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1 Introduction and Main Results

Let G ⊂ C be a finite region, with 0 ∈ G, bounded by a Jordan curve L := ∂G, Ω := extL := C\G, where
C := C ∪ {∞} , ∆ := {w : |w| > 1} and let ℘n denote the class of arbitrary algebraic polynomials Pn(z)
of degree at most n ∈ N. Let w = Φ(z) be the univalent conformal mapping of Ω onto the ∆ normalized
by Φ(∞) =∞, limz→∞

Φ(z)
z > 0, and Ψ := Φ−1. For t ≥ 1, z ∈ C, we set:

Lt := {z : |Φ(z)| = t} (L1 ≡ L), Gt := intLt, Ωt := extLt.

Let {zj}mj=1 be a fixed system of distinct points on curve L, located in the positive direction. For some
fixed R0, 1 < R0 <∞, and z ∈ GR0 , consider a so-called generalized Jacobi weight function h (z) being
defined as follows:

h(z) := h0(z)
m∏
j=1
|z − zj |γj , z ∈ GR0 , (1.1)

where γj > −2, for all j = 1, 2, ...,m, and the function h0 is uniformly separated from zero in GR0 , i.e.
there exists a constant c0 := c0(GR0) > 0 such that, for all z ∈ GR0

h0(z) ≥ c0 > 0.

For any p > 0 and for Jordan region G, let’s define:

‖Pn‖p : = ‖Pn‖Ap(h,G) :=
(∫∫

G

h(z) |Pn(z)|p dσz
)1/p

<∞, 0 < p <∞; (1.2)

‖Pn‖∞ : = ‖Pn‖A∞(1,G) := ‖Pn‖C(G) , p =∞,

where σz is the two-dimensional Lebesgue measure.
In this work, we continue the study of the following Nikolskii-type inequality:

‖Pn‖∞ ≤ c1λn(G, h, p) ‖Pn‖p , (1.3)
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where c1 = c1(G, h, p) > 0 is a constant independent of n and Pn, and λn(G, h, p) → ∞, n → ∞,
depending on the geometrical properties of region G, weight function h and of p. The estimate of (1.3)-
type for some (G, p, h) was investigated in [27, pp.122-133], [17], [26, Sect.5.3], [32], [15], [2]-[8] (see, also,
references therein) and others. Further, analogous of (1.3) for some regions and the weight function h(z)
were obtained: in [8] for p > 1 and for regions bounded by piecewise Dini-smooth boundary without cusps;
in [11] for p > 0 and for regions bounded by quasiconformal curve; in [7] for p > 1 and for regions bounded
by piecewise smooth curve without cusps; in [10] for p > 0 and for regions bounded by asymptotically
conformal curve; in [16] for p > 0 and for regions bounded by piesewise smooth curves with interior (zero
or nonzero) angles, in [12] for p > 0 and for regions bounded by piecewise asymptotically conformal curve
having cusps and others.

In this work, we investigate similar problems for z ∈ G in regions bounded by piecewise asymptotically
conformal curves having interior nonzero zero angles and for weight function h (z) , defined in (1.1) and
for p > 0.

Now, we begin to give some definitions and notations.
Following [24, p.97], [28], the Jordan curve (or arc) L is called K−quasiconformal (K ≥ 1), if there is

a K−quasiconformal mapping f of the region D ⊃ L such that f(L) is a circle (or line segment).
Let S be a Jordan curve and z = z(s), s ∈ [0, |S|] , |S| := mes S, denote the natural representation

of S. Let z1, z2 ∈ S be an arbitrary points and S(z1, z2) ⊂ S denotes the subarc of S of shorter diameter
with endpoints z1 and z2. The curve S is a quasicircle if and only if the quantity

sup
z1,z2∈l; z∈l(z1,z2)

|z1 − z|+ |z − z2|
|z1 − z2|

(1.4)

is bounded. Following to Lesley [25], the curve S to be said "c−quasiconformal", if the quantity (1.4)
bounded by positive constant c, independent from points z1, z2 and z. At the literature it is possible to
find various functional definitions of the quasiconformal curves (see, for example, [29, pp.286-294], [24,
p.105], [13, p.81], [30, p.107]).

