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1 Introduction

Extreme problem of finding the best linear approximation methods for classes of analytic functions
presents certain interest in the calculation of Gel’fand and linear n-widths. In this direction, the study
has a number of final results (see., eg, [1,2,?,4,6,5,7,8,?,10,11,12,13,14] and references cited therein).

In this paper we construct the best linear approximation methods for certain classes of analytic
functions, previously studied in [15,10], and calculated the exact value of a number of n-widths of classes
of functions stated in more general Hardy spaces Hq,ρ (1 ≤ q ≤ ∞, 0 < ρ ≤ 1).

It is said that the analytic in the unit disk |z| < 1 the function f belongs to the Banach space Hq, if

‖f‖q = ‖f‖Hq := lim
ρ→1−0

 1
2π

2π∫
0

|f(ρeit)|qdt

1/q

<∞, 1 ≤ q ≤ ∞.

The norm of the function f ∈ Hq, 1 ≤ q ≤ ∞ is realized on its angular boundary values of
F (t) := f(eit). In the case of q =∞ we assume additionally the function of f is continuous in the closed
circle |z| ≤ 1. Let Hq,ρ (1 ≤ q ≤ ∞, 0 < ρ ≤ 1) be Hardy space of analytic in the disk |z| < ρ functions
f, for which ‖f‖Hq,ρ = ‖f(ρ·)‖Hq <∞.

Let Pn be a set of algebraic polynomials of degree at most n. By symbol

En(f)q = inf
{
‖f − pn−1‖q : pn−1 ∈Pn−1

}
we denote the best approximation of the function f ∈ Hq by setting Pn−1 of polynomials degree ≤ n− 1.
The derivative rth order of the function f in the argument z is denoted as usual f (r) := drf/dzr (r ∈
N, f (0) = f).

Structural properties of the function f (r) ∈ Hq are characterized by rate which tends to zero modulus
of smoothness of its boundary values of the derivative

ω2(F (r); 2t)q := sup
{
‖F (r)(·+ τ)− 2F (r)(·) + F (r)(· − τ)‖q : |τ | ≤ t

}
,

as t→ 0, setting this rate of decay to zero through a majorant averaged values containing ω2(F (r); 2t)Hq .
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Let Φ(x) (x ≥ 0) be arbitrary positive nondecreasing function such as Φ(0) = 0. For any given value
of the parameter µ ≥ 1/2, through W (r)

q (Φ;µ) (r ∈ N, 1 ≤ q ≤ ∞) denote the class of functions f ∈ Hq,
for which the derivative f (r) ∈ Hq for any h ∈ (0, π] satisfies the condition

1
h

h∫
0

ω2(F (r); 2t)q
(

1 + (µ2 − 1) sin πt

2h

)
dt ≤ Φ(h).

Here further definition and notation are necessary. Let X be Banach space; S the unit ball in it; M
convex centrally symmetric subset of X; Ln ⊂ X n-dimensional subspace; V (f, Ln) a continuous linear
operator that maps X to Ln; Ln linear subspace of codimension n from X. Let

E(f, Ln)X = inf
{
‖f − ϕ‖X : ϕ ∈ Ln

}
be the best approximation of a function f ∈ X, and through

En(f, V (f))X := E (f, V (f, Ln))X = ‖f − V (f, Ln)‖X

deviation of f ∈ X of a continuous linear operator is denoted as V (f, Ln) in X. For introduced the above
set of M ⊂ X we get

E(M, Ln)X
def= sup

{
E(f, Ln)X : f ∈M

}
,

E (M, V, Ln)X
def= sup

{
E (f, V (f, Ln))X : f ∈M

}
.

