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1 Introduction and Preliminaries

The most well-known fixed point result is Banach contraction principle [5], which is widely used result in
fixed point theory. This principle has been studied and generalized in different spaces such as, rectangular
metric spaces, semi metric spaces, pseudo metric spaces, Quasi metric spaces, D-metric spaces and cone
metric spaces etc. and various fixed point theorems were developed.

Recently, Azam et al.[4] introduced the notion of complex valued metric space and established fixed
point theorems for mappings satisfying a rational type inequality. Verma and Pathak [16] introduced the
concept of (E.A) and (CLR) properties in complex valued metric space to prove some common fixed point
theorems for two pairs of weakly compatible mappings. Mohanta and Maitra [10] defined the concept
of ϕ-mapping and proved a common fixed point theorem for a ϕ-pair in complex valued metric spaces.
Subsequently, a number of fixed point theorems have been established and some applications have been
discussed (see, for instance, [2], [3], [9], [11], [12], [14], [15])

In this article, using the concept (E.A) and (CLR) properties we establish common fixed point
theorems for weakly compatible mappings in the frame work of complex valued metric space.

We recall some basic definitions and results that we need in our discussion which can be found in [4].
Let C be the set of complex numbers and z1, z2 ∈ C. Define a partial order - on C as follows:

z1 - z2 if and only if Re(z1) ≤ Re(z2) and Im(z1) ≤ Im(z2).
Consequently, one can say that z1 - z2 if one of the following conditions is satisfied:

1. Re(z1) = Re(z2), Im(z1) < Im(z2);
2. Re(z1) < Re(z2), Im(z1) = Im(z2);
3. Re(z1) < Re(z2), Im(z1) < Im(z2);
4. Re(z1) = Re(z2), Im(z1) = Im(z2).

In particular, we will write z1 � z2 if z1 6= z2 and one of (1),(2) and (4) is satisfied and we will write
z1 ≺ z2 if only (3) is satisfied.

Note that

i. a, b ∈ R and a ≤ b⇒ az - bz, for all z ∈ C;
ii. 0 - z1 � z2 ⇒ |z1| < |z2|;
iii. z1 - z2 and z2 ≺ z3 ⇒ z1 ≺ z3.

Azam et al.[4] defined the complex-valued metric space (X, d) in the following way:
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Definition 1. Let X be a nonempty set and d : X ×X → C be the mapping satisfying the following
axioms:

1. 0 - d(x, y), for all x, y ∈ X and d(x, y) = 0 if and only if x = y;
2. d(x, y) = d(y, x), for all x, y ∈ X;
3. d(x, y) - d(x, z) + d(z, y), for all x, y, z ∈ X.

Then the pair (X, d) is called a complex valued metric space.

Example 1.1. [7] Let X = C. Define the mapping d : X ×X → C by

d(x, y) = eι̇m|x− y|,

where x, y ∈ X and 0 ≤ m ≤ π
2 . Then (X, d) is a complex valued metric space.

Definition 2. [4] Let {xn} be a sequence in complex valued metric (X, d) and x ∈ X. Then x is called
the limit of {xn} if for every c ∈ C, with 0 ≺ c there is n0 ∈ N such that d(xn, x) ≺ c for all n > n0 and
we write lim

n→∞
xn = x.

Lemma 1. [4] Any sequence {xn} in complex valued metric space (X, d) converges to x if and only if
|d(xn, x)| → 0 as n→∞.

Definition 3. [13] Let S and T be self-maps of a non empty set X. Then

1. x ∈ X is a fixed point of T if Tx = x.
2. x ∈ X is a coincidence point of S and T if Sx = Tx.
3. x ∈ X is a common fixed point of S and T if Sx = Tx = x.

Jungck [8] initiated the concept of weakly compatible maps in ordinary metric spaces while Bhatt et
al.[6] defined this notion in the complex valued metric space in the following way:

Definition 4. Let X be a complex valued metric space. Then a pair of self-mappings S, T : X → X are
weakly compatible if they commute at their coincidence points, that is if there exists a point x ∈ X such
that STx = TSx whenever Sx = Tx.