The Jordan curve S is called asymptotically conformal [19], [30], if

sup
z1,z2∈S; z∈S(z1,z2)

|z1 − z|+ |z − z2|
|z1 − z2|

→ 1, |z1 − z2| → 0. (1.5)

We will denote this class as AC, and will write G ∈ AC, if L := ∂G ∈ AC.
The asymptotically conformal curves occupy a special place in the problems of the geometric theory of

functions of a complex variable. These curves in various problems have been studied by Anderson, Becker
and Lesley [14], Dyn’kin [20], Pommerenke, Warschawski [31], Gutlyanskii, Ryazanov [21], [22], [23] and
others. According to the geometric criteria of quasiconformality of the curves ([13, p.81], [30, p.107]),
every asymptotically conformal curve is a quasicircle. Every smooth curve is asymptotically conformal
but corners are not allowed. It is well known that quasicircles can be non-rectifiable (see, for example,
[18], [24, p.104]). The same is true for asymptotically conformal curves.

A Jordan arc ` is called asymptotically conformal arc, when ` is a part of some asymptotically
conformal curve.

Now, we define a new class of regions bounded by piecewise asymptotically conformal curve having
exterior nonzero "angles" at the connecting points of boundary arcs.

Throughout this work, we will assume that p > 0 and the constants c, c0, c1, c2, ... are positive and
constants ε0, ε1, ε2, ... are sufficiently small positive (generally, are different in different relations), which
depends on G in general and, on parameters inessential for the argument, otherwise, the dependence will
be explicitly stated. Also note that, for any k ≥ 0 andm > k, notation j = k,m denotes j = k, k+1, ...,m.

Now, let’s introduce "special angles" on L.

Definition 1.1. We say that a Jordan region G ∈ PAC(ν1, ..., νm), 0 < νj < 2, j = 1,m, if L = ∂G
consists of the union of finite asymptotically conformal arcs {Lj}mj=1 , connected at the points {zj}mj=0 ∈
L such that in z0- L locally asymptotically conformal and for any zj ∈ L, j = 1,m, where two arcs
Lj−1 and Lj meet, there exist rj := rj(L, zj) > 0 and νj := νj(L, zj), 0 < νj < 2, such that for some
0 ≤ θ0 < 2 a closed maximal circular sector S(zj ; rj , νj) :=

{
ζ : ζ = zj + rje

iθπ, θ0 < θ < θ0 + νj
}
of

radius rj and opening νjπ lies in G = intL with vetrex at zj .
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Clearly , that PAC(ν1) ⊂ PAC(ν2), if ν2 ≥ ν1.

Definition 1.2. We say that a Jordan region G ∈ PAC(ν), if G ∈ PAC(ν1, ..., νm), 0 < νj < 2, j = 1,m,
where ν = min{νj : 0 < νj < 2, j = 1,m}.

It is clear from Definition 1.1 (1.2), that each region G ∈ PAC(ν1, ..., νm), 0 < ν1, ..., νm < 2,
(G ∈ PAC(ν)) may have "singularity" at the boundary points {zi}mi=1 ∈ L. If it does not have such
"singularity" ( in this case we put νi = 1, i = 1,m), then it is written as G ∈ AC.

Throughout this work, we will assume that the points {zi}mi=1 ∈ L defined in (1.1) and {ζi}mi=1 ∈ L
defined in Definition 1.1 (1.2) coincide. Without the loss of generality, we also will assume that the points
{zi}mi=1 are ordered in the positive direction on the curve L.