The magnitudes

bn(M;X) = sup{sup{ε > 0 : εS ∩ Ln+1 ⊂M} : Ln+1 ⊂ X},

dn(M;X) = inf{En(M, Ln)X : Ln ⊂ X},

dn(M;X) = inf{sup{‖f‖X : f ∈M ∩ Ln} : Ln ⊂ X},

δn(M;X) = inf{inf{En(M, V, Ln)X : V : X → Ln} : Ln ⊂ X}

are respectively called Bernstein, Kolmogorov, Gel’fand and linear n-widths. Between the above n-widths
for any centrally symmetric compact set M ⊂ X are true the relations (see., eg, [4,16]):

bn(M;X) ≤
dn(M;X)

dn(M;X)
≤ δn(M;X). (1)

From the results [15, p. 93] and Corollary 3 [17, p. 289] follows that if for a given µ ≥ 1/2, any
τ ∈ (0, π/2] and h ∈ (0, π] the function Φ satisfies the condition

π

π − 2

1∫
0

(
1− cos πhx2τµ

)
∗

(
1 + (µ2 − 1) sin πx2

)
dx ≤ Φ(h)

Φ(τ) , (2)

where
(1− cosx)∗ :=

{
1− cosx, if 0 < x ≤ π; 2, if x ≥ π

}
,

then for any n, r ∈ N, n > r ≥ 1 are true the equalities

bn

(
W (r)
q (Φ;µ);Hq

)
= dn

(
W (r)
q (Φ;µ);Hq

)
=

= En

(
W (r)
q (Φ;µ); Pn−1

)
Hq

= π

2(π − 2)αn,r
Φ

(
π

2(n− r)µ

)
, (3)
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where αn,r = n(n− 1) · · · (n− r + 1), n ≥ r. Also in [15] proved that function Φ(u) = uα(µ), where

α(µ) = π2

2(π − 2)µ

1∫
0

x
(

1 + (µ2 − 1) sin πx2

)
sin πx2µdx,

satisfied the constraint (2), α(1) = 2/(π − 2), lim
µ→∞

α(µ) = 2 and for all µ ∈ [1,∞) satisfied the
inequality 2/(π − 2) ≤ α(µ) ≤ 2. If the inequality (2) performs the change of variable τ = π/2(n− r)µ
(n > r, 1/2 ≤ µ <∞), then instead of (2) we obtain the equivalent condition

π

π − 2Φ
(

π

2(n− r)µ

)
· 1
t

t∫
0

(1− cos(n− r)x)∗
(

1 + (µ2 − 1) sin πx2t

)
dx ≤ Φ(t). (4)

The last inequality we will use in the proof of mentioned below theorem, in which the result (3) applies
to the more general space Hq,ρ, 1 ≤ q ≤ ∞, 0 < ρ ≤ 1.

Theorem 1. Let n, r ∈ N, n > r, µ ≥ 1/2 and majorant Φ for any h ∈ (0, π] satisfies the constraint
(2). Then for all 1 ≤ q ≤ ∞ and 0 < ρ ≤ 1 we have the equality

bn

(
W (r)
q (Φ;µ);Hq,ρ

)
= dn

(
W (r)
q (Φ;µ);Hq,ρ

)
=

= En

(
W (r)
q (Φ;µ)

)
Hq,ρ

= π

2(π − 2) ·
ρn

αn,r
Φ

(
π

2(n− r)µ

)
. (5)

Proof. In work [15, p. 93] proved that for any function f ∈ Hq, 1 ≤ q ≤ ∞ and u ∈ (0, π/(2n)], n ∈ N

En(f) ≤ π

2u(π − 2)

u∫
0

ω2(F ; 2x)q
{

1 +
[( π

2un

)2
− 1
]

sin πx2u

}
dx (6)

and for functions of the form f(z) = azn, a ∈ C, n ∈ N the inequality (6) becomes equality. If in (6) we
assume π/(2un) = µ, where un = π/(2µ) (µ ≥ 1/2), then the inequality (6) takes the form

En(f)Hq ≤
µn

π − 2

π/(2nµ)∫
0

ω2(F ; 2x)q
{

1 +
(
µ2 − 1

)
sinnµx

}
dx. (7)

According to the fact that for any functions f ∈ Hq, in which f (r) ∈ Hq, holds the inequality [17, p. 287]

En(f)Hq ≤ α−1
n,rEn−r(f (r))Hq , n ≥ r, n, r ∈ N, 1 ≤ q ≤ ∞, (8)

and takes into account the inequality (7), from (8) we obtain

En(f)Hq ≤
(n− r)µ

(π − 2)αn,r

π/(2(n−r)µ)∫
0

ω2(F (r); 2x)q
{

1 +
(
µ2 − 1

)
sin(n− r)µx

}
dx.

