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Abstract Let {2 be a region in R? and f be a positive C'* function satisfying
lim f(u) = oco.

u—0~+

We consider the quasi-linear elliptic equations of the form

div (a (v) Vu) = # [Vul® + f (u)

where a is a positive C* function. Motivated by the thin film equations, a solution w is said to be a
point rupture solution if for some p € 2, u (p) = 0 and u (p) > 0 in 2\ {p}. Our main result is a
sufficient condition on a and f for the existence of radial point rupture solutions.
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1 Introduction

Let £2 be a region in R?, and f be a smooth function defined on (0, 00) satisfying

lim f(s) = oo, (1.1)

s—0t

we consider the quasi-linear elliptic equations of the form

div (a (u) Vu) = # \Vul? + f (u) (1.2)

where the terms depending upon a are formally associated with the functional

[ atwvu

which can be viewed as a minimizing problem in presence of a Riemannian metric tensor depending upon
the unknown w itself.

Motivated by the studies of thin film equations, a solution to (1.2) is said to be a point rupture
solution if for some p € 2, u (p) = 0 and u (x) > 0 for any = € 2\ {p}. Our main result is the existence
of a radial rupture solution:

Theorem 1. Assume that for some o* >0, a € C1[0,0*], f € C* (0,0*] are positive functions such that
for some positive constants m < M,
m<a(u) <M

holds for any u € [0,0*] and f is monotone decreasing function on (0,0*] satisfying

u 1 0_* .
&l fw < & 0] (13)

“o1
G(u):/o mds.

where
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Then there exists v* > 0 and a radial point rupture solution ug to (1.2) in By« (0) such that ug = ug () is
continuous on [0, r*],
up (0) =0, ug (r) > 0 for any r € (0,77].

Moreover, ug € H' (B, (0)) and ug is a weak solution to (1.2) in the sense that for any ¢ € C§° (By (r*)),

a’ (up) 2 _
a (ug) VugVp + — [Vug|™ ¢ + f (ug) p = 0.
Bi(r*)

When a = 1, (1.2) is reduced to the simpler form
Au=f (u)

and its rupture solution has been investigated in [4], [6] when f (u) = u=* —1, a > 1 which has application
to the van der Waals force driven thin films, in [5] with f satisfying the growth condition (1.3) and in
[2] when the space dimension > 3. We also remark here that the uniqueness result for general functions
a and f is still open. (1.2) has also been studied by F. Gladiali and M. Squassina [1] where they are
interested in the so called explosive solutions.

2 Proof of the Main Result

We consider the quasi-linear equations of the form

div (a (u) Vu) = GT(“) IVul® + f (u) (2.1)

in a region 2 C R? where for some §* > 0, a € C1[0,6*] and f € C' (0, "] are positive functions such
that for some positive constants m < M,

m < a(u) < M holds for any u € [0,0].

Let g be the unique solution to the Cauchy problem

1
9/2779(0)207
a(g)
and let v be a solution to
Av = h(v) (2.2)
where /(g (v)
g (v
h(v) = ———=.
val(g(v))
Define
u=g(v)
We have 1
Vu =g (v)Vov= Vo,
a(g)
hence

which leads to

Hence (2.2) implies
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which is equivalent to (2.1). Hence, (2.1) admits a point rupture solution if and only if (2.2) has a point

rupture solution.

Noticing that h (v) = S5 not necessary monotone decreasing in v. However, the boundedness

Valg(v))
of a and the monotone properties of f and g implies that

VM

i.e., h is bounded by two monotone decreasing functions.
We have the following existence result on rupture solutions to (2.2):

L <g<v>>§h<v>sﬁf< (v)) for any v € [0,g71 (6],

Proposition 1. Let 0* > 0 and hy, hy € C* (0,0*] be monotone decreasing functions such that

0 < hy <hg on (0,07

and

lim hy (v) = lm hs (v) = 0.

v—0+ v—0t

Let h € C1(0,0%] satisfy
hl S h S hg on (0,0*] .

vl
G1 (v) :/0 3 (S)ds.

