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Abstract In this paper, a least-squares method of EQrot
1 nonconforming finite element(NFE)

is proposed for convection-diffusion problems. The existence and uniqueness of the approximate
solutions are proved. The convergence analysis is presented and the optimal order error estimates
for the stress under H(div)-norm and the displacement under broken H1-norm are derived. At last,
some numerical results are presented to verify the theoretical analysis, which show that our method
is stable and performs very well.
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1 Introduction

The convection-diffusion equation is a parabolic type partial differential equation. Its simplest form takes
([1]):

−k4u+ a · ∇u = f in Ω,

u = g on ∂Ω,
(1.1)

where Ω ⊂ R2 is a bounded convex polygonal domain with boundary ∂Ω, 0 < k ≤ 1 is the constant
viscosity coefficient (or diffusivity), a = (a1, a2) is the velocity field, f is a source function and g is a given
boundary data. It is well-known that the solution u of problem (1.1) can exhibit localized phenomenon
such as boundary and interior layers, i.e., narrow regions where the derivative of u is very large. This
is the case for instance if the problem is convection-dominated, i.e., 0 < k � |a|. For simplifying the
mathematical analysis, in what follows we assume that a is a constant vector with |a| = 1 and g = 0 on
the boundary ∂Ω.

The convection-diffusion problems (CDPs) have a wide application in many mathematical environment
studies to model pollutant transports in the atmosphere, groundwater and surface water. There has been
significant interest in the design and analysis of numerical schemes for the CDPs such as the finite volume
element methods [2, 3]; the mixed-hybrid FEM [4]; the Petrov-Galerkin methods [5, 6]; the least-squares
mixed FEMs [1, 7] and the very popular streamline-diffusion FEMs [8, 9, 10]. In which, [8] presented the
O(hr+ 1

2 ) order error estimates in the L2-norm on the triangular nonconforming element, which r ≥ 1
is the order of complete polynomials contained in FE space; [9] handled mixed meshes consisting of
triangles and quadrilaterals and gave the convergence analysis; [10] discussed multi-grid methods of the
Qrot1 NFE; [11] constructed Pmod1 NFE to approximate the CDPs on triangular meshes and presented
error analysis. Recently, [12] applied the lowest order Crouzeix-Raviart NFE to approximate the CDPs
and established a posteriori error estimator. [13, 14] studied low order nonconforming rectangular FEMs
for the CDPs with a modified characteristic FE scheme and provided the O(h2) order error estimate in
L2-norm on anisotropic meshes. Moreover, [15] used conforming Q1 element, P1 element and EQrot1 NFE
to approximate time-dependent advection-diffusion equations and got uniform error estimates. However,
it seems that there are no reports on least-squares methods of NFEs for the CDPs.

As we know, the least-squares FEM [7] is not subject to the LBB condition and also always leads to
symmetric system matrices, which implies that only half of the coefficients need to be stored. In addition,
the system satisfies a priori coercivity inequality and the least-squares formulation generates positive
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definite algebraic system matrices, which can be solved using standard and robust iterative methods
such as conjugate gradient methods. Recently, [16] proposed least-squares methods of NFEs for the
second-order elliptic problem on different meshes in a unified way and gave the convergence analysis
and error estimates, [17] studied the least-square Galerkin-Petrov method of NFE for the stationary
conduction-convection problem and obtained the corresponding optimal order error estimates. So it is
natural to ask whether this least-squares methods of NFEs can be applied to the CDPs or not. As the
first attempt, we will give a positive answer in this paper.

The remainder of this paper is organized as follows: In next section, we will introduce the least-squares
method of EQrot1 NFE for the CDPs. Section 3 will prove the existence and uniqueness of the discrete
solutions and derive the corresponding optimal order error estimates. In the last section, we will provide
some numerical results to confirm the theoretical analysis.

2 Least-Squares Method of EQrot
1 NFE

Introducing the stress p = −k∇u in Ω as an independent variable, we can rewrite (1.1) in the first order
system:

∇ · p + a · ∇u = f in Ω,

p + k∇u = 0 in Ω,

u = 0 on ∂Ω.

(2.1)

Let X = H(div;Ω) = {q ∈ [L2(Ω)]2,∇ · q ∈ L2(Ω)} equipped with the norm ‖q‖div = ‖q‖+ ‖∇ · q‖,
where ‖ · ‖ is the L2-norm.

A least-squares variational problem for (2.1) is to find u ∈ U = H1
0 (Ω) and p ∈ X such that

B(u,p; v,q) = L(v,q) ∀ (v,q) ∈ U ×X, (2.2)

where the bilinear form B(·; ·) and the linear form L(·) are defined as

B(u,p; v,q) = (∇ · p + a · ∇u,∇ · q + a · ∇v) + (p + k∇u,q + k∇v), (2.3)

L(v,q) = (f,∇ · q + a · ∇v). (2.4)
The following lemma can be found in [1].