Aamri and Moutawakil [1] introduced property (E.A) in ordinary metric spaces which generalized the
notion of non-compatible mappings while Verma and Pathak [16] initiated this concept in complex valued
metric space in the following way:

Definition 5. Let T, S : X → X be two self-maps on a complex valued metric space (X, d). Then the
pair (T, S) is said to satisfy property (E.A), if there exists a sequence {xn} in X such that

lim
n→∞

Txn = lim
n→∞

Sxn = x for some x ∈ X.

The notion of (CLR) property in ordinary metric spaces has been introduced by Sintunavarat and
Kumam [13], in a similarly mode Verma and Pathak [16] defined this notion in a complex valued metric
space in the following way:

Definition 6. Let T, S : X → X be two self-maps on a complex-valued metric space (X, d). Then T and
S are said to satisfy the common limit in the range of S property, denoted by (CLRS) if there exists a
sequence {xn} in X such that

lim
n→∞

Txn = lim
n→∞

Sxn = Sx for some x ∈ X.

Mohanta and Maitra [10] introduced the concept of ϕ-mappings in complex valued matric space as:

Definition 7. Let P = {z ∈ C : Re(z) ≥ 0 and Im(z) ≥ 0}. A nondecreasing mapping ϕ : P → P is
called a ϕ-mapping if

a. ϕ(0) = 0 and 0 � ϕ(z) � z for z ∈ P \ {0},
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b. ϕ(z) ≺ z for every z � 0,
c. lim

n→∞
ϕn(z) = 0 for every z ∈ P \ {0}.

Definition 8. [10] Let (X, d) be a complex valued metric space. The mappings T, S : X → X are called
ϕ-pair if there exists a ϕ-mapping satisfying

d(Tx, Ty) - ϕ(d(Sx, Sy)), for all x, y ∈ X

Theorem 1.1. [10] Let (X, d) be a complex valued metric space. Suppose that the mappings T, S : X → X
satisfy

d(Tx, Ty) - ϕ(d(Sx, Sy)), for all x, y ∈ X,

where ϕ is ϕ-mapping. If T (X) ⊆ S(X), T and S are weakly compatible and T (X) or S(X) is complete,
then T and S have a unique common fixed point in X.

2 Main Results

Throughout this section C+ = {z ∈ C : z % 0} and Ψ be the class of all lower semi-continuous functions
ψ : C+ → C+ such that ψ(0) = 0 and ψ(z) ≺ z for every z � 0.

Theorem 2.1. Let (X, d) be a complex valued metric space and K,L : X → X be two self-mappings
satisfying the following conditions:

C1. the pair (K,L) satisfies (CLRL) property;
C2. for each x, y ∈ X,

d(Kx,Ky) - ψ(d(Lx,Ly)),

where ψ ∈ Ψ. Then K and L have a coincident point in X. Moreover, if the pair (K,L) is weakly
compatible, then K and L have a unique common fixed point in X.

Proof. Assume that the pair (K,L) satisfies (CLRL) property, then there exists a sequence {xn} in X
such that

lim
n→+∞

Kxn = lim
n→+∞

Lxn = Lu for some u ∈ X. (1)

Now, we show that Ku = Lu, for this putting x = xn and y = z in condition (C2) of Theorem 2.1, we
have

d(Kxn,Ku) - ψ(d(Lxn, Lu)),

taking lower limit as n→ +∞, it follows that

lim
n→+∞

d(Kxn,Ku) - lim
n→+∞

ψ(d(Lxn, Lu))

= ψ

(
lim

n→+∞
d(Lxn, Lu)

)
,

using equation (1), one can write

d(Lu,Ku) - ψ(d(Lu,Lu))
= ψ(0) = 0.