Let

Assume in addition that
v ha(s)
0 hl(s)

G1 (v) hy (v)

Then there exists r* > 0 and a radial point rupture solution vy to

h
2 cL'[0,0%] and

LY]0,0%].
I € [0,07]

Av =h(v)
in By« (0) such that vo = vg (r) is continuous on [0,7%],
v (0) =0, vg (r) > 0 for any r € (0,r7].

Moreover, vy is monotone increasing and

v ha(s
fO h?gs)

Gt (iﬁ) <o (r) g/o CROINC )dv for any r € [0,77].

For any o € (0,0%), we use v, to denote the unique solution to the initial value problem

{ Upr + 2v, = h(v),
v (0) = 0,0’ (0) = 0.

Lemma 1. There exists r, > 0 such that v, is defined on [0,7,] with vy (r5) =
on (0,75] and

G1 (iﬁ) <v,(r)<oc+H (G11 (iﬁ)) on [0,7,].

where

h
fov h?( Jds

0 Gr()h ()"

H(w) =
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o*. Moreover, v} (r) >0

(2.7)
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Proof. For simplicity, we suppress the ¢ subscript in this proof. We write
1
VU + =0, = h (V)
r
in the form of
(rvy), =rh(v) >0,

so we have

T, = /T sh(v(s))ds > 0.
0

In particular, v is monotone increasing and v can be extended whenever h (v) is defined and bounded.
Hence, there exists r, > 0 such that v, is defined on [0,7,] with v, (r,) = ¢*. Since v is monotone
increasing and h; is monotone decreasing, we have

rU, = /T sh(v(s))ds > /T shy (v (s))ds

0 0

> b o) [ sds = 5 00).

hence,
Uy S 1
—r.
hl (1)) -2
Integrating again, we have
1 1
Gy (v(r)) > Gy (o) + ZTQ > Zr2.

where

Y1
G1 (v) 2/0 3 (S)ds.

Since (G is continuous and strictly monotone increasing, Gfl is well defined and we have

v(r) > Gt <ir2> .

On the other hand, since hs is monotone increasing,

U, = /O sh(v(s))ds < /0 sha (v (s))ds < /0 hay <G;1 Cls?)) sds.

Let v = G7' (1s?), we have G (v) = 352, and

4
1 1
mdv = §sd8

Hence,

r 1 G;l(%TQ)

/ ho (Gfl (82>> sds = 2/ hz (v) dw.

0 4 0 h1 (v)

Hence,
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which yields

G71(1r2) w
:a+/1 ' 2[/ h?“%u} 2w
0 s LJo hi(t) shy (w)
G;l(% 2) Ow 22 )d
(t)
=0+ ! dw
0 G1(w) b (w)
=0+ H (Gl_l <1r2>>
4
where hatt)
w S n2
H (w) = 0 (o

0 Gr(® ()

and we used substitution

O
The bounds on v, imply:
Corollary 1. There exists r* > 0 such that for any o € (0, "—2*} ,
>r
We can take
* U*
enfe (o 5)
Proof. For any o € (0, %*},
1
0" =0, (ro) <o+ H (Gl_l (47‘3))
<% ym(ar (e
— 2 1 4 o
Hence,
1 o*
H(GH(=r2)) > =
(6 (37)) 2%
Since the function H is strictly monotone increasing, we have
1 o*
G—l -2 > H—l e
1 <4r0> — 2
and since (31 is strictly monotone increasing, we have
wzafe (i (5))
O

The point rupture solution can be constructed as the limit of v, as ¢ — 0.
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*

Proof of Proposition 1. For any € > 0, vy, 0 € (O, %} is a family of uniformly bounded classical solutions

to
Av = h(v) in B, (0)\B- (0),
hence by a diagonal argument, there exists a sequence {o}ro; C (0, %} satisfying limy_,~ 0% = 0, such

that v,, — vo locally uniformly in B, (0)\ {0} as k — co. Now (2.7) implies

Gt (irz’) <wv(r)<H (Gll (iﬂ)) on [0,7%].
lim H (G (iﬂ)) =0,

it is not difficulty to see, from the bounds of v, and vy, that v,, — vg uniformly in B, (0) as k — oo.
The above bounds also imply that v (0) = 0 and vg (r) > 0 for any r € (0,7*]. Standard elliptic theory
implies that vg € C%% (B,~ (0)\ {0}) and