We state our new results. Assume that the curve L have "singularity" on the boundary points {zi}mi=1,
i.e., νi < 1, for all i = 1,m, and the weight function h have "singularity" at the same points, i.e., γi 6= 0
for some i = 1,m. In this case, we have the following:

Theorem 1.1. Let p > 0. Suppose that G ∈ PAC(ν1, ..., νm) for some 0 < ν1, ..., νm < 1; h(z) defined
as in (1.1). Then, for any Pn ∈ ℘n, n ∈ N, and arbitrarily small ε > 0, there exists c1 = c1(G, p, γj) > 0
such that

‖Pn‖∞ ≤ c1(n+ 1)
2+γ̃
p (2−ν̃)+ε ‖Pn‖p , (1.6)

where γ̃ := max {0, γi} and ν̃ := min {νi} , i = 1,m .

Theorem 1.2. Let p > 0. Suppose that G ∈ PAC(ν1, ..., νm) for some 0 < ν1, ..., νm < 1; h(z) defined
as in (1.1). Then, for any Pn ∈ ℘n, n ∈ N, and arbitrarily small ε > 0, there exists c2 = c2(G, p, γj) > 0
such that

|Pn(zj)| ≤ c2µn ‖Pn‖p ,
where

µn :=


n

(2+γj)(2−νj)
p +ε, if γj > 1

2−νj − 2− ε,
(n lnn)

1
p , if γj = 1

2−νj − 2− ε,
n

1
p , if − 2 < γj <

1
2−νj − 2− ε.

(1.7)

The sharpness of the estimations (1.6) and (1.7) can be discussed by comparing them with the following
result:

Remark 1.1. ([9, Theorem 1.15], [2]) For any n ∈ N there exists a polynomials Q∗n, T ∗n ∈ ℘n such that
for unit disk B and weight function h∗(z) = |z − z1|2 the following is true:

|Q∗n(z)| ≥ c6n ‖Q∗n‖A2(B) , for all z ∈ B;

|T ∗n(z1)| ≥ c7n
2 ‖T ∗n‖A2(h∗,B) ;

2 Some Auxiliary Results

Throughout this work, for the nonnegative functions a > 0 and b > 0, we shall use the notations
“a � b” (order inequality), if a ≤ cb and “a � b” are equivalent to c1a ≤ b ≤ c2a for some constants
c, c1, c2 (independent of a and b), respectively.

Lemma 2.1. [1] Let L be a K−quasiconformal curve, z1 ∈ L, z2, z3 ∈ Ω ∩ {z : |z − z1| � d(z1, Lr0)};
wj = Φ(zj), j = 1, 2, 3. Then

a) The statements |z1 − z2| � |z1 − z3| and |w1 − w2| � |w1 − w3| are equivalent.
So are |z1 − z2| � |z1 − z3| and |w1 − w2| � |w1 − w3| ;

b) If |z1 − z2| � |z1 − z3| , then ∣∣∣∣w1 − w3

w1 − w2

∣∣∣∣K−2

�
∣∣∣∣z1 − z3

z1 − z2

∣∣∣∣ � ∣∣∣∣w1 − w3

w1 − w2

∣∣∣∣K2

,

where 0 < r0 < 1, R0 := r−1
0 are constants, depending on G.
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Lemma 2.2. [25, p.342] Let L be an asymptotically conformal curve. Then, Φ and Ψ are Lipα for all
α < 1 in Ω and ∆, correspondingly.

Let {zj}mj=1 be a fixed system of the points on L and the weight function h (z) be defined as in (1.1).

Lemma 2.3. [5] Let L be a K−quasiconformal curve; h(z) is defined in (1.1). Then, for arbitrary
Pn(z) ∈ ℘n, any R > 1 and n = 1, 2, ..., we have

‖Pn‖Ap(h,GR) � R̃
n+ 1

p ‖Pn‖Ap(h,G) , p > 0, (2.1)

where R̃ = 1 + c(R− 1) and c is independent from n and R.