Hence, for an arbitrary function f ∈W (r)
q (Φ;µ), according to the definition of the class, we have:

En(f)Hq ≤
π

2(π − 2)αn,r

2(n− r)µ
π

π/(2(n−r)µ)∫
0

ω2(F (r); 2x)q
{

1 + (µ2 − 1) sin(n− r)µx
}
dx

 ≤
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≤ π

2(π − 2)αn,r
Φ

(
π

2(n− r)µ

)
. (9)

Since for an arbitrary function f ∈ Hq, 1 ≤ q ≤ ∞ there holds the inequality [18, p. 49]

En(f)Hq,ρ ≤ ρnEn(f)q, 1 ≤ q ≤ ∞, 0 < ρ ≤ 1,

then from (9) it is follows that for any n > r, n, r ∈ N

En(f)Hq,ρ ≤
πρn

2(π − 2)αn,r
Φ

(
π

2(n− r)µ

)
. (10)

From (10) and because of (1) we write

bn

(
W (r)
q (Φ;µ);Hq,ρ

)
≤ dn

(
W (r)
q (Φ;µ);Hq,ρ

)
≤

≤ En
(
W (r)
q (Φ;µ)

)
Hq,ρ
≤ πρn

2(π − 2)αn,r
Φ

(
π

2(n− r)µ

)
. (11)

In order to obtain a lower bound specified in the n-widths of the set Pn ∩Hq,ρ we introduce the
(n+ 1)-dimensional ball polynomials

Bn+1 :=
{
pn ∈Pn : ‖pn‖Hq,ρ ≤

πρn

2(π − 2)αn,r
Φ

(
π

2(n− r)µ

)}
and show that Bn+1 ⊂W (r)

q (Φ;µ). Note that the inequality [7, p. 159]

‖p(r)
n ‖Hq ≤ αn,r‖pn‖q (n > r, n, r ∈ N, 1 ≤ q ≤ ∞)

and the inequality proven by Pinkus [4, p. 255]

‖pn‖Hq ≤ ρ−n‖pn‖q,ρ (1 ≤ q ≤ ∞, 0 < ρ ≤ 1),

are true for an arbitrary polynomial pn ∈Pn, we obtain

‖p(r)
n ‖Hq ≤ αn,rρ−n‖pn‖q,ρ (n > r, 1 ≤ q ≤ ∞, 0 < ρ ≤ 1). (12)

Now, using the inequality [17, p. 291]

ω2(pn; 2x)q ≤ 2(1− cosnx)∗‖pn‖Hq , (13)

replacing pn with p(r)
n and then applying (12) for any polynomial pn ∈ Bn+1 we will have

ω2(p(r)
n ; 2x)q ≤

π

(π − 2) Φ
(

π

2(n− r)µ

)
(1− cos(n− r)x)∗. (14)

In (14) for arbitrary h ∈ (0, π], with a class definition W (r)
q (Φ;µ) and the constraint in (4), we have

1
h

h∫
0

ω2(p(r)
n ; 2x)q

(
1 + (µ2 − 1) sin πx2h

)
dx ≤

≤ π

(π − 2) Φ
(

π

2(n− r)µ

)
1
h

h∫
0

(1− cos(n− r)x)∗
(

1 + (µ2 − 1) sin πx2h

)
dx ≤ Φ(h).

The last inequality means that the ball Bn+1 ⊂W (r)
q (Φ;µ). Hence, as defined by Bernstein n-width,

we obtain
bn

(
W (r)
q (Φ;µ);Hq,ρ

)
≥ bn (Bn+1;Hq,ρ) ≥

πρn

2(π − 2)αn,r
Φ

(
π

2(n− r)µ

)
. (15)

Comparing the upper bound (11) and the lower bound (15), we obtain the required equation (5),
which completes the proof of Theorem 1. �
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2 The Main Results

In order to find the exact values of the Gel’fand and linear n-widths it is important for us to construct
the best linear method of approximation of functions of class W (r)

q (Φ;µ) in the space Hq,ρ. With this

purpose, for arbitrary analytic function in the unit disk f(z) =
∞∑
k=0

ckz
k we write the following linear

polynomial operator

Λn−1,r,ρ(f ; z) def=
r−1∑
k=0

ck(f)zk+

+
n−1∑
k=r

{
1 + αk,r

α2n−k,r
ρ2(n−k)

[
γk,r

(
1−

(
k − r

2n− k − r

)2
)
− 1
]}

ck(f)zk (16)

of degree n− 1, where

γk,r
def= 2µ(n− r)

π − 2

π/2µ(n−r)∫
0

cos(k − r)x
(

1− sin(n− r)µx
)
dx, k ≥ r ≥ 1, k, r ∈ N.