Thus
Ku = Lu = z(say). (2)

Since the pair (K,L) is weakly compatible, so that Ku = Lu implies that LKu = KLu and using
equation (2), we get

Lz = Kz. (3)

That is z is a coincident point of K and L in X.
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Next, we show that z is a common fixed point of K and L in X. For this, we show that Kz = z. If
Kz 6= z, then on using condition (C2) of Theorem 2.1 with x = u and y = z, we get

d(Ku,Kz) - ψ(d(Lu,Lz)),

using equations (2) and (3), we have

d(z,Kz) - ψ(d(z,Kz)) ≺ d(z,Kz),

which is not possible, thus Kz = z and hence from equation (3), we get

Kz = Lz = z. (4)

That is z is a common fixed point of K and L in X.
Uniqueness: Assume that z∗ 6= z be another fixed point of K and L, i.e. Kz∗ = Lz∗ = z∗. Then on

using condition (C2) of Theorem 2.2, we have

d(z, z∗) = d(Kz,Kz∗)
- ψ(d(Lz, Lz∗))
= ψ(d(z, z∗))
≺ d(z, z∗),

which is a contradiction, thus z = z∗. Hence z is a unique common fixed point of K and L in X.

If we replace (CLR) property by (E.A) property in Theorem 2.1 we get the following result.

Theorem 2.2. Let (X, d) be a complex valued metric space and K,L : X → X be two self-mappings
satisfying the following conditions:

C1. the pair (K,L) satisfies (E.A) property;
C2. for each x, y ∈ X,

d(Kx,Ky) - ψ(d(Lx,Ly)),

where ψ ∈ Ψ. If L(X) is closed subspace of X, then K and L have a coincident point in X. Moreover, if
the pair (K,L) is weakly compatible, then K and L have a unique common fixed point in X.

Proof. The proof easily follows from Theorem 2.1, so we omit it.

Theorem 2.3. Let (X, d) be a complex valued metric space and K,L,M,N : X → X be four self-mappings
satisfying the following conditions:

(C1) either the pair (K,M) satisfies (CLRK) property or (L,N) satisfies (CLRL) property;
(C2) for each x, y ∈ X,

d(Kx,Ly) - 1
2ψ(d(Kx,Ny) + d(Ly,Mx)),

where ψ ∈ Ψ. If K(X) ⊆ N(X) and L(X) ⊆M(X), then each pair (K,M) and (L,N) have coincident
point in X. Moreover, if the pairs (K,M) and (L,N) are weakly compatible, then K,L,M and N have a
unique common fixed point in X.

Proof. Suppose that the pair (K,M) satisfies (CLRK) property, then there exists a sequence {xn} in X
such that

lim
n→+∞

Kxn = lim
n→+∞

Mxn = Kx for some x ∈ X. (5)

Since K(X) ⊆ N(X), so there exists u ∈ X such that Kx = Nu and thus from (5), we get

lim
n→+∞

Kxn = lim
n→+∞

Mxn = Kx = Nu. (6)
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We claim that Lu = Nu. If not, then on putting x = xn and y = u in condition (C2) of Theorem 2.3, we
get

d(Kxn, Lu) - 1
2ψ(d(Kxn, Nu) + d(Lu,Mxn)),

taking lower limit as n→ +∞ , we have

lim
n→+∞

d(Kxn, Lu) - 1
2ψ
(

lim
n→+∞

d(Kxn, Nu) + lim
n→+∞

d(Lu,Mxn)
)
,

using equation (6), one can write

d(Nu,Lu) - 1
2ψ(d(Lu,Nu))

≺ 1
2d(Lu,Nu),

which is not possible, thus Lu = Nu. But L(X) ⊆ M(X), so there exists v ∈ X such that Lu = Mv.
Therefore

Lu = Nu = Mv = Kx. (7)

Next, we show that Kv = Mv. Let Kv 6= Mv, then on using condition (C2) of Theorem 2.3 with x = v
and y = u ,

d(Kv,Lu) - 1
2ψ(d(Kv,Nu) + d(Lu,Mv)),

from equation (7) it follows that

d(Kv,Mv) - 1
2ψ(d(Kv,Mv))

≺ 1
2d(Kv,Mv),

which is contradiction, thus Kv = Mv. From equation (7), we get

Kv = Lu = Nu = Mv = z(say). (8)

Now, using the weak compatibility of the pairs (K,M), (L,N) and equation (8), we have

Kv = Mv ⇒ KMv = MKv ⇒ Kz = Mz. (9)

and
Nu = Lu ⇒ LNu = NLu ⇒ Lz = Nz. (10)

