D NOESY spectrum of the 1:3 choline chloride/glycerol with 25 weight % 
water sample was given in Figure 6c. In the 2D plot, correlations among the HOD and the OH peaks in 
choline chloride and glycerol are observed, probably due to chemical exchange and interactions among 
them. 

Thus, in both the choline chloride/1,2-propanediol/water and the choline chloride/glycerol/water 
systems, water interacts and exchanges with the hydroxyl groups in NADES components in the range of 
the water added (50 weight % or less). Thus, water serves as a diluent for the NADES components, in 
agreement with earlier studies [21, 25].  

3.3   Extraction Studies 

A preliminary study of the extraction of soluble sugars from banana-derived non-starch polysaccharides 
was carried out with: 1) water/ethanol, and 2) NADES/water mixed system. In both cases, microwave-
assisted extraction was used for the extraction of soluble sugars. Water and ethanol gave about 71.5 – 
88.7% extracted soluble sugars (Table 5). Extractions at 70 ºC showed higher % extractables than at 25 
ºC; this is not surprising because the solubility of soluble sugars is usually enhanced with heat [26, 27]. 
In comparison, with NADES/water mixture of malic acid/β-alanine/water (molar ratio 1:1:3), 
microwave-assisted extraction of banana puree at 25 ºC and 30 min gave the highest quantity of 
extracted soluble sugars (106.3%). Thus, the NADES/water system coupled with microwave-assisted 
extraction represented a much more effective method for this application. A more detailed account of 
this work will be published in due time. 

Table 5. Amount of soluble sugars obtained from banana-derived non-starch polysaccharides through microwave-
assisted extraction as a function of extracting solvent, temperature, and time. 

Extracting solvent  Temp (oC) Time (min) % Extracted (dry base) 
MA/BA/water (molar ratio 1:1:3)  25 30 106.3 

Ethanol  25 30 79.7 
Water  25 30 71.5 

Ethanol  70 30 88.7 
Water  70 30 81.9 

 
4   Conclusions 

In this work, we examined the solvent properties of several NADES systems and the effect of water 
addition. The viscosity of NADES decreased exponentially with water addition, whereas density 
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decreased linearly. NADES prepared with choline chloride presented the highest conductivities, while 
NADES with urea showed the lowest values. Choline chloride/sugar and urea/sugar NADES had the 
highest conductivity at 60% water dilution. Organic acid/sugar NADES reached the highest value with 
80% water dilution. The refractive index decreased linearly as the water content increased. Thus, water 
addition can permit some of the NADES solvent properties to be customized, as needed.  

Furthermore, we showed that water addition to NADES solvents had a significant effect on the 
extraction of specific components in food. In particular, NADES with high water content seemed to 
result in better efficiencies for the extraction of polar compounds in foods. The use of microwave was 
found to be useful in both the preparation of the NADES solvent system and in the extraction process. 
Thus, the combination of NADES, water addition, and microwave represents an improved methodology 
for the extraction of polar compounds from agro-based raw materials, which can decrease solvent 
viscosity and accelerate extraction. 

Three of the 12 principles of green chemistry are: 1) Safer solvents and auxiliaries. 2) Use of 
renewable feedstocks, and 3) Design for energy efficiency [1, 2]. We believe the use of NADES satisfies 
the first two principles, and the use of microwave (with the reduction in reaction time) satisfies the 
third principle. Thus, the approach presented in this work can be considered an example of green 
chemistry. Variations of this approach should be useful for extraction purposes in food processing. 
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