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Abstract In this work, the Sturm-Liouville problem with boundary conditions depending rationally
on the spectral parameter is studied. We give a uniqueness theorem and algorithm to reconstruct
the potential of the problem from nodal points (zeros of eigenfunctions).
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1 Introduction

We consider the boundary value problem L generated by the regular Sturm—Liouville equation

ty=—y" +q(x)y =Xy, z€(0,1) (1)
subject to the boundary conditions

U(y) = a(A)y'(0) — b(A)y(0) = 0 (2)
V(y) = c(Ny'(1) —d(Ny(1) =0 (3)

and the jump conditions
3 +0)=ay(; —0)
_ Ofly'(% ~0), (4)
where ) is the spectral parameter; ¢(z) is a real-valued function from the class L2(0,1); « is a positive
real constant; a(A), b(A\), ¢(\) and d(X) are real polynomials such that

N =D aX, b)) = b,
j=0 j=0

cN) =Y N, d(N) = idjv,
j=0

J=0

A
Without loss of generality, we assume that a,, = ¢, = 1 and fo x)dz = 0, and define f = b((/\i

The values of the parameter )\ for which L has nonzero solutions, are called eigenvalues and the
corresponding nontrivial solutions are called eigenfunctions.

Spectral problems for various differential equation with the eigen-dependent-boundary conditions have
been well studied. Inverse problems for the special case when f is an affine function on A were solved in
[11]. The case when f is a more general rational function of X is difficult. In [1]-[4], [8], [16], [13], [19] and
[23], various spectral problems with rational conditions were studied.

Inverse spectral problems for Sturm-Liouville operator with the discontinuity conditions, like (4), were
studied in [7], [12] and references therein.

The inverse nodal problem, which is different from the classical inverse spectral theory of Gelfand
and Levitan [10], was initiated by McLaughlin [15]. Later, Hald and McLaughlin [13] and Browne and
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Sleeman [5] proved that it is sufficient to know the nodal points to uniquely determine the potential
function of the regular Sturm—Liouville problem. Yang gave an algorithm to recover ¢ from dense subset
of nodal points[20]. Recently, the inverse nodal Sturm-Liouville problems hag been investigated by several
authors [5], [6], [13], [15], [17], [18], [21] and [22].

In the present paper, we investigate an impulsive Sturm-Liouville operator and give a uniqueness
theorem to reconstruct the potential of the problem from nodal points.

2 Preliminaries

Let ¢(x, ) be the solution of (1), satisfying the initial conditions
©(0,) = a(A), ¢'(0,A) =b(}) (5)

and the jump conditions (4). Moreover, the following integral equations of the solution hold
for x < L1
2

sin \[\:1:
VA

q(t)p(t; A)dt,

o(z,A) = a(A) cos VAz + b())

T sin v (z —t)
o]

for:c>%

VA

a(N) cos VA(L — z) 4+ b())

o(z,\) =at [a()\) cos V Iz + b(A) sin \A:c‘|

-
“ N

+/1/2 [d“smﬁ(m_t) N _sinVA (1 —xz —t)
0

sin vA(1 — x)]

X “ Vx
T sinvVA (z —t)
*/1/2 A

1 q(t)p(t, A)dt

q(t)p(t, A)dt

:l::

N

1
where « a+ ) . Using these equations, we prove that the following asymptotic relations are
@

valid for || — oo,

for z < %
oz, A) =" {cos Vz + sm\f\)\f)\x (bm + % /07” q(t)dt) +o (\% expmc) } , (8)
for x > %
ez, A) =" {oz+ cos Vx4 a~ COS\/X(I—I‘)} + (9)
FAT3 {a+11(m) sin VAz + o~ I (z) sin VA (1 — x)}
+o ()\m*% exp 'rx)
where

1 T

Ig(l‘) = an + 5/0 q(t)dt - */1 q(t)dt
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and 7 = ‘Im\f)\‘.
Consider the function
AN) = (V@' (1,A) = d(N)p(1, ). (10)

A()) is called characteristic function of the problem L. It is obvious that A()) is an entire function and
its zeros, namely {\,}, -, are eigenvalues of the problem L. Moreover, the following relation holds.

A(/\):—a"’/\m”{\[\sin\/X—wlcosxf/\-i-wz+0(6Xp7)}~ (11)

It can be shown using classical methods in the similar studies that the sequence {\,}, -, satisfies the
following asymptotic relation for n — oo: B

\/E — (n —m— ’l")’ﬂ' + (wl - (_1)n—m—rw2) + 0(1) (12)

where wy = I1(1) — dr and we = zj (I2(1) + d;).

Let p(x, \,) be the eigenfunction corresponding to the eigenvalue \,,.
Lemma 2.1. ¢(x, \,) has exactly n—m —r nodes {x% j=0n—m-—r— 1} in (0, 1) for sufficiently
large n. The numbers {x%} satisfy the following asymptotic formulae

. 1
for x € (0, 5)

(j+1/2) + Ii(x3) - (w1 —w2) (7+1/2)
n—m-—r (n—m—r)Zr2 (n—m—r)272 n—m—r

+o (L), forn—m—r=2k

(+1/2) + I () _ (witwa)  (j+1/2)

n—m-—r (n—m—r)Zx2 (n—m—r)?72 n—m—r

—&—0(#)7 forn—m-—-r=2k+1

and for z € (5, 1)
(3+1/2) Wi —w (i+1/2) 1
n—m-—r + (n—r}m—r)227r2 n—m-—r + 2(n—m—r)%n2 fO q