Lemma 1. There exists a constant C > 0 such that for all v ∈ U,q ∈ X,

B(v,q; v,q) ≥ C(‖v‖2
1 + ‖q‖2

div),

here and later, C (with or without subscripts) is a generic constant, independent of h, which may take
different values at different occurrences.

Thus, Lax-Milgram lemma guarantees that Problem (2.2) has a unique solution (u,p) ∈ U ×X.
Let Γh = {K} be a regular rectangular partition of Ω, hK = diam{K} and h = max

K∈Γh

{hK}. We take

the EQrot1 NFE space Uh (cf. [13, 15, 18, 19]) and zero order R-T element space Xh to approximate U
and X, respectively.

Define the FE spaces Uh and Xh by

Uh = {vh ∈ L2(Ω); vh|K ∈ P,∀K ∈ Γh,
∫
l

[vh]ds = 0, l ⊂ ∂K},

Xh = {w ∈ X;w|K ∈ Q1,0(K)×Q0,1(K),∀K ∈ Γh},

where P = span{1, x, y, x2, y2}, [vh] denotes the jump of vh across the boundary l of K if l is an internal
edge, and [vh] = vh if l ⊂ ∂Ω.

Let Ih : H1(Ω)→ Uh and Πh : (H1(Ω))2 → Xh be the associated interpolation operators satisfying
Ih|K = IK ,Πh|K = ΠK , then we have∫

K

(v − IKv)dxdy = 0,
∫
li

(v − IKv)ds = 0,
∫
li

(q −ΠKq) · nids = 0,
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where l1, l2, l3, l4 are four edges of ∂K, ni is the unit outward normal vector to li(i = 1, 2, 3, 4).
For vh ∈ Uh, it has been proved in [15] and [20] that the following conclusions, i.e.,

(a · ∇hvh, vh) = 0 (2.5)

and
‖vh‖ ≤ C1‖vh‖h (2.6)

hold, respectively. Where ∇h is the gradient operator defined element by element, ‖ · ‖h =
√∑

K

| · |21,K is

a norm on Uh.
Applying Green’s formula, we can derive for (vh,qh) ∈ Uh ×Xh∑

K

∫
∂K

qh · nKvhds = 0, (2.7)

where nK is the unit outward normal vector to ∂K.
The least-squares scheme for Problem (2.2) is to find (uh,ph) ∈ Uh ×Xh such that

Bh(uh,ph; vh,qh) = L(vh,qh) ∀(vh,qh) ∈ Uh ×Xh, (2.8)

where
Bh(uh,ph; vh,qh) = (∇ · ph + a · ∇huh,∇ · qh + a · ∇hvh)

+ (ph + k∇huh,qh + k∇hvh),
(2.9)

L(vh,qh) = (f,∇ · qh + a · ∇hvh). (2.10)

3 Solvability of the Discrete Problem and Error Estimates

In this section, we will prove the solvability of Problem (2.8) and give error estimates. The following
theorem guarantees that Problem (2.8) has a unique solution.

Theorem 1. For (vh,qh) ∈ Uh ×Xh, there exist two positive constants C2, C3 such that

C2{‖vh‖2
h + ‖qh‖2

div} ≤ Bh(vh,qh; vh,qh) ≤ C3{‖vh‖2
h + ‖qh‖2

div}. (3.1)

Proof. The right hand of (3.1) is obvious. We proceed to show the left hand of (3.1).
Let α be a positive constant that will be determined later. We have

l.h.s. =‖∇ · qh + a · ∇hvh − αvh‖2 + 2α(∇ · qh + a · ∇hvh, vh)− α2‖vh‖2

+ ‖qh + k∇hvh − α∇hvh‖2 + 2α(qh + k∇hvh,∇hvh)− α2‖∇hvh‖2.

In fact, by (2.7), we obtain(∇ · qh, vh) = −(qh,∇hvh).
So, from (2.5),(2.6), and choosing α = k/(1 + C2

1 ), we get

l.h.s. = (2αk − α2)‖∇hvh‖2 − α2‖vh‖2

≥ (2αk − α2 − C2
1α

2)‖∇vh‖2

= (k2/(1 + C2
1 ))‖vh‖2

h.

(3.2)

On the other hand,

‖qh‖2 ≤ 2(‖qh + k∇hvh‖2 + k2‖∇hvh‖2)
≤ 2(Bh(vh,qh; vh,qh) + (1 + C2

1 )Bh(vh,qh; vh,qh))
= 2(2 + C2

1 )Bh(vh,qh; vh,qh),
(3.3)

‖∇ · qh‖2 ≤ 2‖∇ · qh + a · ∇hvh‖2 + 2‖a · ∇hvh‖2

≤ 2Bh(vh,qh; vh,qh) + C‖∇hvh‖2

≤ (C/k2)Bh(vh,qh; vh,qh).
(3.4)

Combining (3.2)-(3.4) yields the desired result.
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Theorem 2. Let (u,p) ∈ (U ∩H2(Ω))× (X ∩H1(div;Ω)) and (uh,ph) ∈ Uh ×Xh be the solutions of
Problems (2.2) and (2.8), respectively. Then

‖u− uh‖h + ‖p− ph‖div ≤ Ch{|u|2 + |∇ · p|1 + |p|1}. (3.5)

Proof. For vh ∈ Uh,qh ∈ Xh, we have

‖vh − uh‖2
h + ‖qh − ph‖2

div ≤ Bh(vh − uh,qh − ph; vh − uh,qh − ph)
≤ Bh(vh − u,qh − p; vh − uh,qh − ph)
+Bh(u− uh,p− ph; vh − uh,qh − ph).