Theorem 2. Let f be an arbitrary function in class W (r)
q (Φ;µ), r ∈ N, 1 ≤ q ≤ ∞, µ ≥ 1/2, 0 < ρ ≤ 1

and n is any positive integer greater than r. Then is holds the inequality

‖f − Λn−1,r,ρ(f)‖Hq,ρ ≤
π

2(π − 2) ·
ρn

αn,r
Φ

(
π

2(n− r)µ

)
. (17)

If majorized function Φ for any h ∈ (0, π] satisfies constraint (4), then inequality (17) cannot be improved
in the sense that a function exists f0 ∈W (r)

q (Φ;µ), turning it into equality.

Proof. Let

Ln−1,r,ρ(f ; z)=
r−1∑
k=0

ck(f)zk + +
n−1∑
k=r

(
1− αk,r

α2n−k,r
ρ2(n−k)

)
ck(f)zk,

for any function f ∈W (r)
q (Φ;µ) we write the integral representation of the difference [7, p. 184-185], [13]

f(ρz)−Ln−1,r,ρ(f ; ρz) = ρnzn

2π

2π∫
0

f (r)(ze−it)Kn,r(ρ, t)dt, z ∈ U, (18)

where

Kn,r(ρ, t)
def= 1

αn,r
+ 2

∞∑
j=1

ρj

αn+j,r
cos jt. (19)

The representation (18) can be verified by direct calculation by expanding derivative f (r) in a Tailor
series and integration by part of the resulting integrand.

Following the reasoning scheme of [7, p. 288] and [13, p. 325] we use the auxiliary function as an
intermediate approximation of the function f ∈ Hq with f (r) ∈ Hq, which has the form

Ft(f (r); z) = π

2t(π − 2)

t∫
0

{
f (r)(zeix) + f (r)(ze−ix)

}(
1− sin πx2t

)
dx. (20)

If we put in (20) t = t∗ := π/2(n − r)µ, n > r, 1/2 ≤ µ < ∞ and expand derivatives f (r) in a Tailor
series, we obtain

F (F (r); z) := Ft∗(F (r); z) =
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= µ(n− r)
π − 2

π/2(n−r)µ∫
0

{
F (r)(zeix) + F (r)(ze−ix)

}
(1− sin(n− r)µx) dx =

=
∞∑
k=r

γk,rαk,rck(f)zk−r :=
∞∑
k=0

γk+r,rαk+r,rck+r(f)zk, |z| < 1, (21)

which obviously is an element of Hq. For an arbitrary function f ∈ Hq, assuming

Qn−r−1,2(f ; z) def=
n−r−1∑
k=0

(
1−

(
k

2(n− r)− k

)2
)
ck(f)zk

and, taking into account the form of the function (21), we write

Qn−r−1,2(F (F (r)); z) =

=
n−r−1∑
k=0

γk+r,r αk+r,r ck+r(f)
(

1−
(

k

2(n− r)− k

)2
)
zk. (22)

By symbol ϕ(m)
a we denote the derivative of mth (m ∈ N) order of the function ϕ having the argument

t of a complex number z = ρeit. Wherein

ϕ(1)
a (z) = dϕ(z)

dz
· ∂z
∂t

= ϕ′(z)zi, ϕ(m)
a (z) =

{
ϕ(m−1)
a (z)

}′
a
, m ≥ 2, m ∈ N.