3 Proof of Theorems

3.1 Proof of Theorem 1.1

Proof. Suppose that G ∈ PAC(ν1, ν2) for some 0 < ν1, ν2 < 1 and h(z) is defined as in (1.1). Let
{ξj} , 1 ≤ j ≤ m ≤ n, be the zeros (if any exist) of Pn(z) lying on Ω. Let’s define the function Blaschke
with respect to the zeros {ξj} of the polynomial Pn(z) :

B̃j(z) := Φ(z)− Φ(ξj)
1− Φ(ξj)Φ(z)

, z ∈ Ω, (3.1)

and let

Bm(z) :=
m∏
j=1

B̃j(z), z ∈ Ω. (3.2)

It is easy that the
Bm(ξj) = 0, |Bm(z)| ≡ 1, z ∈ L; |Bm(z)| < 1, z ∈ Ω. (3.3)

Then, for each ε1, 0 < ε1 < 1, there exists a circle
{
w : |w| = R1 := 1 + ε2, 0 < ε2 <

ε1
n

}
such that for

any j = 1, 2, the following holds: ∣∣∣B̃j(ζ)∣∣∣ > 1− ε2, ζ ∈ LR1 .

So, from (3.2), we get:
|Bm(ζ)| > (1− ε2)m � 1, ζ ∈ LR1 . (3.4)

For any p > 0 and z ∈ Ω let us set:

Qn,p (z) :=
[

Pn (z)
Bm(z)Φn+1(z)

]p/2
. (3.5)

The function Qn,p (z) is analytic in Ω, continuous on Ω, Qn,p (∞) = 0 and does not have zeros in Ω. We
take an arbitrary continuous branch of the Qn,p (z) and for this branch, we maintain the same designation.
According to Cauchy integral representation for the unbounded region Ω, we have:

Qn,p (z) = − 1
2πi

∫
LR1

Qn,p (ζ) dζ

ζ − z
, z ∈ ΩR1 . (3.6)

According to (3.1) - (3.5), we have:

|Pn (z)|p/2 =
∣∣Bm(z)Φn+1(z)

∣∣ p2
2πd(z, LR1)

∫
LR1

∣∣∣∣ Pn (ζ)
Bm(ζ)Φn+1(ζ)

∣∣∣∣p/2
|dζ| (3.7)

�
∣∣Φn+1(z)

∣∣ p2 ∫
LR1

|Pn (ζ)|p/2 |dζ|
|ζ − z|

.

146 Advances in Analysis, Vol. 3, No. 4, October 2018

AAN Copyright © 2018 Isaac Scientific Publishing



Multiplying the numerator and the denominator of the last integrand by h1/2(ζ), replacing the variable
w = Φ(z) and applying the Hölder inequality, we obtain: ∫

LR1

|Pn (ζ)|
p
2 |dζ|


2

≤
∫

|t|=R1

h(Ψ(t)) |Pn (Ψ(t))|p |Ψ ′(t)|2 |dt| ·
∫

|t|=R1

|dt|
h(Ψ(t)) |Ψ(t)− Ψ(w)|2

(3.8)

≤
∫

|t|=R1

h(Ψ(t)) |Pn (Ψ(t))|p |Ψ ′(t)|2 |dt| ·
∫

|t|=R1

|dt|
h(Ψ(t)) |Ψ(t)− Ψ(w)|2

=
∫

|t|=R1

|fn,p(t)|p |dt| ·
∫

|t|=R1

|dt|
h(Ψ(t)) |Ψ(t)− Ψ(w)|2

=: An ·Dn(w),

where fn,p(t) := h
1
p (Ψ(t))Pn(Ψ(t))(Ψ ′(t))

2
p , |t| = R1.

For the estimate integral An, we divide the circle |t| = R1 into n equal parts δn with mesδn = 2πR1
n

and by applying the mean value theorem, we get:

An : =
∫

|t|=R1

|fn,p (t)|p |dt|

=
n∑
k=1

∫
δk

|fn,p (t)|p |dt| =
n∑
k=1

∣∣∣fn,p (t′k)∣∣∣pmesδk, t′k ∈ δk.