(3.6)

From (2.2)-(2.4) and (2.8)-(2.10), we find

Bh(u,p; vh − uh,qh − ph) = Bh(uh,ph; vh − uh,qh − ph). (3.7)

Therefore,
‖u− uh‖h + ‖p− ph‖div ≤ C{‖u− Ihu‖h + ‖p−Πhp‖div}. (3.8)

On the other hand, for each K ∈ Γh

∇ ·Πhp|K = 1
|K|

∫
K

∇ ·Πhpdxdy = 1
|K|

∫
∂K

Πhp · nKds

= 1
|K|

∫
∂K

p · nKds = 1
|K|

∫
K

∇ · pdxdy.
(3.9)

Thus we have ∇ ·Πh|K = P0∇ · |K , where P0 is the local L2 projection satisfying

‖∇ · (p−Πhp)‖0,K = ‖∇ · p− P0∇ · p‖0,K ≤ Ch|∇ · p|1,K . (3.10)

Substituting (3.10) into (3.8) and applying the interpolation theory yield the desired result.

Remark 1. We point out that (2.5) and (2.7) are the key conditions leading to the optimal order error
estimates, and the results obtained in the present work are also valid if Uh is replaced by the Qrot1 NFE
space discussed in [14, 20] on the square meshes, the constrained Qrot1 NFE and P1 NFE spaces proposed
in [21] and [22] on the rectangular meshes, respectively. On the other hand, it can be checked that if Uh is
not changed but we replace the FE space Xh with that of [23, 24], then the above results are also valid.

4 Numerical Results

In this section, we present some numerical results to confirm our theoretical analysis.
We consider the convection-diffusion equation (1.1) with homogeneous Dirichlet boundary condition.

The computational domain is set as Ω = [0, 1]× [0, 1] and triangulated by uniform rectangular meshes
with N nodes. we consider the following smooth solution of (1.1)

u = sin(πx) sin(πy),

with a = (1, 1) and different values of k.
The error estimates of u under broken H1-norm and p under H(div)-norm are displayed in the

following Tables 1-4 for different k. We can observe first order convergence for both u and p, which is
consistent with the theoretical analysis.

Numerical experiments show that when k = 1.0e− 1, 1.0e− 2, 1.0e− 3, 1.0e− 4, the figures of the FE
solutions uh are very nearly the same, so we only plot the figures of the exact solution u and the FE
solution uh for k = 1.0e− 4 (see Figure 1 and Figure 2).
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Table 1. Error estimates of u and p for k = 1.0e− 1.

N ‖u− uh‖h rate ‖p− ph‖div rate

25 0.764634794711 \ 0.336452643135 \
81 0.386294524031 0.9851 0.162609603986 1.0490
289 0.193591337743 0.9967 0.080427574859 1.0157
1089 0.096848601125 0.9992 0.040095337767 1.0043
4225 0.048430824692 0.9998 0.020032547836 1.0011

Table 2. Error estimates of u and p for k = 1.0e− 2.

N ‖u− uh‖h rate ‖p− ph‖div rate

25 0.697902874070 \ 0.034608162349 \
81 0.354583797115 0.9769 0.016626320708 1.0576
289 0.178002130926 0.9942 0.008148952342 1.0288
1089 0.089089309192 0.9986 0.004033799337 1.0145
4225 0.044555501545 0.9996 0.002007374401 1.0068

Table 3. Error estimates of u and p for k = 1.0e− 3.

N ‖u− uh‖h rate ‖p− ph‖div rate

25 0.697139928223 \ 0.003461376108 \
81 0.354228960570 0.9768 0.001663397639 1.0572
289 0.177831372720 0.9942 0.000815735605 1.0280
1089 0.089005591104 0.9985 0.000404148478 1.0132
4225 0.044514041147 0.9996 0.000201165557 1.0065

Table 4. Error estimates of u and p for k = 1.0e− 4.

N ‖u− uh‖h rate ‖p− ph‖div rate

25 0.697132295521 \ 0.000346138085 \
81 0.354225408909 0.9768 0.000166340398 1.0572
289 0.177829660595 0.9942 0.000081574282 1.0280
1089 0.089004750140 0.9985 0.000040415614 1.0132
4225 0.044513624478 0.9996 0.000020117642 1.0065

Journal of Advances in Applied Mathematics, Vol. 5, No. 4, October 2020 143

Copyright © 2020 Isaac Scientific Publishing JAAM



Figure 1. The plot of the exact solution u.

Figure 2. The plot of the FE solution uh for with k = 1.0e− 4.
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