Since

Avg = h(vg) in By (0)\ {0}.
Hence vg is a rupture solution. O

Remark 1. The above limit in the proof should be independent of the choice of {o}} e, Actually, we
expect that vy — vg uniformly on [0,7*] as o — 0. Unfortunately, we are unable to provide a proof here.

Even though vq is continuous, its derivatives have singularity at the origin. Now we investigate the
behavior of vy near the origin:

Lemma 2. The rupture solution vo € H} (B~ (0)) and f (vo) € H.. (B, (0)) and

lim ro (r) = 0. (2.8)

r—0+

Proof. For any r € (0,7*), we have
(rvg (r)" = rf (vo) > 0.

Hence, rv{ (r) is monotone increasing in (0, 7*). Since rvf (r) > 0 in (0,7*),
=1l o(r) >0
B = lim rvy(r) 2

is well defined. If 5 > 0, we have for r sufficiently small, say r € (0, 7],

v

rvg (r) =

hence, for any r € (0, 7],

vo(r)zvo(f)—/:v(’)() dr < wg (F /—dr

which contradicts to the fact that vg is continuous at 0 if we let r — 0. Hence 8 = 0 and (2.8) holds.
Next, for any € € (0,r*/2),

/ h (vg) dx

B,.x /2(0)\ B (0)

= / Avgdx
B,x /2(0)\B:(0)

:/ %dsm—/ %dsm.
9B« /5(0) or 8B (0) or
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Since

lim

= lim 2mev; () = 0,
e—0t e—0

we have

0
/ 90 45,
8B.(0) or
0
lim Yo

h(vg) dx = / —
€=0" /B, (0)\B-(0) 0B, 5(0) OT
hence, h (vg) € L}, (B (0)). Similarly, for any ¢ € (0,7*/2),

loc

/ Vol da

B,x /2(0)\ Be (0)

= —/ vo Avoda —|—/ vovyds, —/ vovyds,
By« /2(0)\Be(0) 0B,.x /2(0) B¢ (0)

= —/ voh(vo)da:+/ vovHds, —/ vovydsy,
Bre 12 (O\BL(0) 0B, 12(0) 9B.(0)

Letting e — 0, we have

ds,

lim |Vv0|2 de = — / voh (vo) dx + / vovyds,,
€707 J B 12 (0\B2(0) By /2(0) OB,= 3(0)
hence |Vuo|* € L), (B, (0)) and vy € H}. . (B~ (0)). O
Now we are ready to prove our main theorem:
Proof of Theorem 1. Let o* = g~ (§*), and for any v € (0,0*], define
h(v) = 2= f g(0) and ha () = —=1 (9 (1)

We have
h1 (’U) < h(v) = M < ho (’U)

- Val(g(v))
on (0,0*]. It is easy to verify that the assumption on 1 holds for h. In particular, we have
h VM
2 =Y cL'0,0"],
hi  vm

and for any v € (0,0%],

v 1 v 1
Gl(v):/o hl(s)ds.—m/o f(T(S))dS

o [ @

VI [ 3y o)

i [ e

_\/M/O T du

9(v) 4
Zv%MA e = VimMG (g (0),

and

fov Z?Eigds _ VM U
Gi(v)hi(v)  Vm Gi(v) 7=f(g(v)

ST Gl W)
oM g(v)
S MG/ 0)
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where we used

Hence,

- omJo G(u)f(u)
So the growth condition in (1.3) implies that,
u ha(v
f(] hj(vg
G (u) ha (u)

Proposition 1 implies the existence of a rupture solution vy to (2.5), hence

e L'[0,0"].