It is known from [13, p. 325] that for any z ∈ U

ϕ(z)−Qn−r−1,2(f ; z) = − 1
2π

2π∫
0

ϕ(2)
a (ze−it) ei(n−r)tG2,n−r(t)dt, (23)

where

G2,n−r(t)
def= 1

(n− r)2 + 2
∞∑
k=j

cos jt
(n− r + j)2

is a non-negative integrable function [4, Lemma 2.2, p. 251]. From equation (23) using the generalized
Minkowski inequality, we obtain∥∥∥ϕ−Qn−r−1,2(f)

∥∥∥
Hq
≤ 1

(n− r)2 ‖ϕ
(2)
a ‖Hq . (24)

For an arbitrary function f(z) ∈W (r)
q (Φ;µ) we construct a linear polynomial operator (n− 1)th power

of the following form

Ωn−1,r,ρ(f ; ρz) = ρnzr

2π

2π∫
0

Qn−r−1,2

(
F (F (r)); ze−it

)
ei(n−r)tKn,r(ρ, t)dt =

=
n−1∑
k=r

γk,r
αk,r

α2n−k,r
ρ2(n−k)

(
1−

(
k − r

2n− k − r

)2
)
ck(f)zk, (25)

the validity of which can be seen by considering the product of (19) and (22) and the subsequent term by

term integration of the resulting integrand. Let

Λn−1,r,ρ(F ; z) def= Ln−1,r,ρ(F ; z) +Ωn−1,r,ρ(F ; z)
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and using the integral representation (18) and (25), for any z ∈ U and 0 < ρ ≤ 1 we write the equation

f(ρz)− Λn−1,r,ρ(F ; ρz) =

= ρnzr

2π

2π∫
0

{
F (r)(ze−it)−Qn−r−1,2

(
F (F (r)); ze−it

)}
ei(n−r)tKn,r(ρ, t)dt.

Hence, in view of the generalized Minkowski inequality we have∥∥∥f − Λn−1,r,ρ(f)
∥∥∥
Hq,ρ
≤ ρn

αn,r

∥∥∥F (r) −Qn−r−1,2

(
F (F (r))

)∥∥∥
Hq
≤

≤ ρn

αn,r

{∥∥∥F (r) −F (F (r))
∥∥∥
q

+
∥∥∥F (F (r))−Qn−r−1,2

(
F (F (r))

)∥∥∥
q

}
. (26)

We estimate the first term on the right hand side of (26), using again the above Minkowski inequality:∥∥∥F (r) −F (F (r))
∥∥∥
q

= (n− r)µ
π − 2 ·

·

∥∥∥∥∥∥∥
π/2(n−r)µ∫

0

{
F (r)(zeix)− 2F (r)(z) + F (r)(ze−ix)

}
(1− sin(n− r)µx) dx

∥∥∥∥∥∥∥
Hq

≤

≤ (n− r)µ
π − 2

π/2(n−r)µ∫
0

ω2(F (r); 2x)q (1− sin(n− r)µx) dx. (27)

Putting z = eit, we introduce the notation f (r)(ze±ix) := G(t± x) and start to estimate the second
term on the right hand side of (26), following the reasoning Taikov [17, p. 289], we assume that f (r) is an
algebraic polynomial of degree pm with m ∈ N, since the set of all polynomials are dense in the space
Hq. Obviously, with such an agreement the simultaneous approximation of functions and her derivative
argument in Hq are valid, and therefore we can assume that for m = 1, 2, derivatives of G(m) ∈ Hq. In
this case, in view of (24) using (21) we obtain:∥∥∥F (F (r))−Qn−r−1,2

(
F (F (r))

)∥∥∥
Hq
≤ (n− r)−2

∥∥∥(F (F (r))
)(2)

a

∥∥∥
Hq

= µ

(n− r)(π − 2) ·

·

∥∥∥∥∥∥∥
π/2(n−r)µ∫

0

{
G(2)(t+ x) +G(2)(t− x)

}
(1− sin(n− r)µx) dx

∥∥∥∥∥∥∥
Hq

. (28)

Performing double integration by parts on the right side obtained in (28), we write∥∥∥F (F (r))−Qn−r−1,2

(
F (F (r))

)∥∥∥
Hq
≤

≤ (n− r)µ
π − 2

∥∥∥∥∥∥∥
π/2(n−r)µ∫

0

{
G(t+ x)− 2G(t) +G(t− x)