On the other hand, by applying mean value estimation∣∣∣fn,p (t′k)∣∣∣p ≤ 1
π
(∣∣t′k∣∣− 1

)2

∫∫
|ξ−t′k|<|t′k|−1

|fn,p (ξ)|p dσξ,

we obtain:

(An)2 �
n∑
k=1

mes δk

π
(∣∣t′k∣∣− 1

)2

∫∫
|ξ−t′k|<|t′k|−1

|fn,p (ξ)|p dσξ, t′k ∈ δk.

By taking into account, at most two of the discs with center t′k are intersecting, we have:

An �
mesδ1(∣∣t′1∣∣− 1

)2

∫∫
1<|ξ|<R

|fn,p (ξ)|p dσξ � n ·
∫∫

1<|ξ|<R

|fn,p (ξ)|p dσξ.

According to Lemma 2.3, for An we get:

An � n
∫∫
GR\G

h(ζ) |Pn(ζ)|p dσζ � n · ‖Pn‖pp . (3.9)

To estimate the integral Dn(w), denoted by wj := Φ(zj), ϕj := argwj , for any fixed ρ > 1,we introduce:

∆1(ρ) : =
{
t = reiθ : r > ρ,

ϕ0 + ϕ1

2 ≤ θ < ϕ1 + ϕ2

2

}
, (3.10)

∆2(ρ) : =
{
t = reiθ : r > ρ,

ϕ1 + ϕ2

2 ≤ θ < ϕ1 + ϕ0

2

}
;

∆j : = ∆j(1), Ωj := Ψ(∆j), Ωjρ := Ψ(∆j(ρ));

Lj : = L ∩Ωj , Ljρ := Lρ ∩Ω
j

ρ, j = 1, 2; L = L1 ∪ L1, Lρ = L1
ρ ∪ L2

ρ.
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Under these notations, from (3.8) for the Dn(w), we get:

Dn(w) =
∫

|t|=R1

|dt|
h(Ψ(t)) |Ψ(t)− Ψ(w)|2

(3.11)

�
2∑
j=1

∫
Φ(Lj

R1
)

|dt|
2∏
j=1
|Ψ(t)− Ψ(wj)|γj |Ψ(t)− Ψ(w)|2

�
2∑
j=1

∫
Φ(Lj

R1
)

|dt|
|Ψ(t)− Ψ(wj)|γj |Ψ(t)− Ψ(w)|2

=:
2∑
j=1

Dn,j(w),

since the points {zj}2
j=1 ∈ L are distinct. So, we need to evaluate the Dn,j(w). For this, we take z ∈ LR

and introduce the notations:

Φ(LR1) = Φ(
2⋃
j=1

LjR1
) =

2⋃
j=1

Φ(LjR1
) =

2⋃
j=1

2⋃
i=1

Kj
i (R1), (3.12)

where

Kj
1(R1) :=

{
t ∈ Φ(LjR1

) : |t− wj | < c1

}
Kj

2(R1) := Φ(LjR1
)\Kj

1(R1), j = 1, 2.

Analogously,

Φ(LR) = Φ(
2⋃
j=1

LjR) =
2⋃
j=1

Φ(LjR) =
2⋃
j=1

2⋃
i=1

Kj
i (R),

where

Kj
1(R) :=

{
t ∈ Φ(LjR) : |τ − wj | < 2c1

}
Kj

2(R) := Φ(LjR)\Kj
1(R), j = 1, 2.

Then, after these definitions, taking arbitrary fixed w = Φ(z) ∈ Φ(LR), the quantity Dn,j(w) can be
written as follows:

Dn,j(w) =
2∑
i=1

∫
Kj
i

(R1)

|dt|
|Ψ(t)− Ψ(wj)|γj |Ψ(t)− Ψ(w)|2

=:
2∑
i=1

Di
n,j(w) (3.13)

The quantity Di
n,j(w) we shall estimate for each i = 1, 2 and j = 1, 2 in cases separately, depending of

location of the w ∈ Φ(LR). Let ε > 0 arbitrary small fixed number.
Case 1. Let w ∈ Φ(L1

