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Abstract An optimal control problem is studied for a predator-prey model with a general monotonic
and non-monotonic functional response for prey. The control functions represent the rate of mixture
of the populations and the cost functional is of Mayer type. The goal of this paper is to maximize
the total density of the two populations at a fixed time moment. The number of switching points
of the optimal control is determined by the threshold value c, which is the rate of translating the
prey population into the predator population. It is shown that general monotonic or non-monotonic
functional response has no influence on the number of switching points of the optimal control.
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1 Introduction

In [1], Apreutesei found necessary optimality conditions for a control problem related to the predator-prey
model 

dy1

dt
= ry1(1− y1

k
)− y2F (y1, y2), t ∈ [0, T ],

dy2

dt
= y2[−d+ cF (y1, y2)], t ∈ [0, T ],

(1.1)

where y1(t) and y2(t) stand for the densities of prey and predators at the moment t ∈ [0, T ] respectively,
r is intrinsic growth rate and k is the prey carrying capacity in the absence of predation, d is the death
rate of predator, c is the rate of translating the prey population into the predator population.

The predator functional response F (y1, y2) signifies the number of prey consumed per predator in
unit time, and the function F (y1, y2) is assumed to satisfy the following assumptions:

(i) F is well defined and F (y1, y2) > 0, for all y1, y2 > 0.
(ii) F ∈ C1([0,+∞)2); F is bounded with respect to y2.
(iii)

∂F (y1, y2)
∂y1

> 0, (1.2)

and
F (y1, y2) + y2

∂F (y1, y2)
∂y2

> 0, (1.3)

for all y1, y2 > 0.
In fact, function F (y1, y2) above includes as particular cases of various classical functional responses

(see [2-4]). Obviously, the following functional responses satisfy the above assumptions (i)- (iii):
F (y1, y2) = by1, b > 0, (Holling type I).
F (y1, y2) = by1

1 +my1
, b > 0,m > 0, (Holling type II).

F (y1, y2) = by2
1

1 +my2
1
, b > 0,m > 0, (Holling type III).
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F (y1, y2) = k(1− e−by1), b > 0, k > 0, (Ivlev functional response).
F (y1, y2) = byn1

ym2 + lyn1
, n, b, l > 0, 0 < m ≤ 1, (Hassell-Valery).

F (y1, y2) = by1

a+ y1 + ly2
, a, b, l > 0, (DeAngelis-Beddington).

In [1], Apreutesei assumed that the functional response F (y1, y2) satisfies the condition (1.2) of (iii),

that is ∂F (y1, y2)
∂y1

> 0. It implies that, as the prey population increases, the consumption rate of prey
per predator increases. But some experiments and observations indicate that a non-monotonic response
occurs at this level: when the nutrient concentration reaches a high level an inhibitory effect on the
specific growth rate may occur. To model such an inhibitory effect, Andrews[5] suggested a function

ϕ(x) = mx

a+ bx+ x2 ,

called the Monod-Haldane function, and also called a Holling type-IV function. Sokol and Howell[6]
proposed a simplified Holling Type-IV function of the form

ϕ(x) = mx

a+ x2 .

Motivated by the above question: a functional response may be monotonic or non-monotonic, we reconsider
the predator-prey model with general nonlinear functional response (1.1) without condition (1.2).

As same as the method used in [1], one may separate the prey from the predators with the aid of
a control function u : [0, T ]→ R, 0 ≤ u(t) ≤ 1 a.e. on [0, T ]. Then the functional response F (y1, y2) is
multiplied by u. The separation rate at the moment t is 1− u(t). If u(t) = 0, then prey and predators
are completely separated from each other at the moment t; if u(t) = 1, then they are not separated at
all, that is the ecosystem coincides with the original one. Similarly, one separates the prey individuals
from each other by a control function v : [0, T ] → R. Then the second term of the growth rate of the
prey population will be multiplied by v. Suppose that the prey individuals cannot be completely isolated
from each other, i.e. v(t) > 0. More exactly, assume that 0 < v0 ≤ v(t) ≤ 1 a.e. on [0, T ], where v0 is a
fixed value in (0, 1). The control functions represent the rate of mixture of the populations: u is the rate
of mixture between prey and predators, while v is the rate of mixture between prey individuals. The
dynamics of the controlled ecosystem (1.1) is given by