up = g (vo)
is a rupture solution to (1.2). The properties for vy imply that ug € H} (B (
and

lim rug (r) = 0.
r—0+

For any any ¢ € C2° (B, (0)), we have

/ a (ug) VugVedr = lim a (ug) VugVpdx
(0) e20 B (0\B:(0)

= lim —/ div (a (up) Vug) pdx — / ( (uo) Ouo ) dsy
=0t \ /B, (0\B-(0) 9B.(0) or

i

= lim / - (a(uo) \Vu0|2 + f (uo)) pdx — (

=0 \/B-\BL@) \ 2 OB (©)

-/ (‘”/ W) |9 + 1 (u0)> o,
B,.« (0)

Hence ug is a weak solution to (1.2) in B~ (0).

T*))’ f (Uo) € Llloc (Bl (T*

We discuss several examples at the end of this section to get a better understanding of the technical

assumption on the growth rate of h in (2.4).

Example 1.

where o > 0 is a constant and b (v) satisfies
B; <b(v) < By
for some constants 0 < B; < Bs. If we take
hiy = B1v™% and ho = Bov™ %,

we have

h
fv h2gz)d3 _(1+a)B
Gy

()lhl 0= B € L'0,1].
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Example 2. For some 0 < p < 1, )
h(v) =b(v)vPTlew
and b (u) satisfies
Bl S b (U) S 32
for some constants 0 < By < Bsy. If we take

1

_ p+1 _ p+1 %
h1 = B1vP e and hg = BovP T ev?

we have hals)

v 2(s

Jo @ _ Bap iy

G ( )hl( ) Bl’()p ’ )
Example 3.

1 1N R O N

fW==|{1+sin— v *+[1—sin—|v

2 v v

where
O<a<f<a+l

We take

fl (1)) = U_a7f2 (U) = 0_67
then we have for any v € (0,1],
hi (v) < h(v) < hg (v).

Hence,

v ho(s v _
o mgds  fys s dta
= T = v € L 0,1]
G1 (v) by (v) v l+a—-p
since a— B > —1. In this example, h can’t be expressed as a product of a bounded function and a monotone

function.

Example 4. This example shows that our result is not optimal. Let
h(v) = 203es
which is monotone decreasing near the origin and

lim A (v) = oc.

v—=0t
Taking
hi (v) = ha (v) = h(v),
we have
v h
Jo hféi)ds v
Gi(v)h (v) — 2093 f e Fds
. e v . 67%
v? [ Le s i(v2+2v)e’%
4
=———¢L"(0,
v(2+v) #L°(0,0]
for any o > 0. However, let
-1
Inr’
we have
1 1 9 1
Up = ——5 Upp = — - s
rin?r r21n’r r21n®r
and so 1
Upp + —Up = —2———5— = et = h (v
T r2ndr )
Hence v = 1;1” is a rupture solution to Av = h (v) even if the technical assumption is not satisfied.

Copyright © 2018 Isaac Scientific Publishing AAN



10 Advances in Analysis, Vol. 3, No. 1, January 2018

References

1. Francesca Gladiali and Marco Squassina. On Explosive Solutions for a Class of Quasi-linear Elliptic Equations.
Advanced Nonlinear Studies, 13:663-698, 2013.

2. Zongming Guo, Dong Ye, and Feng Zhou. Existence of singular positive solutions for some semilinear elliptic
equations. Pacific J. Math., 236(1):57-71, 2008.

3. Huigiang Jiang. Energy minimizers of a thin film equation with Born repulsion force. Commun. Pure Appl.
Anal., 10(2):803-815, 2011.

4. Huigiang Jiang and Fanghua Lin. Zero set of soblev functions with negative power of integrability. Chinese
Ann. Math. Ser. B, 25(1):65-72, 2004.

5. Huigiang Jiang and Attou Miloua. Point rupture solutions of a singular elliptic equation. Electronic Journal of
Differential Equations, 2013(70):1-8, 2013.

6. Huigiang Jiang and Wei-Ming Ni. On steady states of van der Waals force driven thin film equations. European
J. Appl. Math., 18(2):153-180, 2007.

AAN Copyright © 2018 Isaac Scientific Publishing