(t)dt
i), forn—m—r =2k

t)dt

G+1/2) | . w%ﬂ:)zzﬂz 534‘%/27), i v m1 — fo

+m+0( ), forn—m—r=2k+1

- 1 1/2 o
a at -«
- o £)dt — Hdt—2d, | + =% p
Po= 5= (/1/2q() /0 q(t) >+ "
a” (aT+a” /2 ! (at)? = (a™)?
=—|—F— t)dt — t)dt + 2d, —— by,
PL= o0 (oﬂ‘—oz—) </0 att) /1/2(]() * + (at —a")at

Proof. It can be seen from (8), (9) and oscilation theorem that the function ¢(z, A,) has exactly n—m—r
zeros in the interval (0, 1) for sufficiently large n. Using (8) and (9) again, we get the following asymptotic

formulae
VA 1
o, Ap) = A0 {cosx/ n + bmm xll(x)—i-o(e}il;/\izm)} forx<§,

oz, Ap) = A {a+ 08 v/ Anz + o~ cos v/ Ay (1 — x)}
A3 Lot [ (2) sin v/ Az + o~ I(z) sin VA, (1 —z)}

+o0 (/\m_% exp x| for x > %

where
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From

=\ {oﬂL cos v/ Al + a” cos /A, (1 — 1‘%)}

FATE {Oﬁ_h(le) <in A /)\nwgl + a—IQ(ng) sin \/E (1 - xﬁl)} +o ()\m—% eXanzTZl) )
we get

tan(v A,z — 5)

_ DT = ()" M wg)a” ot (z) — (D) e b(e) (]
- (0 + (—1)"—"—ra~) (n—m— 1) " ( ) ’

for 27 > % Taylor’s formula for the arctangent yields

= (J+1/2) n wy — (=)™ Twy (§ 4 1/2)

n—m-—r (n—m—r)27T2 n—m-—r
(_1)n7m7r(,w1 . (_1)n7m77‘,w2)a* + CWLIl({E%) — (—1)n*m77‘a7[2($%) +o < 1 > .

+ 2
(at+(-1)»—mra")(n—m —r) w2

The last equality is the proof of (14). The equation (13) can be proved similarly.
Let X = Xy U X1 be the set of nodal points such that Xy = {x{l m—m-—r=2s, SE€ Z}, X, =
{#i :n—m—r=2s+1, s€Z}. For each fixed z € [0,1] and k € {0,1}, there exists a sequence
m%(n)) C X}, which converges to x. Therefore, from Lemma 2.1, we can show the following limits are
exist and finite

; 1
oo (s UOEHT) "
where
1 & & 1
3 Jo a@®)dt — (w1 — (—1)*wz) & + by, for = < 5
fr(z) =

1 . 1
By fo q(t)dt — (w1 - (—1)kw2) x + py, for z > 3

Theorem 2.2. The given nodal sets X or X; uniquely determine the potential g(x), a.e. on (0, 1)
and the coefficients b, and d, of the boundary conditions. The potential ¢(z) and the constants b,, and
d, can be constructed by the following formulae:

1- For each fixed z € [0, 1], choose a sequence (x%(n)) C X such that lim x%(”) =z
n—oo

2- Find the function fx(x) from the equation (16) and calculate

00) =2 |fe) = 1)+ 00+ £ +0) = ful 0] (")
dr = (1) = ful5 +0) + iy~ 0) (19)
1/2
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Proof. Direct calculations in (13), (14) and (16) yield

= fx(0),
q(z) =2 [fi(z) = (w1 — (=1)*wy)],
wy — (=1 wy = fir(1) — e

= fil(g +0) = fill —0) + b,

dy = fir(1) — fk( +0)+fk(f—0)+

1/2
- (—1)’“31 b + / q(t)dt
0
This completes the proof.
Example 2.3. Consider the BVP
ty = —y" +q(x)y =Xy, €(0,1),
a(A)y’(O) b(M)y(0) = 0,
L: c(Ny'(1) —d(Ny(1) = 0,
y(z +0) = ay(z - 0),
Y(3+0)=a"y'(5-0)

where q(x) € L2(0,1) and a(\), b(N), ¢(A) and d(X) are unknown coefficients of the problem L. Let
= {x{b} C Xo be the dense subset of nodal points in (0, 1) satisfies the following asimptotics

If 24 € (0,1),

(G+1/2) 2+ sinm(2)

n—m-r  2(n-—m-—r)nr2

200~ (7+1/2)

at(n—m—r)im2n—m-—r

+

+o(52)

If 2 € (%, 1) ,
; o j+1/2
xj _ (] + 1/2) blnﬂ-(nj—m—r)

n—m-—r  2(n—m-—r)r2

n

20~ +1/2 1— 3
G+12) ,  1-r

+ 2
at(n—m-—-r)'m2n—m-r (n—m-—r)

It can be calculated that

1 20~
1—|—§s1n7m:+ —u, forxz < =

fo(z) =

L + 20 +1 sa f >
Zsinmxr + —x —— forz> -
g ST at at ’
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, 1 1
q(z) =2 | fo(z) — fo(1) + fo(0) + fo(i +0) - fo(§ —0)
= TCOSTT,
by = fO(O) = ]-7
1 1
dr = fo(1) — f0(§ +0) + fo(§ —0)
1/2
o
0
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