dy1

dt
= ry1(1− vy1

k
)− uy2F (y1, y2), t ∈ [0, T ],

dy2

dt
= y2[−d+ cuF (y1, y2)], t ∈ [0, T ].

(1.4)

Initial value conditions of the form

y1(0) = y0
1 > 0, y2(0) = y0

2 > 0 (1.5)

are associated with system (1.4). Here the predator functional response F (y1, y2) is assumed to satisfy
the following assumptions:

(1) F is well defined and F (y1, y2) > 0, for all y1, y2 > 0.
(2) F ∈ C1([0,+∞)2); F is bounded with respect to y2.

(3) F (y1, y2) + y2
∂F (y1, y2)

∂y2
> 0, for all y1, y2 > 0.

Assumptions (1)-(3) assure the existence and uniqueness of a local solution y = (y1, y2) of problem
(1.4) and (1.5), defined on a maximal interval [0, δ), δ > 0. Since system (1.4) admits the zero solution
and y0

1 > 0, y0
2 > 0, it follows by a comparison theorem that y1 > 0, y2 > 0 on [0, δ). Condition (1) implies

the boundedness of y1 and y2 and, consequently, the solution of (1.4) and (1.5) is defined on the whole of
[0, T ].

The goal of the work is to find the optimal control (u, v) such that, at the end of the time interval
[0, T ], the total density of the two populations is maximal. The optimal control problem associated with
system (1.4) and (1.5) is

min
{
− y1(T )− y2(T )

}
, (1.6)
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where u : [0, T ]→ [0, 1], v : [0, T ]→ [v0, 1], and (y1, y2) verifies (1.4) and (1.5).
There is a vast literature on optimality conditions for biology control problems. Basic results on the

optimal control theory can be found in [7-9]. The aim of this paper is, by further developing the analysis
technique of [1], to discuss that whether or not the functional response is monotonic has influence on the
control problem. Section 2 of the present work is devoted to the maximum principle for our problem. One
finds that the control variable u is bang-bang, while v is v0 or 1 on the entire interval [0, T ]. In section
3, we establish the number of switching points of u which is determined by the threshold value c. It is
shown that general monotonic or non-monotonic functional response has no influence on the number of
switching points of the optimal control. In section 4, we give some conclusions which describe conclusion
and other innovation in this paper compared to previous literature.

2 The Maximum Principle

The boundedness of the solution y of the control system (1.4) and (1.5) permits us to take a compact
target set at t = T . Then, according to [7, Theorem 1.2, pp. 43], it follows that our optimal control
problem admits at least one solution (y, (u, v)), where y = (y1, y2).

We apply Pontryagin’s maximum principle to find the form of the optimal control (u, v) for problem
(1.4)-(1.6). To this end, we associate the Hamiltonian function

H(y, p, u, v) = ry1p1 −
r

k
y2

1vp1 − dy2p2 + uy2F (y1, y2)(cp2 − p1), (2.1)

where p = (p1, p2), p1 and p2 are the adjoint variables. If (u, v) is the optimal control, y = (y1, y2) is the
optimal state, then p1 and p2 verify the adjoint system

dp1

dt
= −rp1 + 2vry1

k
p1 − uy2

∂F (y1, y2)
∂y1

(cp2 − p1),
dp2

dt
= dp2 − u(cp2 − p1)[F (y1, y2) + y2

∂F (y1, y2)
∂y2

],
(2.2)

and the transversality condition
p1(T ) = p2(T ) = 1. (2.3)