R).
According to the above notations, we will make evaluations for case w ∈ K1

i (R) for each i = 1, 2, 3.
1.1) Let w ∈ K1

1 (R). In this case, we will estimate the quantity

Dn,1(w) =
2∑
i=1

∫
K1
i

(R1)

|dt|
|Ψ(t)− Ψ(w1)|γ1 |Ψ(t)− Ψ(w)|2

=:
2∑
i=1

Di
n,1(w) (3.14)

for γ1 ≥ 0 and γ1 < 0 separately.
For each i = 1, 2 and j = 1, 2 we put: Kj

i,1(R1) :=
{
t ∈ Φ(LjR1

) : |t− wj | ≥ |t− w|
}
, Kj

i,2(R1) :=
Kj
i (R1) \ Kj

i,1(R1).
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1.1.1) If γ1 ≥ 0, then

D1
n,1(w) =

∫
K1

1 (R1)

|dt|
|Ψ(t)− Ψ(w1)|γ1 |Ψ(t)− Ψ(w)|2

(3.15)

=
∫

K1
1,1(R1)

|dt|
|Ψ(t)− Ψ(w)|2+γ1

+
∫

K1
1,2(R1)

|dt|
|Ψ(t)− Ψ(w1)|2+γ1

= : D1,1
n,1(w) +D1,2

n,1(w).

Since G ∈ PAC(ν1, ν2) for some 0 < ν1, ν2 < 1, according to [25], ψ ∈ Lipνi and Φ ∈ Lip 1
2−νi , i = 1, 2,

in a some fixed neighborhood of point zj . Therefore, we get:

D1,1
n,1(w) �

∫
K1

1,1(R1)

|dt|
|t− w|(2+γ1)(2−ν1) � n

(2+γ1)(2−ν1)−1, (3.16)

and
D1,2
n,1(w) �

∫
K1

1,2(R1)

|dt|
|t− w1|(2+γ1)(2−ν1) � n

(2+γ1)(2−ν1)−1, (3.17)

If γ1 < 0, then

D1
n,1(w) =

∫
K1

1 (R1)

|Ψ(t)− Ψ(w1)|(−γ1) |dt|
|Ψ(t)− Ψ(w)|2

(3.18)

�
∫

K1
1 (R1)

|dt|
|t− w|2(2−ν1) �

∫
K1

1 (R1)

|dt|
|t− w|2(2−ν1)

� n2(2−ν1)−1.

1.1.2) If γ1 ≥ 0, then

D2
n,1(w) =

∫
K1

2 (R1)

|dt|
|Ψ(t)− Ψ(w1)|γ1 |Ψ(t)− Ψ(w)|2

(3.19)

=
∫

K1
2,1(R1)

|dt|
|Ψ(t)− Ψ(w)|2+γ1

+
∫

K1
2,2(R1)

|dt|
|Ψ(t)− Ψ(w1)|2+γ1

= : D2,1
n,1(w) +D2,2

n,1(w).

and, so from Lemma 2.1 and 2.2, we get:

D2,1
n,1(w) �

∫
K1

2,1(R1)

|dt|
|t− w|(2+γ1)(2−ν1) � n

(2+γ1)(2−ν1)−1, (3.20)

and
D2,2
n,1(w) � 1. (3.21)

Therefore, from (3.19)-(3.21) for γ1 ≥ 0, we have:

D2
n,1(w) � n(2+γ1)(2−ν1)−1. (3.22)

For γ1 < 0 from (3.14), we have:

D2
n,1(w) =

∫
K1

2 (R1)

|Ψ(t)− Ψ(w1)|(−γ1) |dt|
|Ψ(t)− Ψ(w)|2

(3.23)
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�
∫

K1
2 (R1)

|dt|
|t− w|2(1+ε) � n

1+ε
, ∀ε > 0.

1.2) Let w ∈ K1
2 (R).