That is z is coincident point of each pair (K,M) and (L,N) in X.
In the next steps we prove that z is a common fixed point of K,L,M and N in X. For this, we have

to show that Kz = z. If Kz 6= z, then on putting x = z and y = u in condition (C2) of Theorem 2.3, one
can get

d(Kz,Lu) - 1
2ψ(d(Kz,Nu) + d(Lu,Mz)),

using equations (8) and (9), we have

d(Kz, z) - 1
2ψ(d(Kz, z) + d(z,Kz))

= 1
2ψ(2d(Kz, z))

≺ d(Kz, z),

which is not possible. Thus Kz = z and hence from equation (9), we can write

Kz = Mz = z. (11)
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Similarly, putting x = v , y = z in condition (C2) of Theorem 2.3 and using equations (8) and (10),
we get

Lz = Nz = z. (12)
By combining equations (11) and (12), one can write

Kz = Lz = Nz = Mz = z. (13)

That is z is a common fixed point of K,L,M and N in X.
Similarly, if we assume that the pair (L,N) satisfies (CLRL) property. Then again we can show that

z is a common fixed point of K,L,M and N in X.
Uniqueness: For the uniqueness of a common fixed point, we suppose that z∗ 6= z be another fixed

point of K,L,M and N , i.e. Kz∗ = Lz∗ = Mz∗ = Nz∗ = z∗. Then on using condition (C2) of Theorem
2.3, we get

d(z, z∗) = d(Kz,Lz∗)

-
1
2ψ(d(Kz,Nz∗) + d(Lz∗,Mz))

= 1
2ψ(2d(z∗, z))

≺ d(z∗, z),

which is contradiction, thus z = z∗. Hence z is a unique common fixed point of K,L,M and N in X.

From above theorem one can easily derive the following corollaries.
Corollary 2.1. Let (X, d) be a complex valued metric space and L,M,N : X → X be three self-mappings
satisfying the following conditions:
C1. either the pair (L,M) satisfies (CLRL) property or (L,N) satisfies (CLRL) property;
C2. for each x, y ∈ X,

d(Lx,Ly) - 1
2ψ(d(Lx,Ny) + d(Ly,Mx)),

where ψ ∈ Ψ. If L(X) ⊆ N(X) and L(X) ⊆ M(X), then each pair (L,M) and (L,N) have coincident
point in X. Moreover, if the pairs (L,M) and (L,N) are weakly compatible, then L,M and N have a
unique common fixed point in X.
Corollary 2.2. Let (X, d) be a complex valued metric space and K,M : X → X be two self-mappings
satisfying the following conditions:
C1. the pair (K,M) satisfies (CLRK) property;
C2. for each x, y ∈ X,

d(Kx,Ky) - 1
2ψ(d(Kx,My) + d(Ky,Mx)),

where ψ ∈ Ψ. Then K and M have a coincident point in X. Moreover, if the pair (K,M) is weakly
compatible, then K and M have a unique common fixed point in X.

If we replace (CLR) property by (E.A) property in Theorem 2.3, we get the following result.
Theorem 2.4. Let (X, d) be a complex valued metric space and K,L,M,N : X → X be four self-mappings
satisfying the following conditions:
C1. one of the pairs (K,M) and (L,N) satisfies (E.A) property;
C2. for each x, y ∈ X,

d(Kx,Ly) - 1
2ψ(d(Kx,Ny) + d(Ly,Mx)),

where ψ ∈ Ψ. If K(X) ⊆ N(X) and L(X) ⊆M(X) such that one of M(X) and N(X) is closed subspace
of X, then each pair (K,M) and (L,N) have a coincidence point in X. Moreover, if the pairs (K,M)
and (L,N) are weakly compatible, then K,L,M and N have a unique common fixed point in X.
Proof. The proof easily follows from Theorem 2.3, so we omit it.

Similarly to Theorem 2.3 we can derive the corollary from Theorem 2.4.
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3 Examples

In this section, we give two examples to illustrate our obtained results.