The optimal control (u, v) should maximize the Hamiltonian function H for fixed y1, y2, p1, p2. In the
sequel, we will discuss the form of the optimal variables u and v. Now, from hypothesis (1), we can easily
obtain the following form of the optimal variables u and v:

u(t) =
{

1, (cp2 − p1)(t) ≥ 0,
0, (cp2 − p1)(t) < 0, v(t) =

{
v0, p1(t) ≥ 0,
1, p1(t) < 0. (2.4)

3 The Number of Switching Points

In section 3, we will discuss the form of u and v which is determined by the threshold value c. Firstly, we
show a result for the sign of p1(t) and p2(t).

Lemma 3.1. For system (2.2), p1(t) ≥ 0 and p2(t) > 0, ∀t ∈ [0, T ].

Proof. From (2.4), we can easily obtain that

u(t)(p1 − cp2)(t) ≤ 0, a.e.on[0, T ]. (3.1)

Regarding the second equation from (2.2) as a linear equation in p2 of the form p′2 = −γ(t)p2 +α(t), with
γ(t) = −d, α(t) = −u(cp2 − p1)[F (y1, y2) + y2

∂F (y1,y2)
∂y2

], and the end-point value p2(T ) = 1, we can write

p2(t) = e−d(T−t)
{

1−
∫ T

t

[u(p1 − cp2)(F (y1, y2) + y2
∂F (y1, y2)

∂y2
)](s)ed(T−s)ds

}
. (3.2)
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Using hypothesis (3), together with the estimates (3.1), one observes that p2(t) > 0, ∀t ∈ [0, T ].
Similarly, if p1(t) 6= 0, it follows from the first equation of (2.2) that p′1 = −η(t)p1, where η(t) =

r − v 2ry1
k − uy2

∂F (y1,y2)
∂y1

− (cp2uy2
∂F (y1,y2)

∂y1
)/p1. From p′1 = −η(t)p1, and the end-point value p1(T ) = 1,

we can get
p1(t) = e

∫ T

t
η(s)ds

> 0. (3.3)
Now, we will discuss the form of the optimal variables u and v. From Lemma 3.1, it follows that

p1(t) ≥ 0. Therefore, v(t) = v0,∀t ∈ [0, T ].
To establish the number of switching points of u, we analyze the sign of p1 − cp2. One specifies three

cases according to the sign of c− 1. Recall that p1 ≥ 0, p2 > 0 on [0, T ] (see Lemma 3.1). Using system
(2.2) and (2.3) with v = v0 on [0, T ], one finds that for any t ∈ [0, T ]

(cp2 − p1)′ = cdp2 + rp1 − v0
2ry1p1
k

−u(cp2 − p1)[cF (y1, y2) + cy2
∂F (y1,y2)

∂y2
− y2

∂F (y1,y2)
∂y1

]. (3.4)

Define ymax1 = maxt∈[0,T ] y1(t). In the sequel, we choose v0 such that

0 < v0 < min
{

1, k

2ymax1

}
. (3.5)

Case 1. c < 1. From (2.3), we have p1(T ) = p2(T ) = 1. Therefore, (cp2 − p1)(T ) = c− 1 < 0, it follows
that cp2 − p1 < 0 in a neighborhood (τ, T ] of T . Suppose it is maximal with respect to this property. If
τ ∈ (0, T ), then (cp2 − p1)(τ) = 0 and the optimal control u is 0 on (τ, T ]. Equalities (3.4) and (3.5) lead
to

(cp2 − p1)′|t=τ = cdp2(τ) + rp1(τ)(1− v0
2y1(τ)
k ) > 0, (3.6)

i.e. cp2−p1 is monotonically increasing in a neighborhood of τ , and (cp2−p1)(t) < 0, t ∈ (τ, T ]. Therefore,
(cp2 − p1)(τ) < 0. This contradicts the condition (cp2 − p1)(τ) = 0. Hence τ = 0 and u(t) = 0, for every
t ∈ [0, T ].