1.2.1) For any γ1 > −2

D1
n,1(w) =

∫
K1

1,1(R1)

|dt|
|Ψ(t)− Ψ(w)|2+γ1

+
∫

K1
1,2(R1)

|dt|
|Ψ(t)− Ψ(w1)|2+γ1

(3.24)

= : D1,1
n,1(w) +D1,2

n,1(w),

and so, according to Lemmas 2.1 and 2.2, we obtain:

D1,1
n,1(w) �

∫
K1

1,1(R1)

|dt|
|Ψ(t)− Ψ(w)|2+γ1

� 1,

and
D1,2
n,1(w) �

∫
K1

1,2(R1)

|dt|
|t− w1|(2+γ1)(2−ν1) � n

(2+γ1)(2−ν1)−1. (3.25)

1.2.2) For any γ1 > −2, according to Lemmas 2.1 and 2.2, we have:

D2
n,1(w) �

∫
K1

2,1(R1)

|dt|
|Ψ(t)− Ψ(w)|2+γ1

+
∫

K1
2,2(R1)

|dt|
|Ψ(t)− Ψ(w1)|2+γ1

. (3.26)

�
∫

K1
2,1(R1)

|dt|
|t− w|(2+γ1)1+ε + 1 � n(2+γ1)(1+ε)−1, ∀ε > 0.

Combining estimates (3.14)-(3.26), for w ∈ Φ(LR), we have:

Dn,1 � n(2+γ̃1)(2−ν1)−1+ε, γ̃1 := max {0; γ1} . (3.27)

Case 2. Let w ∈ Φ(L2
R). Analogously to the Case 1, we will obtain estimates for w ∈ K2

1 (R) and
w ∈ K2

2 (R)
Dn,2(w) � n(2+γ2)(2−ν2)−1+ε, γ̃2 := max {0; γ2} (3.28)

Therefore, comparing relations (3.11), (3.13), (3.27) and (3.28), we have:

Dn(w) � n(2+γ̃1)(2−ν1)−1 + n(2+γ̃2)(2−ν2)−1, (3.29)

where γ̃1 and γ̃2 defined as in (3.27) and (3.28).
Now, from (3.7), (3.8), (3.9) and (3.29), for any z ∈ LR, we get:

|Pn (z)| � [n(2+γ̃1)(2−ν1) + n(2+γ̃2)(2−ν2)] ‖Pn‖p

Since this estimate holds for any z ∈ LR, then it is also true for z ∈ G. Therefore, we complete the proof
of theorem.

3.2 Proof of Theorem 1.2

Proof. Suppose that G ∈ PAC(ν1, ν2) for some 0 < ν1, ν2 < 1 and h(z) is defined as in (1.1). For
each R > 1, let w = ϕR(z) denote a univalent conformal mapping GR onto the B, normalized by
ϕR(0) = 0, ϕ′R(0) > 0, and let {ζj} , 1 ≤ j ≤ m ≤ n, be a zeros of Pn(z) (if any exist) lying on GR. Let

bm,R(z) :=
m∏
j=1

b̃j,R(z) =
m∏
j=1

ϕR(z)− ϕR(ζj)
1− ϕR(ζj)ϕR(z)

, (3.30)
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denote a Blaschke function with respect to zeros {ζj} , 1 ≤ j ≤ m ≤ n, of Pn(z) ([33]). Clearly,

|bm,R(z)| ≡ 1, z ∈ LR, and |bm,R(z)| < 1, z ∈ GR. (3.31)

For any p > 0 and z ∈ GR, let us set

Tn.p (z) :=
[
Pn (z)
bm,R(z)

]p/2
. (3.32)

The function Tn,p (z) is analytic in GR, continuous on GR and does not have zeros in GR. We take an
arbitrary continuous branch of the Tn,p (z) and for this branch we maintain the same designation. Then,
the Cauchy integral representation for the Tn,p (z) at the z = z1 gives:

Tn,p (z1) = 1
2πi

∫
LR

Tn,p (ζ) dζ

ζ − z1
.