Example 3.1. Let X = (−3, 1) be a complex valued metric space with metric d : X ×X → C defined
by d(x, y) = eι̇m|x− y|, where x, y ∈ X and 0 ≤ m ≤ π

2 . Define self-maps K,L,M and N on X by:

Kx =
{
x+1

3 if x ∈ (−1, 0.5)
0.5 if x ∈ (−3,−1] ∪ [0.5, 1) ;

Lx =
{
x−1

2 if x ∈ (−1, 0.5)
0.5 if x ∈ (−3,−1] ∪ [0.5, 1) ;

Mx =

10 if x ∈ (−1, 0.5)
0.5 if x ∈ (−3,−1] ∪ {0.5}
1− x if x ∈ (0.5, 1)

;

and

Nx =

0 if x ∈ (−1, 0.5)
0.5 if x ∈ (−3,−1] ∪ {0.5}
2(1− x) if x ∈ (0.5, 1).

Then

K(X) = (0, 0.5], L(X) = (−1,−0.25) ∪ {0.5}, M(X) = (0, 0.5] ∪ {10}, N(X) = [0, 1).

Also, define ψ : C+ → C+ by ψ(z) = z
3 .

First we check condition (C1) of Theorem 2.3, for this let {xn} = {n+1
2n }n≥1 be a sequence in X. Then

lim
n→∞

Kxn = lim
n→∞

K

(
n+ 1

2n

)
= lim
n→∞

0.5 = 0.5,

and
lim
n→∞

Mxn = lim
n→∞

M

(
n+ 1

2n

)
= lim
n→∞

(
1− n+ 1

2n

)
= 0.5,

that is there exists a sequence {xn} in X such that

lim
n→∞

Kxn = lim
n→∞

Mxn = 0.5 = Kx for all x ∈ [0.5, 1).

=⇒ lim
n→∞

Kxn = lim
n→∞

Mxn = 0.5 = Kx for some x ∈ X.

Hence (K,M) satisfies (CLRK) property.
Next, to check condition (C2) of Theorem 2.3, we discuss the following cases:

Case 1. let x, y ∈ (−1, 0.5), then

Kx = x+ 1
3 , Ly = y − 1

2 , Mx = 10, and Ny = 0.

Now,

d(Kx,Ly) = eι̇m
∣∣∣∣x+ 1

3 − y − 1
2

∣∣∣∣ = eι̇m
∣∣∣∣2x− 3y + 5

6

∣∣∣∣ ≺ 3
2e

ι̇m,

and

1
2ψ(d(Kx,Ny) + d(Ly,Mx)) =1

2ψ
(
eι̇m
∣∣∣∣x+ 1

3 − 0
∣∣∣∣+ eι̇m

∣∣∣∣y − 1
2 − 10

∣∣∣∣)
=1

2ψ
(
eι̇m
{∣∣∣∣x+ 1

3

∣∣∣∣+
∣∣∣∣y − 21

2

∣∣∣∣})
�41

24e
ι̇m,
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so that
d(Kx,Ly) ≺ 1

2ψ(d(Kx,Ny) + d(Ly,Mx)), for all x, y ∈ (−1, 0.5).

Case 2. Let x, y ∈ (−3,−1] ∪ {0.5}, then Kx = Mx = Ly = Ny = 0.5 and hence

d(Kx,Ly) = 0 = 1
2ψ(d(Kx,Ny) + d(Ly,Mx)).

Case 3. Let x, y ∈ (0.5, 1), then Kx = Ly = 0.5,Mx = 1− x and Ny = 2(1− y). Now

d(Kx,Ly) = 0,

and
1
2ψ(d(Kx,Ny) + d(Ly,Mx)) =1

2ψ(eι̇m|Kx−Ny|+ eι̇m|Ly −Mx|)

=1
2ψ
(
eι̇m| − 1.5 + 2y|+ |x− 0.5|

)
,

so that
d(Kx,Ly) ≺ 1

2ψ(d(Kx,Ny) + d(Ly,Mx)), for all x, y ∈ (0.5, 1)

Therefore from the above three cases it follows that

d(Kx,Ly) - 1
2ψ(d(Kx,Ny) + d(Ly,Mx)), for all x, y ∈ X.

Also K(X) ⊆ N(X) and L(X) ⊆M(X) , the pairs (K,M) and (L,N) are weakly compatible. Hence
by Theorem (2.3), 0.5 is a unique common fixed point of K,L,M and N .