Case 2. c = 1. From (2.3), we have p1(T ) = p2(T ) = 1. Therefore, (cp2 − p1)(T ) = c − 1 = 0. By the
similar proof of (3.6), we have (cp2 − p1)′|t=T = cdp2(T ) + rp1(T )(1 − v0

2y1(T )
k ) > 0. It follows that

cp2−p1 is monotonically increasing in a left neighborhood of T . As in Case 1, we infer again that u(t) = 0
for each t ∈ [0, T ].

Case 3. c > 1. From (2.3), we have p1(T ) = p2(T ) = 1. In this case, (cp2 − p1)(T ) = c − 1 > 0, so
cp2 − p1 > 0 in a neighborhood (τ, T ] of T , which can be chosen maximal. Then u(t) = 1 on (τ, T ]. There
are two subcases:

(a)If τ = 0, then u(t) = 1 on the whole interval [0, T ].
(b)If τ ∈ (0, T ), then cp2 − p1 > 0 on (τ, T ] and (cp2 − p1)(τ) = 0. With the aid of (3.4)and by the

similar proof of (3.6), we can obtain that the function cp2 − p1 is increasing in τ , that is cp2 − p1 < 0 at
least in a left neighborhood of τ . According to (2.4), here u(t) = 0. As long as there exists a τ ′ such that
(cp2 − p1)(τ ′) = 0, function cp2 − p1 is increasing in a neighborhood of τ ′, so we can repeat the reasoning
of Case 2 with τ ′ instead of T , to deduce that u(t) = 0, for all t ∈ [0, τ). Therefore in Case 3, the optimal
control u either equals 1 on [0, T ], or has a unique switching time τ ∈ (0, T ).

From the above discussion, we can easily obtain the following result.

Theorem 3.1. Assume that (3.5) holds and function F satisfies assumptions(1)-(3). If (u, v) is the
optimal control for problem(1.6), then v = v0 on [0, T ] and u is bang-bang, namely it has at most one
switching time. More exactly, we can easily obtain the following cases:

(1)If c ≤ 1, then u(t) = 0, ∀t ∈ [0, T ].
(2)If c > 1, then u admits at most one switching time τ , which is the solution in (0, T ) of the equation

cp2−p1 = 0. Here p = (p1, p2) is the solution of the adjoint system (2.2) and (2.3). If equation cp2−p1 = 0
has no solution in (0, T ), then u(t) = 1, ∀t ∈ [0, T ]. If equation cp2 − p1 = 0 has a unique solution τ in
(0, T ), then u has the form

u(t) =
{

0, t ∈ [0, τ),
1, t ∈ [τ, T ].
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4 Conclusion

In [1], Apreutesei found necessary optimality conditions for a problem related to the prey-predator system
(1.1). Under the assumptions (i)-(iii), he obtained that if (u, v) is the optimal control, then v = v0 on [0, T ]
and u is bang-bang, namely it has at most one switching time. However, we reconsider necessary optimality
conditions for the prey-predator system (1.1) without assumption (1.2), that is the functional response
F (y1, y2) for system (1.4) may be monotonic or non-monotonic. It is shown that general monotonic or
non-monotonic functional response has no influence on the number of switching points of the optimal
control.

From Theorem 3.1, we can see that the number of switching points of the optimal control is determined
by the threshold value c, which is the rate of translating the prey population into the predator population.
It is shown that if c ≤ 1, then u(t) = 0, it follows that prey and predators are not separated from each
other at all, that is the ecosystem coincides with the original one. If c > 1, then u admits at most one
switching time τ , and has the form

u(t) =
{

0, t ∈ [0, τ),
1, t ∈ [τ, T ].

It follows that prey and predators are completely separated from each other at the moment t ∈ [0, τ) and
not separated at all for t ∈ [τ, T ].
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