}
µ2 sin(n− r)µxdx

∥∥∥∥∥∥∥
Hq

≤

≤ (n− r)µ
π − 2

π/2(n−r)µ∫
0

ω2(F (r); 2x)qµ2 sin(n− r)µxdx. (29)
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From (26) – (29) for an arbitrary function f ∈ W (r)
q (Φ;µ) taking into account the definition of the

class, we have ∥∥∥f − Λn−1,r,ρ(f)
∥∥∥
Hq,ρ
≤ ρn(n− r)µ

(π − 2)αn,r
·

·
π/2(n−r)µ∫

0

ω2(F (r); 2x)q
{

1 + (µ2 − 1) sin(n− r)µx
}
dx = πρn

2(π − 2)αn,r
·

·

2µ(n− r)
π

π/2(n−r)µ∫
0

ω2(F (r); 2x)q
{

1 + (µ2 − 1) sin(n− r)µx
}
dx

 ≤
≤ π

2(π − 2) ·
ρn

αn,r
Φ

(
π

2(n− r)µ

)
.

We show that the set of majorants satisfying the constraint (4) and belonging to the class W (r)
q (Φ;µ)

is not empty. For this purpose, consider the following function

f0(z) def= π

2(π − 2) ·
1

αn,r
Φ

(
π

2(n− r)µ

)
zn, n > r, µ ≥ 1/2

and show that f0 belongs to the class W (r)
q (Φ;µ).

In the proof of Theorem 1, we have shown that (n+1)-dimensional sphere Bn+1 polynomials pn ∈Pn

with radius of not more than π

2(π − 2) ·
ρn

αn,r
Φ

(
π

2(n− r)µ

)
belongs to the class W (r)

q (Φ;µ), moreover

majorant Φ satisfies the constraint (4). Since the norm of f0 is equal to

‖f0‖q,ρ = π

2(π − 2) ·
ρn

αn,r
Φ

(
π

2(n− r)µ

)
,

the function f0 belongs to Bn+1 and therefore, f0 ∈W (r)
q (Φ;µ).

In according to the form of a linear operator (16), we have Λn−1,r,ρ(f0) ≡ 0, and therefore∥∥∥f0 − Λn−1,r,ρ(f0)
∥∥∥
Hq,ρ

=
∥∥∥f0

∥∥∥
q,ρ

= π

2(π − 2) ·
ρn

αn,r
Φ

(
π

2(n− r)µ

)
, (30)

Theorem 2 is proved. �
From the proved theorem 2 and equation (5) allows to formulate the following general statement.

Theorem 3. If the majorant Φ satisfies the constraint (4), then for any n, r ∈ N, n > r and
0 < ρ ≤ 1, µ ≥ 1/2 there hold the equalities

πn

(
W (r)
q (Φ;µ);Hq,ρ

)
= E

(
W (r)
q (Φ;µ),Pn−1

)
Hq,ρ

=

= En
(
W (r)
q (Φ;µ);Λn−1,r,ρ

)
Hq,ρ

= π

2(π − 2) ·
ρn

αn,r
Φ

(
π

2(n− r)µ

)
, (31)

where πn(·) is any of the n-widths of bn(·), dn(·), dn(·), δn(·), and the best linear approximation method
Λn−1,r,ρ(·) is defined by (16).

Proof. Using the definition of a linear n-width, from (17) we obtain the upper bound

δn

(
W (r)
q (Φ;µ);Hq,ρ

)
≤ E

(
W (r)
q (Φ;µ),Pn−1

)
Hq,ρ
≤

≤ En
(
W (r)
q (Φ;µ);Λn−1,r,ρ

)
Hq,ρ

= π

2(π − 2) ·
ρn

αn,r
Φ

(
π

2(n− r)µ

)
. (32)
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In view of the inequalities (1), between the above n-widths, comparing the upper bound (32), with (5) we
obtain the required equality (31). It is also proved that the linear polynomial operator (15) is the best linear
method of approximation of class W (r)

q (Φ;µ) (r ∈ N, µ ≥ 1/2) in the space Hq,ρ (1 ≤ q ≤ ∞, 0 < ρ ≤ 1).
�
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