Example 3.2. Let X = (0, 3]∪{4} be a complex valued metric space with metric d : X×X → C defined
by d(x, y) = eι̇m|x− y|, where x, y ∈ X and 0 ≤ m ≤ π

2 . Define self-maps K,L,M and N on X by:

Kx =
{ 4

3 if x ∈ (0, 1)
1 if x ∈ [1, 3] ;

Lx =
{ 1

2 if x ∈ (0, 1)
1 if x ∈ [1, 3] ;

Mx =

4 if x ∈ (0, 1)
1 if x = 1
x−1

2 if x ∈ (1, 3]
;

and

Nx =


2
3 if x ∈ (0, 1)
1 if x = 1
x+1

3 if x ∈ (1, 3].

Also, define ψ : C+ → C+ by ψ(z) = z
2 . Then

K(X) =
{

1, 4
3

}
, L(X) =

{
1, 1

2

}
, M(X) = (0, 1] ∪ {4} , N(X) =

[
2
3 ,

4
3

]
.

Now, Let {xn} = {3− 1
n}n≥1 be a sequence in X. Then

lim
n→∞

Kxn = lim
n→∞

K

(
3− 1

n

)
= lim
n→∞

1 = 1,

and
lim
n→∞

Mxn = lim
n→∞

M

(
3− 1

n

)
= lim
n→∞

(
1− 1

2n

)
= 1.
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Thus there exists a sequence {xn} in X such that

lim
n→∞

Kxn = lim
n→∞

Mxn = 1 ∈ X.

Hence (K,M) satisfies (E.A) property.
To check condition (C2) of Theorem 2.4, we distinguish the following cases:

Case 1. let x, y ∈ (0, 1), then Kx = 4
3 , Ny = 2

3 , Ly = 1
2 and Mx = 4.

Now
d(Kx,Ly) = 5

6e
ι̇m,

and
1
2ψ(d(Kx,Ny) + d(Ly,Mx)) =1

2ψ
(
eι̇m
∣∣∣∣43 − 2

3

∣∣∣∣+ eι̇m
∣∣∣∣12 − 4

∣∣∣∣)
=1

2ψ
(

25
6 e

ι̇m

)
= 1

2

(
25
12e

ι̇m

)
= 25

24e
ι̇m

�5
6e

ι̇m

=d(Kx,Ly).

Thus
d(Kx,Ly) ≺ 1

2ψ(d(Kx,Ny) + d(Ly,Mx)), for all x, y ∈ (0, 1),

Case 2. let x = y = 1, then Kx = Mx = Ly = Ny = 1 and hence

d(Kx,Ly) = 0 = 1
2ψ(d(Kx,Ny) + d(Ly,Mx)),

Case 3. let x, y ∈ (1, 3], then Kx = Ly = 1,Mx = x−1
2 and Ny = y+1

3 .
Now

d(Kx,Ly) = 0,
and

1
2ψ(d(Kx,Ny) + d(Ly,Mx)) =1

2ψ
(
eι̇m
{∣∣∣∣1− y + 1

3

∣∣∣∣+
∣∣∣∣1− x− 1

2

∣∣∣∣})
=1

2

(
2eι̇m

{∣∣∣∣2− y3

∣∣∣∣+
∣∣∣∣3− x2

∣∣∣∣}),
so that

d(Kx,Ly) - 1
2ψ(d(Kx,Ny) + d(Ly,Mx)), for all x, y ∈ (1, 3].

Therefore from the above three cases it follows that

d(Kx,Ly) - 1
2ψ(d(Kx,Ny) + d(Ly,Mx)), for all x, y ∈ X.

Also K(X) ⊆ N(X) and L(X) ⊆M(X) such that N(X) is closed subspace of X and the pairs (K,M)
and (L,N) are weakly compatible. Hence by Theorem 2.4, we can say that 1 is a unique common fixed
point of K,L,M and N .

4 Conclusions

The derived results extend and generalize some well known results of the existing literature in the frame
work of compex valued metric spaces. In particular Theorems 2.2 and 2.1 generalize Theorem 1.1. We
observe that (E.A) property requires the condition of closedness of the subspace, while (CLR) property
never requires any condition of closedness (or completeness) of the subspace. As we note that in Example
3.1 neither M(X) nor N(X) is closed subspaces of X, so Theorem 2.4 is not applicable.
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