Then, according to (3.31), we obtain:

|Pn (z1)|
p/2
≤ |bm,R(z1)|p/2

2π

∫
LR

∣∣∣∣ Pn (ζ)
bm,R(ζ)

∣∣∣∣p/2
|dζ|
|ζ − z1|

(3.33)

�
∫
LR

|Pn (ζ)|
p/2 |dζ|
|ζ − z1|

.

Multiplying the numerator and the denominator of the last integrand by h1/2(ζ), replacing the variable
w = Φ(z) and applying the Hölder inequality, we obtain:∫

LR

|Pn (ζ)|
p
2
|dζ|
|ζ − z1|

2

(3.34)

≤
∫
|t|=R

h(Ψ(t)) |Pn (Ψ(t))|p |Ψ ′(t)|2 |dt| ·
∫
|t|=R

|dt|
h(Ψ(t)) |Ψ(t)− Ψ(w1)|2

=
∫
|t|=R

|fn,p(t)|p |dt| ·
∫
|t|=R

|dt|
h(Ψ(t)) |Ψ(t)− Ψ(w1)|2

,

where fn,p(t) has been defined as in (3.8). Since R > 1 is arbitrary, then (3.34) holds also for R = R1 :=
1 + ε1

n , 0 < ε1 < 1. So, we have: ∫
LR1

|Pn (ζ)|
p
2
|dζ|
|ζ − z1|


2

(3.35)

≤

 ∫
|t|=R1

|fn,p(t)|p |dt|

 ·
 ∫
|t|=R1

|dt|
h(Ψ(t)) |Ψ(t)− Ψ(w1)|2


= : An ·Dn(w1),

and, An and Dn(wj) have been defined as in (3.8) for R = R1. Therefore, from (3.33) and (3.35), we have:

|Pn (z1)| � An ·Dn(w1), (3.36)

where, according to (3.9), the estimate
An � n · ‖Pn‖pp
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is satisfied. For the estimate of the quantity Dn(w1) we use the notations at the estimation of the Dn(w)
as in (3.11)-(3.13). Therefore, under these notations, for the Dn(w1), we get:

Dn(w1) �
∫

Φ(Lj
R1

)

|dt|
|Ψ(t)− Ψ(w1)|2+γ1

(3.37)

�
2∑
i=1

∫
K1
i

(LR1 )

|dt|
|Ψ(t)− Ψ(w1)|2+γ1

=:
2∑
i=1

Di
n,1(w1).

So, we need to evaluate the Di
n,1(w1) for each i = 1, 2. We have:

D1
n,1(w1) =

∫
K1

1 (LR1 )

|dt|
|Ψ(t)− Ψ(w1)|2+γ1

(3.38)

�
∫

K1
1 (LR1 )

|dt|
|t− w1|(2+γ1)(2−ν1) �

n(2+γ1)(2−ν1)−1, if (2 + γ1) (2− ν1) > 1,
lnn, if (2 + γ1) (2− ν1) = 1,
1, if (2 + γ1) (2− ν1) < 1,

and

D2
n,1(w1) =

∫
K2

1 (LR1 )

|dt|
|Ψ(t)− Ψ(w1)|2+γ1

�
∫

K2
1 (LR1 )

|dt|
|t− w1|2+γ1+ε � n

(2+γ1)(1+ε)−1. (3.39)

Combining relations (3.37) - (3.39), we have:

Dn(w1) �

n(2+γ1)(2−ν1)−1+ε, if (2 + γ1) (2− ν1) > 1− ε,
lnn, if (2 + γ1) (2− ν1) = 1− ε,
1, if (2 + γ1) (2− ν1) < 1− ε,

(3.40)

From the estimations (3.36) and (3.40), we obtain:

|Pn (z1)| �


n

(2+γ1)(2−ν1)
p +ε, if (2 + γ1) (2− ν1) > 1− ε,

(n lnn)
1
p , if (2 + γ1) (2− ν1) = 1− ε,

n
1
p , if (2 + γ1) (2− ν1) < 1− ε,

‖Pn‖p ,

and we complete the proof of theorem.
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